llvm.org GIT mirror llvm / eaa7353 lib / CodeGen / LiveDebugValues.cpp
eaa7353

Tree @eaa7353 (Download .tar.gz)

LiveDebugValues.cpp @eaa7353raw · history · blame

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
//===- LiveDebugValues.cpp - Tracking Debug Value MIs ---------------------===//
//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
///
/// This pass implements a data flow analysis that propagates debug location
/// information by inserting additional DBG_VALUE instructions into the machine
/// instruction stream. The pass internally builds debug location liveness
/// ranges to determine the points where additional DBG_VALUEs need to be
/// inserted.
///
/// This is a separate pass from DbgValueHistoryCalculator to facilitate
/// testing and improve modularity.
///
//===----------------------------------------------------------------------===//

#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/PostOrderIterator.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/SparseBitVector.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/ADT/UniqueVector.h"
#include "llvm/CodeGen/LexicalScopes.h"
#include "llvm/CodeGen/MachineBasicBlock.h"
#include "llvm/CodeGen/MachineFrameInfo.h"
#include "llvm/CodeGen/MachineFunction.h"
#include "llvm/CodeGen/MachineFunctionPass.h"
#include "llvm/CodeGen/MachineInstr.h"
#include "llvm/CodeGen/MachineInstrBuilder.h"
#include "llvm/CodeGen/MachineMemOperand.h"
#include "llvm/CodeGen/MachineOperand.h"
#include "llvm/CodeGen/PseudoSourceValue.h"
#include "llvm/CodeGen/TargetFrameLowering.h"
#include "llvm/CodeGen/TargetInstrInfo.h"
#include "llvm/CodeGen/TargetLowering.h"
#include "llvm/CodeGen/TargetRegisterInfo.h"
#include "llvm/CodeGen/TargetSubtargetInfo.h"
#include "llvm/CodeGen/RegisterScavenging.h"
#include "llvm/Config/llvm-config.h"
#include "llvm/IR/DebugInfoMetadata.h"
#include "llvm/IR/DebugLoc.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/Module.h"
#include "llvm/MC/MCRegisterInfo.h"
#include "llvm/Pass.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/Compiler.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/raw_ostream.h"
#include <algorithm>
#include <cassert>
#include <cstdint>
#include <functional>
#include <queue>
#include <utility>
#include <vector>

using namespace llvm;

#define DEBUG_TYPE "livedebugvalues"

STATISTIC(NumInserted, "Number of DBG_VALUE instructions inserted");

// If @MI is a DBG_VALUE with debug value described by a defined
// register, returns the number of this register. In the other case, returns 0.
static unsigned isDbgValueDescribedByReg(const MachineInstr &MI) {
  assert(MI.isDebugValue() && "expected a DBG_VALUE");
  assert(MI.getNumOperands() == 4 && "malformed DBG_VALUE");
  // If location of variable is described using a register (directly
  // or indirectly), this register is always a first operand.
  return MI.getOperand(0).isReg() ? MI.getOperand(0).getReg() : 0;
}

namespace {

class LiveDebugValues : public MachineFunctionPass {
private:
  const TargetRegisterInfo *TRI;
  const TargetInstrInfo *TII;
  const TargetFrameLowering *TFI;
  BitVector CalleeSavedRegs;
  LexicalScopes LS;

  /// Keeps track of lexical scopes associated with a user value's source
  /// location.
  class UserValueScopes {
    DebugLoc DL;
    LexicalScopes &LS;
    SmallPtrSet<const MachineBasicBlock *, 4> LBlocks;

  public:
    UserValueScopes(DebugLoc D, LexicalScopes &L) : DL(std::move(D)), LS(L) {}

    /// Return true if current scope dominates at least one machine
    /// instruction in a given machine basic block.
    bool dominates(MachineBasicBlock *MBB) {
      if (LBlocks.empty())
        LS.getMachineBasicBlocks(DL, LBlocks);
      return LBlocks.count(MBB) != 0 || LS.dominates(DL, MBB);
    }
  };

  /// Based on std::pair so it can be used as an index into a DenseMap.
  using DebugVariableBase =
      std::pair<const DILocalVariable *, const DILocation *>;
  /// A potentially inlined instance of a variable.
  struct DebugVariable : public DebugVariableBase {
    DebugVariable(const DILocalVariable *Var, const DILocation *InlinedAt)
        : DebugVariableBase(Var, InlinedAt) {}

    const DILocalVariable *getVar() const { return this->first; }
    const DILocation *getInlinedAt() const { return this->second; }

    bool operator<(const DebugVariable &DV) const {
      if (getVar() == DV.getVar())
        return getInlinedAt() < DV.getInlinedAt();
      return getVar() < DV.getVar();
    }
  };

  /// A pair of debug variable and value location.
  struct VarLoc {
    const DebugVariable Var;
    const MachineInstr &MI; ///< Only used for cloning a new DBG_VALUE.
    mutable UserValueScopes UVS;
    enum { InvalidKind = 0, RegisterKind } Kind = InvalidKind;

    /// The value location. Stored separately to avoid repeatedly
    /// extracting it from MI.
    union {
      uint64_t RegNo;
      uint64_t Hash;
    } Loc;

    VarLoc(const MachineInstr &MI, LexicalScopes &LS)
        : Var(MI.getDebugVariable(), MI.getDebugLoc()->getInlinedAt()), MI(MI),
          UVS(MI.getDebugLoc(), LS) {
      static_assert((sizeof(Loc) == sizeof(uint64_t)),
                    "hash does not cover all members of Loc");
      assert(MI.isDebugValue() && "not a DBG_VALUE");
      assert(MI.getNumOperands() == 4 && "malformed DBG_VALUE");
      if (int RegNo = isDbgValueDescribedByReg(MI)) {
        Kind = RegisterKind;
        Loc.RegNo = RegNo;
      }
    }

    /// If this variable is described by a register, return it,
    /// otherwise return 0.
    unsigned isDescribedByReg() const {
      if (Kind == RegisterKind)
        return Loc.RegNo;
      return 0;
    }

    /// Determine whether the lexical scope of this value's debug location
    /// dominates MBB.
    bool dominates(MachineBasicBlock &MBB) const { return UVS.dominates(&MBB); }

#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
    LLVM_DUMP_METHOD void dump() const { MI.dump(); }
#endif

    bool operator==(const VarLoc &Other) const {
      return Var == Other.Var && Loc.Hash == Other.Loc.Hash;
    }

    /// This operator guarantees that VarLocs are sorted by Variable first.
    bool operator<(const VarLoc &Other) const {
      if (Var == Other.Var)
        return Loc.Hash < Other.Loc.Hash;
      return Var < Other.Var;
    }
  };

  using VarLocMap = UniqueVector<VarLoc>;
  using VarLocSet = SparseBitVector<>;
  using VarLocInMBB = SmallDenseMap<const MachineBasicBlock *, VarLocSet>;
  struct TransferDebugPair {
    MachineInstr *TransferInst;
    MachineInstr *DebugInst;
  };
  using TransferMap = SmallVector<TransferDebugPair, 4>;

  /// This holds the working set of currently open ranges. For fast
  /// access, this is done both as a set of VarLocIDs, and a map of
  /// DebugVariable to recent VarLocID. Note that a DBG_VALUE ends all
  /// previous open ranges for the same variable.
  class OpenRangesSet {
    VarLocSet VarLocs;
    SmallDenseMap<DebugVariableBase, unsigned, 8> Vars;

  public:
    const VarLocSet &getVarLocs() const { return VarLocs; }

    /// Terminate all open ranges for Var by removing it from the set.
    void erase(DebugVariable Var) {
      auto It = Vars.find(Var);
      if (It != Vars.end()) {
        unsigned ID = It->second;
        VarLocs.reset(ID);
        Vars.erase(It);
      }
    }

    /// Terminate all open ranges listed in \c KillSet by removing
    /// them from the set.
    void erase(const VarLocSet &KillSet, const VarLocMap &VarLocIDs) {
      VarLocs.intersectWithComplement(KillSet);
      for (unsigned ID : KillSet)
        Vars.erase(VarLocIDs[ID].Var);
    }

    /// Insert a new range into the set.
    void insert(unsigned VarLocID, DebugVariableBase Var) {
      VarLocs.set(VarLocID);
      Vars.insert({Var, VarLocID});
    }

    /// Empty the set.
    void clear() {
      VarLocs.clear();
      Vars.clear();
    }

    /// Return whether the set is empty or not.
    bool empty() const {
      assert(Vars.empty() == VarLocs.empty() && "open ranges are inconsistent");
      return VarLocs.empty();
    }
  };

  bool isSpillInstruction(const MachineInstr &MI, MachineFunction *MF,
                          unsigned &Reg);
  int extractSpillBaseRegAndOffset(const MachineInstr &MI, unsigned &Reg);
  void insertTransferDebugPair(MachineInstr &MI, OpenRangesSet &OpenRanges,
                               TransferMap &Transfers, VarLocMap &VarLocIDs,
                               unsigned OldVarID, unsigned NewReg = 0);

  void transferDebugValue(const MachineInstr &MI, OpenRangesSet &OpenRanges,
                          VarLocMap &VarLocIDs);
  void transferSpillInst(MachineInstr &MI, OpenRangesSet &OpenRanges,
                         VarLocMap &VarLocIDs, TransferMap &Transfers);
  void transferRegisterCopy(MachineInstr &MI, OpenRangesSet &OpenRanges,
                            VarLocMap &VarLocIDs, TransferMap &Transfers);
  void transferRegisterDef(MachineInstr &MI, OpenRangesSet &OpenRanges,
                           const VarLocMap &VarLocIDs);
  bool transferTerminatorInst(MachineInstr &MI, OpenRangesSet &OpenRanges,
                              VarLocInMBB &OutLocs, const VarLocMap &VarLocIDs);
  bool process(MachineInstr &MI, OpenRangesSet &OpenRanges,
               VarLocInMBB &OutLocs, VarLocMap &VarLocIDs,
               TransferMap &Transfers, bool transferChanges);

  bool join(MachineBasicBlock &MBB, VarLocInMBB &OutLocs, VarLocInMBB &InLocs,
            const VarLocMap &VarLocIDs,
            SmallPtrSet<const MachineBasicBlock *, 16> &Visited,
            SmallPtrSetImpl<const MachineBasicBlock *> &ArtificialBlocks);

  bool ExtendRanges(MachineFunction &MF);

public:
  static char ID;

  /// Default construct and initialize the pass.
  LiveDebugValues();

  /// Tell the pass manager which passes we depend on and what
  /// information we preserve.
  void getAnalysisUsage(AnalysisUsage &AU) const override;

  MachineFunctionProperties getRequiredProperties() const override {
    return MachineFunctionProperties().set(
        MachineFunctionProperties::Property::NoVRegs);
  }

  /// Print to ostream with a message.
  void printVarLocInMBB(const MachineFunction &MF, const VarLocInMBB &V,
                        const VarLocMap &VarLocIDs, const char *msg,
                        raw_ostream &Out) const;

  /// Calculate the liveness information for the given machine function.
  bool runOnMachineFunction(MachineFunction &MF) override;
};

} // end anonymous namespace

//===----------------------------------------------------------------------===//
//            Implementation
//===----------------------------------------------------------------------===//

char LiveDebugValues::ID = 0;

char &llvm::LiveDebugValuesID = LiveDebugValues::ID;

INITIALIZE_PASS(LiveDebugValues, DEBUG_TYPE, "Live DEBUG_VALUE analysis",
                false, false)

/// Default construct and initialize the pass.
LiveDebugValues::LiveDebugValues() : MachineFunctionPass(ID) {
  initializeLiveDebugValuesPass(*PassRegistry::getPassRegistry());
}

/// Tell the pass manager which passes we depend on and what information we
/// preserve.
void LiveDebugValues::getAnalysisUsage(AnalysisUsage &AU) const {
  AU.setPreservesCFG();
  MachineFunctionPass::getAnalysisUsage(AU);
}

//===----------------------------------------------------------------------===//
//            Debug Range Extension Implementation
//===----------------------------------------------------------------------===//

#ifndef NDEBUG
void LiveDebugValues::printVarLocInMBB(const MachineFunction &MF,
                                       const VarLocInMBB &V,
                                       const VarLocMap &VarLocIDs,
                                       const char *msg,
                                       raw_ostream &Out) const {
  Out << '\n' << msg << '\n';
  for (const MachineBasicBlock &BB : MF) {
    const VarLocSet &L = V.lookup(&BB);
    if (L.empty())
      continue;
    Out << "MBB: " << BB.getNumber() << ":\n";
    for (unsigned VLL : L) {
      const VarLoc &VL = VarLocIDs[VLL];
      Out << " Var: " << VL.Var.getVar()->getName();
      Out << " MI: ";
      VL.dump();
    }
  }
  Out << "\n";
}
#endif

/// Given a spill instruction, extract the register and offset used to
/// address the spill location in a target independent way.
int LiveDebugValues::extractSpillBaseRegAndOffset(const MachineInstr &MI,
                                                  unsigned &Reg) {
  assert(MI.hasOneMemOperand() &&
         "Spill instruction does not have exactly one memory operand?");
  auto MMOI = MI.memoperands_begin();
  const PseudoSourceValue *PVal = (*MMOI)->getPseudoValue();
  assert(PVal->kind() == PseudoSourceValue::FixedStack &&
         "Inconsistent memory operand in spill instruction");
  int FI = cast<FixedStackPseudoSourceValue>(PVal)->getFrameIndex();
  const MachineBasicBlock *MBB = MI.getParent();
  return TFI->getFrameIndexReference(*MBB->getParent(), FI, Reg);
}

/// End all previous ranges related to @MI and start a new range from @MI
/// if it is a DBG_VALUE instr.
void LiveDebugValues::transferDebugValue(const MachineInstr &MI,
                                         OpenRangesSet &OpenRanges,
                                         VarLocMap &VarLocIDs) {
  if (!MI.isDebugValue())
    return;
  const DILocalVariable *Var = MI.getDebugVariable();
  const DILocation *DebugLoc = MI.getDebugLoc();
  const DILocation *InlinedAt = DebugLoc->getInlinedAt();
  assert(Var->isValidLocationForIntrinsic(DebugLoc) &&
         "Expected inlined-at fields to agree");

  // End all previous ranges of Var.
  DebugVariable V(Var, InlinedAt);
  OpenRanges.erase(V);

  // Add the VarLoc to OpenRanges from this DBG_VALUE.
  // TODO: Currently handles DBG_VALUE which has only reg as location.
  if (isDbgValueDescribedByReg(MI)) {
    VarLoc VL(MI, LS);
    unsigned ID = VarLocIDs.insert(VL);
    OpenRanges.insert(ID, VL.Var);
  }
}

/// Create new TransferDebugPair and insert it in \p Transfers. The VarLoc
/// with \p OldVarID should be deleted form \p OpenRanges and replaced with
/// new VarLoc. If \p NewReg is different than default zero value then the
/// new location will be register location created by the copy like instruction,
/// otherwise it is variable's location on the stack.
void LiveDebugValues::insertTransferDebugPair(
    MachineInstr &MI, OpenRangesSet &OpenRanges, TransferMap &Transfers,
    VarLocMap &VarLocIDs, unsigned OldVarID, unsigned NewReg) {
  const MachineInstr *DMI = &VarLocIDs[OldVarID].MI;
  MachineFunction *MF = MI.getParent()->getParent();
  MachineInstr *NewDMI;
  if (NewReg) {
    // Create a DBG_VALUE instruction to describe the Var in its new
    // register location.
    NewDMI = BuildMI(*MF, DMI->getDebugLoc(), DMI->getDesc(),
                     DMI->isIndirectDebugValue(), NewReg,
                     DMI->getDebugVariable(), DMI->getDebugExpression());
    if (DMI->isIndirectDebugValue())
      NewDMI->getOperand(1).setImm(DMI->getOperand(1).getImm());
    LLVM_DEBUG(dbgs() << "Creating DBG_VALUE inst for register copy: ";
               NewDMI->print(dbgs(), false, false, false, TII));
  } else {
    // Create a DBG_VALUE instruction to describe the Var in its spilled
    // location.
    unsigned SpillBase;
    int SpillOffset = extractSpillBaseRegAndOffset(MI, SpillBase);
    auto *SpillExpr = DIExpression::prepend(DMI->getDebugExpression(),
                                            DIExpression::NoDeref, SpillOffset);
    NewDMI = BuildMI(*MF, DMI->getDebugLoc(), DMI->getDesc(), true, SpillBase,
                     DMI->getDebugVariable(), SpillExpr);
    LLVM_DEBUG(dbgs() << "Creating DBG_VALUE inst for spill: ";
               NewDMI->print(dbgs(), false, false, false, TII));
  }

  // The newly created DBG_VALUE instruction NewDMI must be inserted after
  // MI. Keep track of the pairing.
  TransferDebugPair MIP = {&MI, NewDMI};
  Transfers.push_back(MIP);

  // End all previous ranges of Var.
  OpenRanges.erase(VarLocIDs[OldVarID].Var);

  // Add the VarLoc to OpenRanges.
  VarLoc VL(*NewDMI, LS);
  unsigned LocID = VarLocIDs.insert(VL);
  OpenRanges.insert(LocID, VL.Var);
}

/// A definition of a register may mark the end of a range.
void LiveDebugValues::transferRegisterDef(MachineInstr &MI,
                                          OpenRangesSet &OpenRanges,
                                          const VarLocMap &VarLocIDs) {
  MachineFunction *MF = MI.getMF();
  const TargetLowering *TLI = MF->getSubtarget().getTargetLowering();
  unsigned SP = TLI->getStackPointerRegisterToSaveRestore();
  SparseBitVector<> KillSet;
  for (const MachineOperand &MO : MI.operands()) {
    // Determine whether the operand is a register def.  Assume that call
    // instructions never clobber SP, because some backends (e.g., AArch64)
    // never list SP in the regmask.
    if (MO.isReg() && MO.isDef() && MO.getReg() &&
        TRI->isPhysicalRegister(MO.getReg()) &&
        !(MI.isCall() && MO.getReg() == SP)) {
      // Remove ranges of all aliased registers.
      for (MCRegAliasIterator RAI(MO.getReg(), TRI, true); RAI.isValid(); ++RAI)
        for (unsigned ID : OpenRanges.getVarLocs())
          if (VarLocIDs[ID].isDescribedByReg() == *RAI)
            KillSet.set(ID);
    } else if (MO.isRegMask()) {
      // Remove ranges of all clobbered registers. Register masks don't usually
      // list SP as preserved.  While the debug info may be off for an
      // instruction or two around callee-cleanup calls, transferring the
      // DEBUG_VALUE across the call is still a better user experience.
      for (unsigned ID : OpenRanges.getVarLocs()) {
        unsigned Reg = VarLocIDs[ID].isDescribedByReg();
        if (Reg && Reg != SP && MO.clobbersPhysReg(Reg))
          KillSet.set(ID);
      }
    }
  }
  OpenRanges.erase(KillSet, VarLocIDs);
}

/// Decide if @MI is a spill instruction and return true if it is. We use 2
/// criteria to make this decision:
/// - Is this instruction a store to a spill slot?
/// - Is there a register operand that is both used and killed?
/// TODO: Store optimization can fold spills into other stores (including
/// other spills). We do not handle this yet (more than one memory operand).
bool LiveDebugValues::isSpillInstruction(const MachineInstr &MI,
                                         MachineFunction *MF, unsigned &Reg) {
  const MachineFrameInfo &FrameInfo = MF->getFrameInfo();
  int FI;
  SmallVector<const MachineMemOperand*, 1> Accesses;

  // TODO: Handle multiple stores folded into one.
  if (!MI.hasOneMemOperand())
    return false;

  // To identify a spill instruction, use the same criteria as in AsmPrinter.
  if (!((TII->isStoreToStackSlotPostFE(MI, FI) &&
         FrameInfo.isSpillSlotObjectIndex(FI)) ||
        (TII->hasStoreToStackSlot(MI, Accesses) &&
         llvm::any_of(Accesses, [&FrameInfo](const MachineMemOperand *MMO) {
           return FrameInfo.isSpillSlotObjectIndex(
               cast<FixedStackPseudoSourceValue>(MMO->getPseudoValue())
                   ->getFrameIndex());
         }))))
    return false;

  auto isKilledReg = [&](const MachineOperand MO, unsigned &Reg) {
    if (!MO.isReg() || !MO.isUse()) {
      Reg = 0;
      return false;
    }
    Reg = MO.getReg();
    return MO.isKill();
  };

  for (const MachineOperand &MO : MI.operands()) {
    // In a spill instruction generated by the InlineSpiller the spilled
    // register has its kill flag set.
    if (isKilledReg(MO, Reg))
      return true;
    if (Reg != 0) {
      // Check whether next instruction kills the spilled register.
      // FIXME: Current solution does not cover search for killed register in
      // bundles and instructions further down the chain.
      auto NextI = std::next(MI.getIterator());
      // Skip next instruction that points to basic block end iterator.
      if (MI.getParent()->end() == NextI)
        continue;
      unsigned RegNext;
      for (const MachineOperand &MONext : NextI->operands()) {
        // Return true if we came across the register from the
        // previous spill instruction that is killed in NextI.
        if (isKilledReg(MONext, RegNext) && RegNext == Reg)
          return true;
      }
    }
  }
  // Return false if we didn't find spilled register.
  return false;
}

/// A spilled register may indicate that we have to end the current range of
/// a variable and create a new one for the spill location.
/// We don't want to insert any instructions in process(), so we just create
/// the DBG_VALUE without inserting it and keep track of it in \p Transfers.
/// It will be inserted into the BB when we're done iterating over the
/// instructions.
void LiveDebugValues::transferSpillInst(MachineInstr &MI,
                                        OpenRangesSet &OpenRanges,
                                        VarLocMap &VarLocIDs,
                                        TransferMap &Transfers) {
  unsigned Reg;
  MachineFunction *MF = MI.getMF();
  if (!isSpillInstruction(MI, MF, Reg))
    return;

  // Check if the register is the location of a debug value.
  for (unsigned ID : OpenRanges.getVarLocs()) {
    if (VarLocIDs[ID].isDescribedByReg() == Reg) {
      LLVM_DEBUG(dbgs() << "Spilling Register " << printReg(Reg, TRI) << '('
                        << VarLocIDs[ID].Var.getVar()->getName() << ")\n");
      insertTransferDebugPair(MI, OpenRanges, Transfers, VarLocIDs, ID);
      return;
    }
  }
}

/// If \p MI is a register copy instruction, that copies a previously tracked
/// value from one register to another register that is callee saved, we
/// create new DBG_VALUE instruction  described with copy destination register.
void LiveDebugValues::transferRegisterCopy(MachineInstr &MI,
                                           OpenRangesSet &OpenRanges,
                                           VarLocMap &VarLocIDs,
                                           TransferMap &Transfers) {
  const MachineOperand *SrcRegOp, *DestRegOp;

  if (!TII->isCopyInstr(MI, SrcRegOp, DestRegOp) || !SrcRegOp->isKill() ||
      !DestRegOp->isDef())
    return;

  auto isCalleSavedReg = [&](unsigned Reg) {
    for (MCRegAliasIterator RAI(Reg, TRI, true); RAI.isValid(); ++RAI)
      if (CalleeSavedRegs.test(*RAI))
        return true;
    return false;
  };

  unsigned SrcReg = SrcRegOp->getReg();
  unsigned DestReg = DestRegOp->getReg();

  // We want to recognize instructions where destination register is callee
  // saved register. If register that could be clobbered by the call is
  // included, there would be a great chance that it is going to be clobbered
  // soon. It is more likely that previous register location, which is callee
  // saved, is going to stay unclobbered longer, even if it is killed.
  if (!isCalleSavedReg(DestReg))
    return;

  for (unsigned ID : OpenRanges.getVarLocs()) {
    if (VarLocIDs[ID].isDescribedByReg() == SrcReg) {
      insertTransferDebugPair(MI, OpenRanges, Transfers, VarLocIDs, ID,
                              DestReg);
      return;
    }
  }
}

/// Terminate all open ranges at the end of the current basic block.
bool LiveDebugValues::transferTerminatorInst(MachineInstr &MI,
                                             OpenRangesSet &OpenRanges,
                                             VarLocInMBB &OutLocs,
                                             const VarLocMap &VarLocIDs) {
  bool Changed = false;
  const MachineBasicBlock *CurMBB = MI.getParent();
  if (!(MI.isTerminator() || (&MI == &CurMBB->back())))
    return false;

  if (OpenRanges.empty())
    return false;

  LLVM_DEBUG(for (unsigned ID
                  : OpenRanges.getVarLocs()) {
    // Copy OpenRanges to OutLocs, if not already present.
    dbgs() << "Add to OutLocs in MBB #" << CurMBB->getNumber() << ":  ";
    VarLocIDs[ID].dump();
  });
  VarLocSet &VLS = OutLocs[CurMBB];
  Changed = VLS |= OpenRanges.getVarLocs();
  OpenRanges.clear();
  return Changed;
}

/// This routine creates OpenRanges and OutLocs.
bool LiveDebugValues::process(MachineInstr &MI, OpenRangesSet &OpenRanges,
                              VarLocInMBB &OutLocs, VarLocMap &VarLocIDs,
                              TransferMap &Transfers, bool transferChanges) {
  bool Changed = false;
  transferDebugValue(MI, OpenRanges, VarLocIDs);
  transferRegisterDef(MI, OpenRanges, VarLocIDs);
  if (transferChanges) {
    transferRegisterCopy(MI, OpenRanges, VarLocIDs, Transfers);
    transferSpillInst(MI, OpenRanges, VarLocIDs, Transfers);
  }
  Changed = transferTerminatorInst(MI, OpenRanges, OutLocs, VarLocIDs);
  return Changed;
}

/// This routine joins the analysis results of all incoming edges in @MBB by
/// inserting a new DBG_VALUE instruction at the start of the @MBB - if the same
/// source variable in all the predecessors of @MBB reside in the same location.
bool LiveDebugValues::join(
    MachineBasicBlock &MBB, VarLocInMBB &OutLocs, VarLocInMBB &InLocs,
    const VarLocMap &VarLocIDs,
    SmallPtrSet<const MachineBasicBlock *, 16> &Visited,
    SmallPtrSetImpl<const MachineBasicBlock *> &ArtificialBlocks) {
  LLVM_DEBUG(dbgs() << "join MBB: " << MBB.getNumber() << "\n");
  bool Changed = false;

  VarLocSet InLocsT; // Temporary incoming locations.

  // For all predecessors of this MBB, find the set of VarLocs that
  // can be joined.
  int NumVisited = 0;
  for (auto p : MBB.predecessors()) {
    // Ignore unvisited predecessor blocks.  As we are processing
    // the blocks in reverse post-order any unvisited block can
    // be considered to not remove any incoming values.
    if (!Visited.count(p)) {
      LLVM_DEBUG(dbgs() << "  ignoring unvisited pred MBB: " << p->getNumber()
                        << "\n");
      continue;
    }
    auto OL = OutLocs.find(p);
    // Join is null in case of empty OutLocs from any of the pred.
    if (OL == OutLocs.end())
      return false;

    // Just copy over the Out locs to incoming locs for the first visited
    // predecessor, and for all other predecessors join the Out locs.
    if (!NumVisited)
      InLocsT = OL->second;
    else
      InLocsT &= OL->second;

    LLVM_DEBUG({
      if (!InLocsT.empty()) {
        for (auto ID : InLocsT)
          dbgs() << "  gathered candidate incoming var: "
                 << VarLocIDs[ID].Var.getVar()->getName() << "\n";
      }
    });

    NumVisited++;
  }

  // Filter out DBG_VALUES that are out of scope.
  VarLocSet KillSet;
  bool IsArtificial = ArtificialBlocks.count(&MBB);
  if (!IsArtificial) {
    for (auto ID : InLocsT) {
      if (!VarLocIDs[ID].dominates(MBB)) {
        KillSet.set(ID);
        LLVM_DEBUG({
          auto Name = VarLocIDs[ID].Var.getVar()->getName();
          dbgs() << "  killing " << Name << ", it doesn't dominate MBB\n";
        });
      }
    }
  }
  InLocsT.intersectWithComplement(KillSet);

  // As we are processing blocks in reverse post-order we
  // should have processed at least one predecessor, unless it
  // is the entry block which has no predecessor.
  assert((NumVisited || MBB.pred_empty()) &&
         "Should have processed at least one predecessor");
  if (InLocsT.empty())
    return false;

  VarLocSet &ILS = InLocs[&MBB];

  // Insert DBG_VALUE instructions, if not already inserted.
  VarLocSet Diff = InLocsT;
  Diff.intersectWithComplement(ILS);
  for (auto ID : Diff) {
    // This VarLoc is not found in InLocs i.e. it is not yet inserted. So, a
    // new range is started for the var from the mbb's beginning by inserting
    // a new DBG_VALUE. process() will end this range however appropriate.
    const VarLoc &DiffIt = VarLocIDs[ID];
    const MachineInstr *DMI = &DiffIt.MI;
    MachineInstr *MI =
        BuildMI(MBB, MBB.instr_begin(), DMI->getDebugLoc(), DMI->getDesc(),
                DMI->isIndirectDebugValue(), DMI->getOperand(0).getReg(),
                DMI->getDebugVariable(), DMI->getDebugExpression());
    if (DMI->isIndirectDebugValue())
      MI->getOperand(1).setImm(DMI->getOperand(1).getImm());
    LLVM_DEBUG(dbgs() << "Inserted: "; MI->dump(););
    ILS.set(ID);
    ++NumInserted;
    Changed = true;
  }
  return Changed;
}

/// Calculate the liveness information for the given machine function and
/// extend ranges across basic blocks.
bool LiveDebugValues::ExtendRanges(MachineFunction &MF) {
  LLVM_DEBUG(dbgs() << "\nDebug Range Extension\n");

  bool Changed = false;
  bool OLChanged = false;
  bool MBBJoined = false;

  VarLocMap VarLocIDs;      // Map VarLoc<>unique ID for use in bitvectors.
  OpenRangesSet OpenRanges; // Ranges that are open until end of bb.
  VarLocInMBB OutLocs;      // Ranges that exist beyond bb.
  VarLocInMBB InLocs;       // Ranges that are incoming after joining.
  TransferMap Transfers;    // DBG_VALUEs associated with spills.

  // Blocks which are artificial, i.e. blocks which exclusively contain
  // instructions without locations, or with line 0 locations.
  SmallPtrSet<const MachineBasicBlock *, 16> ArtificialBlocks;

  DenseMap<unsigned int, MachineBasicBlock *> OrderToBB;
  DenseMap<MachineBasicBlock *, unsigned int> BBToOrder;
  std::priority_queue<unsigned int, std::vector<unsigned int>,
                      std::greater<unsigned int>>
      Worklist;
  std::priority_queue<unsigned int, std::vector<unsigned int>,
                      std::greater<unsigned int>>
      Pending;

  enum : bool { dontTransferChanges = false, transferChanges = true };

  // Initialize every mbb with OutLocs.
  // We are not looking at any spill instructions during the initial pass
  // over the BBs. The LiveDebugVariables pass has already created DBG_VALUE
  // instructions for spills of registers that are known to be user variables
  // within the BB in which the spill occurs.
  for (auto &MBB : MF)
    for (auto &MI : MBB)
      process(MI, OpenRanges, OutLocs, VarLocIDs, Transfers,
              dontTransferChanges);

  auto hasNonArtificialLocation = [](const MachineInstr &MI) -> bool {
    if (const DebugLoc &DL = MI.getDebugLoc())
      return DL.getLine() != 0;
    return false;
  };
  for (auto &MBB : MF)
    if (none_of(MBB.instrs(), hasNonArtificialLocation))
      ArtificialBlocks.insert(&MBB);

  LLVM_DEBUG(printVarLocInMBB(MF, OutLocs, VarLocIDs,
                              "OutLocs after initialization", dbgs()));

  ReversePostOrderTraversal<MachineFunction *> RPOT(&MF);
  unsigned int RPONumber = 0;
  for (auto RI = RPOT.begin(), RE = RPOT.end(); RI != RE; ++RI) {
    OrderToBB[RPONumber] = *RI;
    BBToOrder[*RI] = RPONumber;
    Worklist.push(RPONumber);
    ++RPONumber;
  }
  // This is a standard "union of predecessor outs" dataflow problem.
  // To solve it, we perform join() and process() using the two worklist method
  // until the ranges converge.
  // Ranges have converged when both worklists are empty.
  SmallPtrSet<const MachineBasicBlock *, 16> Visited;
  while (!Worklist.empty() || !Pending.empty()) {
    // We track what is on the pending worklist to avoid inserting the same
    // thing twice.  We could avoid this with a custom priority queue, but this
    // is probably not worth it.
    SmallPtrSet<MachineBasicBlock *, 16> OnPending;
    LLVM_DEBUG(dbgs() << "Processing Worklist\n");
    while (!Worklist.empty()) {
      MachineBasicBlock *MBB = OrderToBB[Worklist.top()];
      Worklist.pop();
      MBBJoined =
          join(*MBB, OutLocs, InLocs, VarLocIDs, Visited, ArtificialBlocks);
      Visited.insert(MBB);
      if (MBBJoined) {
        MBBJoined = false;
        Changed = true;
        // Now that we have started to extend ranges across BBs we need to
        // examine spill instructions to see whether they spill registers that
        // correspond to user variables.
        for (auto &MI : *MBB)
          OLChanged |= process(MI, OpenRanges, OutLocs, VarLocIDs, Transfers,
                               transferChanges);

        // Add any DBG_VALUE instructions necessitated by spills.
        for (auto &TR : Transfers)
          MBB->insertAfter(MachineBasicBlock::iterator(*TR.TransferInst),
                           TR.DebugInst);
        Transfers.clear();

        LLVM_DEBUG(printVarLocInMBB(MF, OutLocs, VarLocIDs,
                                    "OutLocs after propagating", dbgs()));
        LLVM_DEBUG(printVarLocInMBB(MF, InLocs, VarLocIDs,
                                    "InLocs after propagating", dbgs()));

        if (OLChanged) {
          OLChanged = false;
          for (auto s : MBB->successors())
            if (OnPending.insert(s).second) {
              Pending.push(BBToOrder[s]);
            }
        }
      }
    }
    Worklist.swap(Pending);
    // At this point, pending must be empty, since it was just the empty
    // worklist
    assert(Pending.empty() && "Pending should be empty");
  }

  LLVM_DEBUG(printVarLocInMBB(MF, OutLocs, VarLocIDs, "Final OutLocs", dbgs()));
  LLVM_DEBUG(printVarLocInMBB(MF, InLocs, VarLocIDs, "Final InLocs", dbgs()));
  return Changed;
}

bool LiveDebugValues::runOnMachineFunction(MachineFunction &MF) {
  if (!MF.getFunction().getSubprogram())
    // LiveDebugValues will already have removed all DBG_VALUEs.
    return false;

  // Skip functions from NoDebug compilation units.
  if (MF.getFunction().getSubprogram()->getUnit()->getEmissionKind() ==
      DICompileUnit::NoDebug)
    return false;

  TRI = MF.getSubtarget().getRegisterInfo();
  TII = MF.getSubtarget().getInstrInfo();
  TFI = MF.getSubtarget().getFrameLowering();
  TFI->determineCalleeSaves(MF, CalleeSavedRegs,
                            make_unique<RegScavenger>().get());
  LS.initialize(MF);

  bool Changed = ExtendRanges(MF);
  return Changed;
}