llvm.org GIT mirror llvm / eaa7353 lib / CodeGen / IfConversion.cpp
eaa7353

Tree @eaa7353 (Download .tar.gz)

IfConversion.cpp @eaa7353raw · history · blame

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
//===- IfConversion.cpp - Machine code if conversion pass -----------------===//
//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements the machine instruction level if-conversion pass, which
// tries to convert conditional branches into predicated instructions.
//
//===----------------------------------------------------------------------===//

#include "BranchFolding.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/ScopeExit.h"
#include "llvm/ADT/SmallSet.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/SparseSet.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/ADT/iterator_range.h"
#include "llvm/CodeGen/LivePhysRegs.h"
#include "llvm/CodeGen/MachineBasicBlock.h"
#include "llvm/CodeGen/MachineBlockFrequencyInfo.h"
#include "llvm/CodeGen/MachineBranchProbabilityInfo.h"
#include "llvm/CodeGen/MachineFunction.h"
#include "llvm/CodeGen/MachineFunctionPass.h"
#include "llvm/CodeGen/MachineInstr.h"
#include "llvm/CodeGen/MachineInstrBuilder.h"
#include "llvm/CodeGen/MachineModuleInfo.h"
#include "llvm/CodeGen/MachineOperand.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/CodeGen/TargetInstrInfo.h"
#include "llvm/CodeGen/TargetLowering.h"
#include "llvm/CodeGen/TargetRegisterInfo.h"
#include "llvm/CodeGen/TargetSchedule.h"
#include "llvm/CodeGen/TargetSubtargetInfo.h"
#include "llvm/IR/DebugLoc.h"
#include "llvm/MC/MCRegisterInfo.h"
#include "llvm/Pass.h"
#include "llvm/Support/BranchProbability.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/raw_ostream.h"
#include <algorithm>
#include <cassert>
#include <functional>
#include <iterator>
#include <memory>
#include <utility>
#include <vector>

using namespace llvm;

#define DEBUG_TYPE "if-converter"

// Hidden options for help debugging.
static cl::opt<int> IfCvtFnStart("ifcvt-fn-start", cl::init(-1), cl::Hidden);
static cl::opt<int> IfCvtFnStop("ifcvt-fn-stop", cl::init(-1), cl::Hidden);
static cl::opt<int> IfCvtLimit("ifcvt-limit", cl::init(-1), cl::Hidden);
static cl::opt<bool> DisableSimple("disable-ifcvt-simple",
                                   cl::init(false), cl::Hidden);
static cl::opt<bool> DisableSimpleF("disable-ifcvt-simple-false",
                                    cl::init(false), cl::Hidden);
static cl::opt<bool> DisableTriangle("disable-ifcvt-triangle",
                                     cl::init(false), cl::Hidden);
static cl::opt<bool> DisableTriangleR("disable-ifcvt-triangle-rev",
                                      cl::init(false), cl::Hidden);
static cl::opt<bool> DisableTriangleF("disable-ifcvt-triangle-false",
                                      cl::init(false), cl::Hidden);
static cl::opt<bool> DisableTriangleFR("disable-ifcvt-triangle-false-rev",
                                       cl::init(false), cl::Hidden);
static cl::opt<bool> DisableDiamond("disable-ifcvt-diamond",
                                    cl::init(false), cl::Hidden);
static cl::opt<bool> DisableForkedDiamond("disable-ifcvt-forked-diamond",
                                        cl::init(false), cl::Hidden);
static cl::opt<bool> IfCvtBranchFold("ifcvt-branch-fold",
                                     cl::init(true), cl::Hidden);

STATISTIC(NumSimple,       "Number of simple if-conversions performed");
STATISTIC(NumSimpleFalse,  "Number of simple (F) if-conversions performed");
STATISTIC(NumTriangle,     "Number of triangle if-conversions performed");
STATISTIC(NumTriangleRev,  "Number of triangle (R) if-conversions performed");
STATISTIC(NumTriangleFalse,"Number of triangle (F) if-conversions performed");
STATISTIC(NumTriangleFRev, "Number of triangle (F/R) if-conversions performed");
STATISTIC(NumDiamonds,     "Number of diamond if-conversions performed");
STATISTIC(NumForkedDiamonds, "Number of forked-diamond if-conversions performed");
STATISTIC(NumIfConvBBs,    "Number of if-converted blocks");
STATISTIC(NumDupBBs,       "Number of duplicated blocks");
STATISTIC(NumUnpred,       "Number of true blocks of diamonds unpredicated");

namespace {

  class IfConverter : public MachineFunctionPass {
    enum IfcvtKind {
      ICNotClassfied,  // BB data valid, but not classified.
      ICSimpleFalse,   // Same as ICSimple, but on the false path.
      ICSimple,        // BB is entry of an one split, no rejoin sub-CFG.
      ICTriangleFRev,  // Same as ICTriangleFalse, but false path rev condition.
      ICTriangleRev,   // Same as ICTriangle, but true path rev condition.
      ICTriangleFalse, // Same as ICTriangle, but on the false path.
      ICTriangle,      // BB is entry of a triangle sub-CFG.
      ICDiamond,       // BB is entry of a diamond sub-CFG.
      ICForkedDiamond  // BB is entry of an almost diamond sub-CFG, with a
                       // common tail that can be shared.
    };

    /// One per MachineBasicBlock, this is used to cache the result
    /// if-conversion feasibility analysis. This includes results from
    /// TargetInstrInfo::analyzeBranch() (i.e. TBB, FBB, and Cond), and its
    /// classification, and common tail block of its successors (if it's a
    /// diamond shape), its size, whether it's predicable, and whether any
    /// instruction can clobber the 'would-be' predicate.
    ///
    /// IsDone          - True if BB is not to be considered for ifcvt.
    /// IsBeingAnalyzed - True if BB is currently being analyzed.
    /// IsAnalyzed      - True if BB has been analyzed (info is still valid).
    /// IsEnqueued      - True if BB has been enqueued to be ifcvt'ed.
    /// IsBrAnalyzable  - True if analyzeBranch() returns false.
    /// HasFallThrough  - True if BB may fallthrough to the following BB.
    /// IsUnpredicable  - True if BB is known to be unpredicable.
    /// ClobbersPred    - True if BB could modify predicates (e.g. has
    ///                   cmp, call, etc.)
    /// NonPredSize     - Number of non-predicated instructions.
    /// ExtraCost       - Extra cost for multi-cycle instructions.
    /// ExtraCost2      - Some instructions are slower when predicated
    /// BB              - Corresponding MachineBasicBlock.
    /// TrueBB / FalseBB- See analyzeBranch().
    /// BrCond          - Conditions for end of block conditional branches.
    /// Predicate       - Predicate used in the BB.
    struct BBInfo {
      bool IsDone          : 1;
      bool IsBeingAnalyzed : 1;
      bool IsAnalyzed      : 1;
      bool IsEnqueued      : 1;
      bool IsBrAnalyzable  : 1;
      bool IsBrReversible  : 1;
      bool HasFallThrough  : 1;
      bool IsUnpredicable  : 1;
      bool CannotBeCopied  : 1;
      bool ClobbersPred    : 1;
      unsigned NonPredSize = 0;
      unsigned ExtraCost = 0;
      unsigned ExtraCost2 = 0;
      MachineBasicBlock *BB = nullptr;
      MachineBasicBlock *TrueBB = nullptr;
      MachineBasicBlock *FalseBB = nullptr;
      SmallVector<MachineOperand, 4> BrCond;
      SmallVector<MachineOperand, 4> Predicate;

      BBInfo() : IsDone(false), IsBeingAnalyzed(false),
                 IsAnalyzed(false), IsEnqueued(false), IsBrAnalyzable(false),
                 IsBrReversible(false), HasFallThrough(false),
                 IsUnpredicable(false), CannotBeCopied(false),
                 ClobbersPred(false) {}
    };

    /// Record information about pending if-conversions to attempt:
    /// BBI             - Corresponding BBInfo.
    /// Kind            - Type of block. See IfcvtKind.
    /// NeedSubsumption - True if the to-be-predicated BB has already been
    ///                   predicated.
    /// NumDups      - Number of instructions that would be duplicated due
    ///                   to this if-conversion. (For diamonds, the number of
    ///                   identical instructions at the beginnings of both
    ///                   paths).
    /// NumDups2     - For diamonds, the number of identical instructions
    ///                   at the ends of both paths.
    struct IfcvtToken {
      BBInfo &BBI;
      IfcvtKind Kind;
      unsigned NumDups;
      unsigned NumDups2;
      bool NeedSubsumption : 1;
      bool TClobbersPred : 1;
      bool FClobbersPred : 1;

      IfcvtToken(BBInfo &b, IfcvtKind k, bool s, unsigned d, unsigned d2 = 0,
                 bool tc = false, bool fc = false)
        : BBI(b), Kind(k), NumDups(d), NumDups2(d2), NeedSubsumption(s),
          TClobbersPred(tc), FClobbersPred(fc) {}
    };

    /// Results of if-conversion feasibility analysis indexed by basic block
    /// number.
    std::vector<BBInfo> BBAnalysis;
    TargetSchedModel SchedModel;

    const TargetLoweringBase *TLI;
    const TargetInstrInfo *TII;
    const TargetRegisterInfo *TRI;
    const MachineBranchProbabilityInfo *MBPI;
    MachineRegisterInfo *MRI;

    LivePhysRegs Redefs;

    bool PreRegAlloc;
    bool MadeChange;
    int FnNum = -1;
    std::function<bool(const MachineFunction &)> PredicateFtor;

  public:
    static char ID;

    IfConverter(std::function<bool(const MachineFunction &)> Ftor = nullptr)
        : MachineFunctionPass(ID), PredicateFtor(std::move(Ftor)) {
      initializeIfConverterPass(*PassRegistry::getPassRegistry());
    }

    void getAnalysisUsage(AnalysisUsage &AU) const override {
      AU.addRequired<MachineBlockFrequencyInfo>();
      AU.addRequired<MachineBranchProbabilityInfo>();
      MachineFunctionPass::getAnalysisUsage(AU);
    }

    bool runOnMachineFunction(MachineFunction &MF) override;

    MachineFunctionProperties getRequiredProperties() const override {
      return MachineFunctionProperties().set(
          MachineFunctionProperties::Property::NoVRegs);
    }

  private:
    bool reverseBranchCondition(BBInfo &BBI) const;
    bool ValidSimple(BBInfo &TrueBBI, unsigned &Dups,
                     BranchProbability Prediction) const;
    bool ValidTriangle(BBInfo &TrueBBI, BBInfo &FalseBBI,
                       bool FalseBranch, unsigned &Dups,
                       BranchProbability Prediction) const;
    bool CountDuplicatedInstructions(
        MachineBasicBlock::iterator &TIB, MachineBasicBlock::iterator &FIB,
        MachineBasicBlock::iterator &TIE, MachineBasicBlock::iterator &FIE,
        unsigned &Dups1, unsigned &Dups2,
        MachineBasicBlock &TBB, MachineBasicBlock &FBB,
        bool SkipUnconditionalBranches) const;
    bool ValidDiamond(BBInfo &TrueBBI, BBInfo &FalseBBI,
                      unsigned &Dups1, unsigned &Dups2,
                      BBInfo &TrueBBICalc, BBInfo &FalseBBICalc) const;
    bool ValidForkedDiamond(BBInfo &TrueBBI, BBInfo &FalseBBI,
                            unsigned &Dups1, unsigned &Dups2,
                            BBInfo &TrueBBICalc, BBInfo &FalseBBICalc) const;
    void AnalyzeBranches(BBInfo &BBI);
    void ScanInstructions(BBInfo &BBI,
                          MachineBasicBlock::iterator &Begin,
                          MachineBasicBlock::iterator &End,
                          bool BranchUnpredicable = false) const;
    bool RescanInstructions(
        MachineBasicBlock::iterator &TIB, MachineBasicBlock::iterator &FIB,
        MachineBasicBlock::iterator &TIE, MachineBasicBlock::iterator &FIE,
        BBInfo &TrueBBI, BBInfo &FalseBBI) const;
    void AnalyzeBlock(MachineBasicBlock &MBB,
                      std::vector<std::unique_ptr<IfcvtToken>> &Tokens);
    bool FeasibilityAnalysis(BBInfo &BBI, SmallVectorImpl<MachineOperand> &Pred,
                             bool isTriangle = false, bool RevBranch = false,
                             bool hasCommonTail = false);
    void AnalyzeBlocks(MachineFunction &MF,
                       std::vector<std::unique_ptr<IfcvtToken>> &Tokens);
    void InvalidatePreds(MachineBasicBlock &MBB);
    bool IfConvertSimple(BBInfo &BBI, IfcvtKind Kind);
    bool IfConvertTriangle(BBInfo &BBI, IfcvtKind Kind);
    bool IfConvertDiamondCommon(BBInfo &BBI, BBInfo &TrueBBI, BBInfo &FalseBBI,
                                unsigned NumDups1, unsigned NumDups2,
                                bool TClobbersPred, bool FClobbersPred,
                                bool RemoveBranch, bool MergeAddEdges);
    bool IfConvertDiamond(BBInfo &BBI, IfcvtKind Kind,
                          unsigned NumDups1, unsigned NumDups2,
                          bool TClobbers, bool FClobbers);
    bool IfConvertForkedDiamond(BBInfo &BBI, IfcvtKind Kind,
                              unsigned NumDups1, unsigned NumDups2,
                              bool TClobbers, bool FClobbers);
    void PredicateBlock(BBInfo &BBI,
                        MachineBasicBlock::iterator E,
                        SmallVectorImpl<MachineOperand> &Cond,
                        SmallSet<MCPhysReg, 4> *LaterRedefs = nullptr);
    void CopyAndPredicateBlock(BBInfo &ToBBI, BBInfo &FromBBI,
                               SmallVectorImpl<MachineOperand> &Cond,
                               bool IgnoreBr = false);
    void MergeBlocks(BBInfo &ToBBI, BBInfo &FromBBI, bool AddEdges = true);

    bool MeetIfcvtSizeLimit(MachineBasicBlock &BB,
                            unsigned Cycle, unsigned Extra,
                            BranchProbability Prediction) const {
      return Cycle > 0 && TII->isProfitableToIfCvt(BB, Cycle, Extra,
                                                   Prediction);
    }

    bool MeetIfcvtSizeLimit(MachineBasicBlock &TBB,
                            unsigned TCycle, unsigned TExtra,
                            MachineBasicBlock &FBB,
                            unsigned FCycle, unsigned FExtra,
                            BranchProbability Prediction) const {
      return TCycle > 0 && FCycle > 0 &&
        TII->isProfitableToIfCvt(TBB, TCycle, TExtra, FBB, FCycle, FExtra,
                                 Prediction);
    }

    /// Returns true if Block ends without a terminator.
    bool blockAlwaysFallThrough(BBInfo &BBI) const {
      return BBI.IsBrAnalyzable && BBI.TrueBB == nullptr;
    }

    /// Used to sort if-conversion candidates.
    static bool IfcvtTokenCmp(const std::unique_ptr<IfcvtToken> &C1,
                              const std::unique_ptr<IfcvtToken> &C2) {
      int Incr1 = (C1->Kind == ICDiamond)
        ? -(int)(C1->NumDups + C1->NumDups2) : (int)C1->NumDups;
      int Incr2 = (C2->Kind == ICDiamond)
        ? -(int)(C2->NumDups + C2->NumDups2) : (int)C2->NumDups;
      if (Incr1 > Incr2)
        return true;
      else if (Incr1 == Incr2) {
        // Favors subsumption.
        if (!C1->NeedSubsumption && C2->NeedSubsumption)
          return true;
        else if (C1->NeedSubsumption == C2->NeedSubsumption) {
          // Favors diamond over triangle, etc.
          if ((unsigned)C1->Kind < (unsigned)C2->Kind)
            return true;
          else if (C1->Kind == C2->Kind)
            return C1->BBI.BB->getNumber() < C2->BBI.BB->getNumber();
        }
      }
      return false;
    }
  };

} // end anonymous namespace

char IfConverter::ID = 0;

char &llvm::IfConverterID = IfConverter::ID;

INITIALIZE_PASS_BEGIN(IfConverter, DEBUG_TYPE, "If Converter", false, false)
INITIALIZE_PASS_DEPENDENCY(MachineBranchProbabilityInfo)
INITIALIZE_PASS_END(IfConverter, DEBUG_TYPE, "If Converter", false, false)

bool IfConverter::runOnMachineFunction(MachineFunction &MF) {
  if (skipFunction(MF.getFunction()) || (PredicateFtor && !PredicateFtor(MF)))
    return false;

  const TargetSubtargetInfo &ST = MF.getSubtarget();
  TLI = ST.getTargetLowering();
  TII = ST.getInstrInfo();
  TRI = ST.getRegisterInfo();
  BranchFolder::MBFIWrapper MBFI(getAnalysis<MachineBlockFrequencyInfo>());
  MBPI = &getAnalysis<MachineBranchProbabilityInfo>();
  MRI = &MF.getRegInfo();
  SchedModel.init(&ST);

  if (!TII) return false;

  PreRegAlloc = MRI->isSSA();

  bool BFChange = false;
  if (!PreRegAlloc) {
    // Tail merge tend to expose more if-conversion opportunities.
    BranchFolder BF(true, false, MBFI, *MBPI);
    BFChange = BF.OptimizeFunction(MF, TII, ST.getRegisterInfo(),
                                   getAnalysisIfAvailable<MachineModuleInfo>());
  }

  LLVM_DEBUG(dbgs() << "\nIfcvt: function (" << ++FnNum << ") \'"
                    << MF.getName() << "\'");

  if (FnNum < IfCvtFnStart || (IfCvtFnStop != -1 && FnNum > IfCvtFnStop)) {
    LLVM_DEBUG(dbgs() << " skipped\n");
    return false;
  }
  LLVM_DEBUG(dbgs() << "\n");

  MF.RenumberBlocks();
  BBAnalysis.resize(MF.getNumBlockIDs());

  std::vector<std::unique_ptr<IfcvtToken>> Tokens;
  MadeChange = false;
  unsigned NumIfCvts = NumSimple + NumSimpleFalse + NumTriangle +
    NumTriangleRev + NumTriangleFalse + NumTriangleFRev + NumDiamonds;
  while (IfCvtLimit == -1 || (int)NumIfCvts < IfCvtLimit) {
    // Do an initial analysis for each basic block and find all the potential
    // candidates to perform if-conversion.
    bool Change = false;
    AnalyzeBlocks(MF, Tokens);
    while (!Tokens.empty()) {
      std::unique_ptr<IfcvtToken> Token = std::move(Tokens.back());
      Tokens.pop_back();
      BBInfo &BBI = Token->BBI;
      IfcvtKind Kind = Token->Kind;
      unsigned NumDups = Token->NumDups;
      unsigned NumDups2 = Token->NumDups2;

      // If the block has been evicted out of the queue or it has already been
      // marked dead (due to it being predicated), then skip it.
      if (BBI.IsDone)
        BBI.IsEnqueued = false;
      if (!BBI.IsEnqueued)
        continue;

      BBI.IsEnqueued = false;

      bool RetVal = false;
      switch (Kind) {
      default: llvm_unreachable("Unexpected!");
      case ICSimple:
      case ICSimpleFalse: {
        bool isFalse = Kind == ICSimpleFalse;
        if ((isFalse && DisableSimpleF) || (!isFalse && DisableSimple)) break;
        LLVM_DEBUG(dbgs() << "Ifcvt (Simple"
                          << (Kind == ICSimpleFalse ? " false" : "")
                          << "): " << printMBBReference(*BBI.BB) << " ("
                          << ((Kind == ICSimpleFalse) ? BBI.FalseBB->getNumber()
                                                      : BBI.TrueBB->getNumber())
                          << ") ");
        RetVal = IfConvertSimple(BBI, Kind);
        LLVM_DEBUG(dbgs() << (RetVal ? "succeeded!" : "failed!") << "\n");
        if (RetVal) {
          if (isFalse) ++NumSimpleFalse;
          else         ++NumSimple;
        }
       break;
      }
      case ICTriangle:
      case ICTriangleRev:
      case ICTriangleFalse:
      case ICTriangleFRev: {
        bool isFalse = Kind == ICTriangleFalse;
        bool isRev   = (Kind == ICTriangleRev || Kind == ICTriangleFRev);
        if (DisableTriangle && !isFalse && !isRev) break;
        if (DisableTriangleR && !isFalse && isRev) break;
        if (DisableTriangleF && isFalse && !isRev) break;
        if (DisableTriangleFR && isFalse && isRev) break;
        LLVM_DEBUG(dbgs() << "Ifcvt (Triangle");
        if (isFalse)
          LLVM_DEBUG(dbgs() << " false");
        if (isRev)
          LLVM_DEBUG(dbgs() << " rev");
        LLVM_DEBUG(dbgs() << "): " << printMBBReference(*BBI.BB)
                          << " (T:" << BBI.TrueBB->getNumber()
                          << ",F:" << BBI.FalseBB->getNumber() << ") ");
        RetVal = IfConvertTriangle(BBI, Kind);
        LLVM_DEBUG(dbgs() << (RetVal ? "succeeded!" : "failed!") << "\n");
        if (RetVal) {
          if (isFalse) {
            if (isRev) ++NumTriangleFRev;
            else       ++NumTriangleFalse;
          } else {
            if (isRev) ++NumTriangleRev;
            else       ++NumTriangle;
          }
        }
        break;
      }
      case ICDiamond:
        if (DisableDiamond) break;
        LLVM_DEBUG(dbgs() << "Ifcvt (Diamond): " << printMBBReference(*BBI.BB)
                          << " (T:" << BBI.TrueBB->getNumber()
                          << ",F:" << BBI.FalseBB->getNumber() << ") ");
        RetVal = IfConvertDiamond(BBI, Kind, NumDups, NumDups2,
                                  Token->TClobbersPred,
                                  Token->FClobbersPred);
        LLVM_DEBUG(dbgs() << (RetVal ? "succeeded!" : "failed!") << "\n");
        if (RetVal) ++NumDiamonds;
        break;
      case ICForkedDiamond:
        if (DisableForkedDiamond) break;
        LLVM_DEBUG(dbgs() << "Ifcvt (Forked Diamond): "
                          << printMBBReference(*BBI.BB)
                          << " (T:" << BBI.TrueBB->getNumber()
                          << ",F:" << BBI.FalseBB->getNumber() << ") ");
        RetVal = IfConvertForkedDiamond(BBI, Kind, NumDups, NumDups2,
                                      Token->TClobbersPred,
                                      Token->FClobbersPred);
        LLVM_DEBUG(dbgs() << (RetVal ? "succeeded!" : "failed!") << "\n");
        if (RetVal) ++NumForkedDiamonds;
        break;
      }

      if (RetVal && MRI->tracksLiveness())
        recomputeLivenessFlags(*BBI.BB);

      Change |= RetVal;

      NumIfCvts = NumSimple + NumSimpleFalse + NumTriangle + NumTriangleRev +
        NumTriangleFalse + NumTriangleFRev + NumDiamonds;
      if (IfCvtLimit != -1 && (int)NumIfCvts >= IfCvtLimit)
        break;
    }

    if (!Change)
      break;
    MadeChange |= Change;
  }

  Tokens.clear();
  BBAnalysis.clear();

  if (MadeChange && IfCvtBranchFold) {
    BranchFolder BF(false, false, MBFI, *MBPI);
    BF.OptimizeFunction(MF, TII, MF.getSubtarget().getRegisterInfo(),
                        getAnalysisIfAvailable<MachineModuleInfo>());
  }

  MadeChange |= BFChange;
  return MadeChange;
}

/// BB has a fallthrough. Find its 'false' successor given its 'true' successor.
static MachineBasicBlock *findFalseBlock(MachineBasicBlock *BB,
                                         MachineBasicBlock *TrueBB) {
  for (MachineBasicBlock *SuccBB : BB->successors()) {
    if (SuccBB != TrueBB)
      return SuccBB;
  }
  return nullptr;
}

/// Reverse the condition of the end of the block branch. Swap block's 'true'
/// and 'false' successors.
bool IfConverter::reverseBranchCondition(BBInfo &BBI) const {
  DebugLoc dl;  // FIXME: this is nowhere
  if (!TII->reverseBranchCondition(BBI.BrCond)) {
    TII->removeBranch(*BBI.BB);
    TII->insertBranch(*BBI.BB, BBI.FalseBB, BBI.TrueBB, BBI.BrCond, dl);
    std::swap(BBI.TrueBB, BBI.FalseBB);
    return true;
  }
  return false;
}

/// Returns the next block in the function blocks ordering. If it is the end,
/// returns NULL.
static inline MachineBasicBlock *getNextBlock(MachineBasicBlock &MBB) {
  MachineFunction::iterator I = MBB.getIterator();
  MachineFunction::iterator E = MBB.getParent()->end();
  if (++I == E)
    return nullptr;
  return &*I;
}

/// Returns true if the 'true' block (along with its predecessor) forms a valid
/// simple shape for ifcvt. It also returns the number of instructions that the
/// ifcvt would need to duplicate if performed in Dups.
bool IfConverter::ValidSimple(BBInfo &TrueBBI, unsigned &Dups,
                              BranchProbability Prediction) const {
  Dups = 0;
  if (TrueBBI.IsBeingAnalyzed || TrueBBI.IsDone)
    return false;

  if (TrueBBI.IsBrAnalyzable)
    return false;

  if (TrueBBI.BB->pred_size() > 1) {
    if (TrueBBI.CannotBeCopied ||
        !TII->isProfitableToDupForIfCvt(*TrueBBI.BB, TrueBBI.NonPredSize,
                                        Prediction))
      return false;
    Dups = TrueBBI.NonPredSize;
  }

  return true;
}

/// Returns true if the 'true' and 'false' blocks (along with their common
/// predecessor) forms a valid triangle shape for ifcvt. If 'FalseBranch' is
/// true, it checks if 'true' block's false branch branches to the 'false' block
/// rather than the other way around. It also returns the number of instructions
/// that the ifcvt would need to duplicate if performed in 'Dups'.
bool IfConverter::ValidTriangle(BBInfo &TrueBBI, BBInfo &FalseBBI,
                                bool FalseBranch, unsigned &Dups,
                                BranchProbability Prediction) const {
  Dups = 0;
  if (TrueBBI.IsBeingAnalyzed || TrueBBI.IsDone)
    return false;

  if (TrueBBI.BB->pred_size() > 1) {
    if (TrueBBI.CannotBeCopied)
      return false;

    unsigned Size = TrueBBI.NonPredSize;
    if (TrueBBI.IsBrAnalyzable) {
      if (TrueBBI.TrueBB && TrueBBI.BrCond.empty())
        // Ends with an unconditional branch. It will be removed.
        --Size;
      else {
        MachineBasicBlock *FExit = FalseBranch
          ? TrueBBI.TrueBB : TrueBBI.FalseBB;
        if (FExit)
          // Require a conditional branch
          ++Size;
      }
    }
    if (!TII->isProfitableToDupForIfCvt(*TrueBBI.BB, Size, Prediction))
      return false;
    Dups = Size;
  }

  MachineBasicBlock *TExit = FalseBranch ? TrueBBI.FalseBB : TrueBBI.TrueBB;
  if (!TExit && blockAlwaysFallThrough(TrueBBI)) {
    MachineFunction::iterator I = TrueBBI.BB->getIterator();
    if (++I == TrueBBI.BB->getParent()->end())
      return false;
    TExit = &*I;
  }
  return TExit && TExit == FalseBBI.BB;
}

/// Count duplicated instructions and move the iterators to show where they
/// are.
/// @param TIB True Iterator Begin
/// @param FIB False Iterator Begin
/// These two iterators initially point to the first instruction of the two
/// blocks, and finally point to the first non-shared instruction.
/// @param TIE True Iterator End
/// @param FIE False Iterator End
/// These two iterators initially point to End() for the two blocks() and
/// finally point to the first shared instruction in the tail.
/// Upon return [TIB, TIE), and [FIB, FIE) mark the un-duplicated portions of
/// two blocks.
/// @param Dups1 count of duplicated instructions at the beginning of the 2
/// blocks.
/// @param Dups2 count of duplicated instructions at the end of the 2 blocks.
/// @param SkipUnconditionalBranches if true, Don't make sure that
/// unconditional branches at the end of the blocks are the same. True is
/// passed when the blocks are analyzable to allow for fallthrough to be
/// handled.
/// @return false if the shared portion prevents if conversion.
bool IfConverter::CountDuplicatedInstructions(
    MachineBasicBlock::iterator &TIB,
    MachineBasicBlock::iterator &FIB,
    MachineBasicBlock::iterator &TIE,
    MachineBasicBlock::iterator &FIE,
    unsigned &Dups1, unsigned &Dups2,
    MachineBasicBlock &TBB, MachineBasicBlock &FBB,
    bool SkipUnconditionalBranches) const {
  while (TIB != TIE && FIB != FIE) {
    // Skip dbg_value instructions. These do not count.
    TIB = skipDebugInstructionsForward(TIB, TIE);
    FIB = skipDebugInstructionsForward(FIB, FIE);
    if (TIB == TIE || FIB == FIE)
      break;
    if (!TIB->isIdenticalTo(*FIB))
      break;
    // A pred-clobbering instruction in the shared portion prevents
    // if-conversion.
    std::vector<MachineOperand> PredDefs;
    if (TII->DefinesPredicate(*TIB, PredDefs))
      return false;
    // If we get all the way to the branch instructions, don't count them.
    if (!TIB->isBranch())
      ++Dups1;
    ++TIB;
    ++FIB;
  }

  // Check for already containing all of the block.
  if (TIB == TIE || FIB == FIE)
    return true;
  // Now, in preparation for counting duplicate instructions at the ends of the
  // blocks, switch to reverse_iterators. Note that getReverse() returns an
  // iterator that points to the same instruction, unlike std::reverse_iterator.
  // We have to do our own shifting so that we get the same range.
  MachineBasicBlock::reverse_iterator RTIE = std::next(TIE.getReverse());
  MachineBasicBlock::reverse_iterator RFIE = std::next(FIE.getReverse());
  const MachineBasicBlock::reverse_iterator RTIB = std::next(TIB.getReverse());
  const MachineBasicBlock::reverse_iterator RFIB = std::next(FIB.getReverse());

  if (!TBB.succ_empty() || !FBB.succ_empty()) {
    if (SkipUnconditionalBranches) {
      while (RTIE != RTIB && RTIE->isUnconditionalBranch())
        ++RTIE;
      while (RFIE != RFIB && RFIE->isUnconditionalBranch())
        ++RFIE;
    }
  }

  // Count duplicate instructions at the ends of the blocks.
  while (RTIE != RTIB && RFIE != RFIB) {
    // Skip dbg_value instructions. These do not count.
    // Note that these are reverse iterators going forward.
    RTIE = skipDebugInstructionsForward(RTIE, RTIB);
    RFIE = skipDebugInstructionsForward(RFIE, RFIB);
    if (RTIE == RTIB || RFIE == RFIB)
      break;
    if (!RTIE->isIdenticalTo(*RFIE))
      break;
    // We have to verify that any branch instructions are the same, and then we
    // don't count them toward the # of duplicate instructions.
    if (!RTIE->isBranch())
      ++Dups2;
    ++RTIE;
    ++RFIE;
  }
  TIE = std::next(RTIE.getReverse());
  FIE = std::next(RFIE.getReverse());
  return true;
}

/// RescanInstructions - Run ScanInstructions on a pair of blocks.
/// @param TIB - True Iterator Begin, points to first non-shared instruction
/// @param FIB - False Iterator Begin, points to first non-shared instruction
/// @param TIE - True Iterator End, points past last non-shared instruction
/// @param FIE - False Iterator End, points past last non-shared instruction
/// @param TrueBBI  - BBInfo to update for the true block.
/// @param FalseBBI - BBInfo to update for the false block.
/// @returns - false if either block cannot be predicated or if both blocks end
///   with a predicate-clobbering instruction.
bool IfConverter::RescanInstructions(
    MachineBasicBlock::iterator &TIB, MachineBasicBlock::iterator &FIB,
    MachineBasicBlock::iterator &TIE, MachineBasicBlock::iterator &FIE,
    BBInfo &TrueBBI, BBInfo &FalseBBI) const {
  bool BranchUnpredicable = true;
  TrueBBI.IsUnpredicable = FalseBBI.IsUnpredicable = false;
  ScanInstructions(TrueBBI, TIB, TIE, BranchUnpredicable);
  if (TrueBBI.IsUnpredicable)
    return false;
  ScanInstructions(FalseBBI, FIB, FIE, BranchUnpredicable);
  if (FalseBBI.IsUnpredicable)
    return false;
  if (TrueBBI.ClobbersPred && FalseBBI.ClobbersPred)
    return false;
  return true;
}

#ifndef NDEBUG
static void verifySameBranchInstructions(
    MachineBasicBlock *MBB1,
    MachineBasicBlock *MBB2) {
  const MachineBasicBlock::reverse_iterator B1 = MBB1->rend();
  const MachineBasicBlock::reverse_iterator B2 = MBB2->rend();
  MachineBasicBlock::reverse_iterator E1 = MBB1->rbegin();
  MachineBasicBlock::reverse_iterator E2 = MBB2->rbegin();
  while (E1 != B1 && E2 != B2) {
    skipDebugInstructionsForward(E1, B1);
    skipDebugInstructionsForward(E2, B2);
    if (E1 == B1 && E2 == B2)
      break;

    if (E1 == B1) {
      assert(!E2->isBranch() && "Branch mis-match, one block is empty.");
      break;
    }
    if (E2 == B2) {
      assert(!E1->isBranch() && "Branch mis-match, one block is empty.");
      break;
    }

    if (E1->isBranch() || E2->isBranch())
      assert(E1->isIdenticalTo(*E2) &&
             "Branch mis-match, branch instructions don't match.");
    else
      break;
    ++E1;
    ++E2;
  }
}
#endif

/// ValidForkedDiamond - Returns true if the 'true' and 'false' blocks (along
/// with their common predecessor) form a diamond if a common tail block is
/// extracted.
/// While not strictly a diamond, this pattern would form a diamond if
/// tail-merging had merged the shared tails.
///           EBB
///         _/   \_
///         |     |
///        TBB   FBB
///        /  \ /   \
///  FalseBB TrueBB FalseBB
/// Currently only handles analyzable branches.
/// Specifically excludes actual diamonds to avoid overlap.
bool IfConverter::ValidForkedDiamond(
    BBInfo &TrueBBI, BBInfo &FalseBBI,
    unsigned &Dups1, unsigned &Dups2,
    BBInfo &TrueBBICalc, BBInfo &FalseBBICalc) const {
  Dups1 = Dups2 = 0;
  if (TrueBBI.IsBeingAnalyzed || TrueBBI.IsDone ||
      FalseBBI.IsBeingAnalyzed || FalseBBI.IsDone)
    return false;

  if (!TrueBBI.IsBrAnalyzable || !FalseBBI.IsBrAnalyzable)
    return false;
  // Don't IfConvert blocks that can't be folded into their predecessor.
  if  (TrueBBI.BB->pred_size() > 1 || FalseBBI.BB->pred_size() > 1)
    return false;

  // This function is specifically looking for conditional tails, as
  // unconditional tails are already handled by the standard diamond case.
  if (TrueBBI.BrCond.size() == 0 ||
      FalseBBI.BrCond.size() == 0)
    return false;

  MachineBasicBlock *TT = TrueBBI.TrueBB;
  MachineBasicBlock *TF = TrueBBI.FalseBB;
  MachineBasicBlock *FT = FalseBBI.TrueBB;
  MachineBasicBlock *FF = FalseBBI.FalseBB;

  if (!TT)
    TT = getNextBlock(*TrueBBI.BB);
  if (!TF)
    TF = getNextBlock(*TrueBBI.BB);
  if (!FT)
    FT = getNextBlock(*FalseBBI.BB);
  if (!FF)
    FF = getNextBlock(*FalseBBI.BB);

  if (!TT || !TF)
    return false;

  // Check successors. If they don't match, bail.
  if (!((TT == FT && TF == FF) || (TF == FT && TT == FF)))
    return false;

  bool FalseReversed = false;
  if (TF == FT && TT == FF) {
    // If the branches are opposing, but we can't reverse, don't do it.
    if (!FalseBBI.IsBrReversible)
      return false;
    FalseReversed = true;
    reverseBranchCondition(FalseBBI);
  }
  auto UnReverseOnExit = make_scope_exit([&]() {
    if (FalseReversed)
      reverseBranchCondition(FalseBBI);
  });

  // Count duplicate instructions at the beginning of the true and false blocks.
  MachineBasicBlock::iterator TIB = TrueBBI.BB->begin();
  MachineBasicBlock::iterator FIB = FalseBBI.BB->begin();
  MachineBasicBlock::iterator TIE = TrueBBI.BB->end();
  MachineBasicBlock::iterator FIE = FalseBBI.BB->end();
  if(!CountDuplicatedInstructions(TIB, FIB, TIE, FIE, Dups1, Dups2,
                                  *TrueBBI.BB, *FalseBBI.BB,
                                  /* SkipUnconditionalBranches */ true))
    return false;

  TrueBBICalc.BB = TrueBBI.BB;
  FalseBBICalc.BB = FalseBBI.BB;
  if (!RescanInstructions(TIB, FIB, TIE, FIE, TrueBBICalc, FalseBBICalc))
    return false;

  // The size is used to decide whether to if-convert, and the shared portions
  // are subtracted off. Because of the subtraction, we just use the size that
  // was calculated by the original ScanInstructions, as it is correct.
  TrueBBICalc.NonPredSize = TrueBBI.NonPredSize;
  FalseBBICalc.NonPredSize = FalseBBI.NonPredSize;
  return true;
}

/// ValidDiamond - Returns true if the 'true' and 'false' blocks (along
/// with their common predecessor) forms a valid diamond shape for ifcvt.
bool IfConverter::ValidDiamond(
    BBInfo &TrueBBI, BBInfo &FalseBBI,
    unsigned &Dups1, unsigned &Dups2,
    BBInfo &TrueBBICalc, BBInfo &FalseBBICalc) const {
  Dups1 = Dups2 = 0;
  if (TrueBBI.IsBeingAnalyzed || TrueBBI.IsDone ||
      FalseBBI.IsBeingAnalyzed || FalseBBI.IsDone)
    return false;

  MachineBasicBlock *TT = TrueBBI.TrueBB;
  MachineBasicBlock *FT = FalseBBI.TrueBB;

  if (!TT && blockAlwaysFallThrough(TrueBBI))
    TT = getNextBlock(*TrueBBI.BB);
  if (!FT && blockAlwaysFallThrough(FalseBBI))
    FT = getNextBlock(*FalseBBI.BB);
  if (TT != FT)
    return false;
  if (!TT && (TrueBBI.IsBrAnalyzable || FalseBBI.IsBrAnalyzable))
    return false;
  if  (TrueBBI.BB->pred_size() > 1 || FalseBBI.BB->pred_size() > 1)
    return false;

  // FIXME: Allow true block to have an early exit?
  if (TrueBBI.FalseBB || FalseBBI.FalseBB)
    return false;

  // Count duplicate instructions at the beginning and end of the true and
  // false blocks.
  // Skip unconditional branches only if we are considering an analyzable
  // diamond. Otherwise the branches must be the same.
  bool SkipUnconditionalBranches =
      TrueBBI.IsBrAnalyzable && FalseBBI.IsBrAnalyzable;
  MachineBasicBlock::iterator TIB = TrueBBI.BB->begin();
  MachineBasicBlock::iterator FIB = FalseBBI.BB->begin();
  MachineBasicBlock::iterator TIE = TrueBBI.BB->end();
  MachineBasicBlock::iterator FIE = FalseBBI.BB->end();
  if(!CountDuplicatedInstructions(TIB, FIB, TIE, FIE, Dups1, Dups2,
                                  *TrueBBI.BB, *FalseBBI.BB,
                                  SkipUnconditionalBranches))
    return false;

  TrueBBICalc.BB = TrueBBI.BB;
  FalseBBICalc.BB = FalseBBI.BB;
  if (!RescanInstructions(TIB, FIB, TIE, FIE, TrueBBICalc, FalseBBICalc))
    return false;
  // The size is used to decide whether to if-convert, and the shared portions
  // are subtracted off. Because of the subtraction, we just use the size that
  // was calculated by the original ScanInstructions, as it is correct.
  TrueBBICalc.NonPredSize = TrueBBI.NonPredSize;
  FalseBBICalc.NonPredSize = FalseBBI.NonPredSize;
  return true;
}

/// AnalyzeBranches - Look at the branches at the end of a block to determine if
/// the block is predicable.
void IfConverter::AnalyzeBranches(BBInfo &BBI) {
  if (BBI.IsDone)
    return;

  BBI.TrueBB = BBI.FalseBB = nullptr;
  BBI.BrCond.clear();
  BBI.IsBrAnalyzable =
      !TII->analyzeBranch(*BBI.BB, BBI.TrueBB, BBI.FalseBB, BBI.BrCond);
  SmallVector<MachineOperand, 4> RevCond(BBI.BrCond.begin(), BBI.BrCond.end());
  BBI.IsBrReversible = (RevCond.size() == 0) ||
      !TII->reverseBranchCondition(RevCond);
  BBI.HasFallThrough = BBI.IsBrAnalyzable && BBI.FalseBB == nullptr;

  if (BBI.BrCond.size()) {
    // No false branch. This BB must end with a conditional branch and a
    // fallthrough.
    if (!BBI.FalseBB)
      BBI.FalseBB = findFalseBlock(BBI.BB, BBI.TrueBB);
    if (!BBI.FalseBB) {
      // Malformed bcc? True and false blocks are the same?
      BBI.IsUnpredicable = true;
    }
  }
}

/// ScanInstructions - Scan all the instructions in the block to determine if
/// the block is predicable. In most cases, that means all the instructions
/// in the block are isPredicable(). Also checks if the block contains any
/// instruction which can clobber a predicate (e.g. condition code register).
/// If so, the block is not predicable unless it's the last instruction.
void IfConverter::ScanInstructions(BBInfo &BBI,
                                   MachineBasicBlock::iterator &Begin,
                                   MachineBasicBlock::iterator &End,
                                   bool BranchUnpredicable) const {
  if (BBI.IsDone || BBI.IsUnpredicable)
    return;

  bool AlreadyPredicated = !BBI.Predicate.empty();

  BBI.NonPredSize = 0;
  BBI.ExtraCost = 0;
  BBI.ExtraCost2 = 0;
  BBI.ClobbersPred = false;
  for (MachineInstr &MI : make_range(Begin, End)) {
    if (MI.isDebugInstr())
      continue;

    // It's unsafe to duplicate convergent instructions in this context, so set
    // BBI.CannotBeCopied to true if MI is convergent.  To see why, consider the
    // following CFG, which is subject to our "simple" transformation.
    //
    //    BB0     // if (c1) goto BB1; else goto BB2;
    //   /   \
    //  BB1   |
    //   |   BB2  // if (c2) goto TBB; else goto FBB;
    //   |   / |
    //   |  /  |
    //   TBB   |
    //    |    |
    //    |   FBB
    //    |
    //    exit
    //
    // Suppose we want to move TBB's contents up into BB1 and BB2 (in BB1 they'd
    // be unconditional, and in BB2, they'd be predicated upon c2), and suppose
    // TBB contains a convergent instruction.  This is safe iff doing so does
    // not add a control-flow dependency to the convergent instruction -- i.e.,
    // it's safe iff the set of control flows that leads us to the convergent
    // instruction does not get smaller after the transformation.
    //
    // Originally we executed TBB if c1 || c2.  After the transformation, there
    // are two copies of TBB's instructions.  We get to the first if c1, and we
    // get to the second if !c1 && c2.
    //
    // There are clearly fewer ways to satisfy the condition "c1" than
    // "c1 || c2".  Since we've shrunk the set of control flows which lead to
    // our convergent instruction, the transformation is unsafe.
    if (MI.isNotDuplicable() || MI.isConvergent())
      BBI.CannotBeCopied = true;

    bool isPredicated = TII->isPredicated(MI);
    bool isCondBr = BBI.IsBrAnalyzable && MI.isConditionalBranch();

    if (BranchUnpredicable && MI.isBranch()) {
      BBI.IsUnpredicable = true;
      return;
    }

    // A conditional branch is not predicable, but it may be eliminated.
    if (isCondBr)
      continue;

    if (!isPredicated) {
      BBI.NonPredSize++;
      unsigned ExtraPredCost = TII->getPredicationCost(MI);
      unsigned NumCycles = SchedModel.computeInstrLatency(&MI, false);
      if (NumCycles > 1)
        BBI.ExtraCost += NumCycles-1;
      BBI.ExtraCost2 += ExtraPredCost;
    } else if (!AlreadyPredicated) {
      // FIXME: This instruction is already predicated before the
      // if-conversion pass. It's probably something like a conditional move.
      // Mark this block unpredicable for now.
      BBI.IsUnpredicable = true;
      return;
    }

    if (BBI.ClobbersPred && !isPredicated) {
      // Predicate modification instruction should end the block (except for
      // already predicated instructions and end of block branches).
      // Predicate may have been modified, the subsequent (currently)
      // unpredicated instructions cannot be correctly predicated.
      BBI.IsUnpredicable = true;
      return;
    }

    // FIXME: Make use of PredDefs? e.g. ADDC, SUBC sets predicates but are
    // still potentially predicable.
    std::vector<MachineOperand> PredDefs;
    if (TII->DefinesPredicate(MI, PredDefs))
      BBI.ClobbersPred = true;

    if (!TII->isPredicable(MI)) {
      BBI.IsUnpredicable = true;
      return;
    }
  }
}

/// Determine if the block is a suitable candidate to be predicated by the
/// specified predicate.
/// @param BBI BBInfo for the block to check
/// @param Pred Predicate array for the branch that leads to BBI
/// @param isTriangle true if the Analysis is for a triangle
/// @param RevBranch true if Reverse(Pred) leads to BBI (e.g. BBI is the false
///        case
/// @param hasCommonTail true if BBI shares a tail with a sibling block that
///        contains any instruction that would make the block unpredicable.
bool IfConverter::FeasibilityAnalysis(BBInfo &BBI,
                                      SmallVectorImpl<MachineOperand> &Pred,
                                      bool isTriangle, bool RevBranch,
                                      bool hasCommonTail) {
  // If the block is dead or unpredicable, then it cannot be predicated.
  // Two blocks may share a common unpredicable tail, but this doesn't prevent
  // them from being if-converted. The non-shared portion is assumed to have
  // been checked
  if (BBI.IsDone || (BBI.IsUnpredicable && !hasCommonTail))
    return false;

  // If it is already predicated but we couldn't analyze its terminator, the
  // latter might fallthrough, but we can't determine where to.
  // Conservatively avoid if-converting again.
  if (BBI.Predicate.size() && !BBI.IsBrAnalyzable)
    return false;

  // If it is already predicated, check if the new predicate subsumes
  // its predicate.
  if (BBI.Predicate.size() && !TII->SubsumesPredicate(Pred, BBI.Predicate))
    return false;

  if (!hasCommonTail && BBI.BrCond.size()) {
    if (!isTriangle)
      return false;

    // Test predicate subsumption.
    SmallVector<MachineOperand, 4> RevPred(Pred.begin(), Pred.end());
    SmallVector<MachineOperand, 4> Cond(BBI.BrCond.begin(), BBI.BrCond.end());
    if (RevBranch) {
      if (TII->reverseBranchCondition(Cond))
        return false;
    }
    if (TII->reverseBranchCondition(RevPred) ||
        !TII->SubsumesPredicate(Cond, RevPred))
      return false;
  }

  return true;
}

/// Analyze the structure of the sub-CFG starting from the specified block.
/// Record its successors and whether it looks like an if-conversion candidate.
void IfConverter::AnalyzeBlock(
    MachineBasicBlock &MBB, std::vector<std::unique_ptr<IfcvtToken>> &Tokens) {
  struct BBState {
    BBState(MachineBasicBlock &MBB) : MBB(&MBB), SuccsAnalyzed(false) {}
    MachineBasicBlock *MBB;

    /// This flag is true if MBB's successors have been analyzed.
    bool SuccsAnalyzed;
  };

  // Push MBB to the stack.
  SmallVector<BBState, 16> BBStack(1, MBB);

  while (!BBStack.empty()) {
    BBState &State = BBStack.back();
    MachineBasicBlock *BB = State.MBB;
    BBInfo &BBI = BBAnalysis[BB->getNumber()];

    if (!State.SuccsAnalyzed) {
      if (BBI.IsAnalyzed || BBI.IsBeingAnalyzed) {
        BBStack.pop_back();
        continue;
      }

      BBI.BB = BB;
      BBI.IsBeingAnalyzed = true;

      AnalyzeBranches(BBI);
      MachineBasicBlock::iterator Begin = BBI.BB->begin();
      MachineBasicBlock::iterator End = BBI.BB->end();
      ScanInstructions(BBI, Begin, End);

      // Unanalyzable or ends with fallthrough or unconditional branch, or if is
      // not considered for ifcvt anymore.
      if (!BBI.IsBrAnalyzable || BBI.BrCond.empty() || BBI.IsDone) {
        BBI.IsBeingAnalyzed = false;
        BBI.IsAnalyzed = true;
        BBStack.pop_back();
        continue;
      }

      // Do not ifcvt if either path is a back edge to the entry block.
      if (BBI.TrueBB == BB || BBI.FalseBB == BB) {
        BBI.IsBeingAnalyzed = false;
        BBI.IsAnalyzed = true;
        BBStack.pop_back();
        continue;
      }

      // Do not ifcvt if true and false fallthrough blocks are the same.
      if (!BBI.FalseBB) {
        BBI.IsBeingAnalyzed = false;
        BBI.IsAnalyzed = true;
        BBStack.pop_back();
        continue;
      }

      // Push the False and True blocks to the stack.
      State.SuccsAnalyzed = true;
      BBStack.push_back(*BBI.FalseBB);
      BBStack.push_back(*BBI.TrueBB);
      continue;
    }

    BBInfo &TrueBBI = BBAnalysis[BBI.TrueBB->getNumber()];
    BBInfo &FalseBBI = BBAnalysis[BBI.FalseBB->getNumber()];

    if (TrueBBI.IsDone && FalseBBI.IsDone) {
      BBI.IsBeingAnalyzed = false;
      BBI.IsAnalyzed = true;
      BBStack.pop_back();
      continue;
    }

    SmallVector<MachineOperand, 4>
        RevCond(BBI.BrCond.begin(), BBI.BrCond.end());
    bool CanRevCond = !TII->reverseBranchCondition(RevCond);

    unsigned Dups = 0;
    unsigned Dups2 = 0;
    bool TNeedSub = !TrueBBI.Predicate.empty();
    bool FNeedSub = !FalseBBI.Predicate.empty();
    bool Enqueued = false;

    BranchProbability Prediction = MBPI->getEdgeProbability(BB, TrueBBI.BB);

    if (CanRevCond) {
      BBInfo TrueBBICalc, FalseBBICalc;
      auto feasibleDiamond = [&]() {
        bool MeetsSize = MeetIfcvtSizeLimit(
            *TrueBBI.BB, (TrueBBICalc.NonPredSize - (Dups + Dups2) +
                          TrueBBICalc.ExtraCost), TrueBBICalc.ExtraCost2,
            *FalseBBI.BB, (FalseBBICalc.NonPredSize - (Dups + Dups2) +
                           FalseBBICalc.ExtraCost), FalseBBICalc.ExtraCost2,
            Prediction);
        bool TrueFeasible = FeasibilityAnalysis(TrueBBI, BBI.BrCond,
                                                /* IsTriangle */ false, /* RevCond */ false,
                                                /* hasCommonTail */ true);
        bool FalseFeasible = FeasibilityAnalysis(FalseBBI, RevCond,
                                                 /* IsTriangle */ false, /* RevCond */ false,
                                                 /* hasCommonTail */ true);
        return MeetsSize && TrueFeasible && FalseFeasible;
      };

      if (ValidDiamond(TrueBBI, FalseBBI, Dups, Dups2,
                       TrueBBICalc, FalseBBICalc)) {
        if (feasibleDiamond()) {
          // Diamond:
          //   EBB
          //   / \_
          //  |   |
          // TBB FBB
          //   \ /
          //  TailBB
          // Note TailBB can be empty.
          Tokens.push_back(llvm::make_unique<IfcvtToken>(
              BBI, ICDiamond, TNeedSub | FNeedSub, Dups, Dups2,
              (bool) TrueBBICalc.ClobbersPred, (bool) FalseBBICalc.ClobbersPred));
          Enqueued = true;
        }
      } else if (ValidForkedDiamond(TrueBBI, FalseBBI, Dups, Dups2,
                                    TrueBBICalc, FalseBBICalc)) {
        if (feasibleDiamond()) {
          // ForkedDiamond:
          // if TBB and FBB have a common tail that includes their conditional
          // branch instructions, then we can If Convert this pattern.
          //          EBB
          //         _/ \_
          //         |   |
          //        TBB  FBB
          //        / \ /   \
          //  FalseBB TrueBB FalseBB
          //
          Tokens.push_back(llvm::make_unique<IfcvtToken>(
              BBI, ICForkedDiamond, TNeedSub | FNeedSub, Dups, Dups2,
              (bool) TrueBBICalc.ClobbersPred, (bool) FalseBBICalc.ClobbersPred));
          Enqueued = true;
        }
      }
    }

    if (ValidTriangle(TrueBBI, FalseBBI, false, Dups, Prediction) &&
        MeetIfcvtSizeLimit(*TrueBBI.BB, TrueBBI.NonPredSize + TrueBBI.ExtraCost,
                           TrueBBI.ExtraCost2, Prediction) &&
        FeasibilityAnalysis(TrueBBI, BBI.BrCond, true)) {
      // Triangle:
      //   EBB
      //   | \_
      //   |  |
      //   | TBB
      //   |  /
      //   FBB
      Tokens.push_back(
          llvm::make_unique<IfcvtToken>(BBI, ICTriangle, TNeedSub, Dups));
      Enqueued = true;
    }

    if (ValidTriangle(TrueBBI, FalseBBI, true, Dups, Prediction) &&
        MeetIfcvtSizeLimit(*TrueBBI.BB, TrueBBI.NonPredSize + TrueBBI.ExtraCost,
                           TrueBBI.ExtraCost2, Prediction) &&
        FeasibilityAnalysis(TrueBBI, BBI.BrCond, true, true)) {
      Tokens.push_back(
          llvm::make_unique<IfcvtToken>(BBI, ICTriangleRev, TNeedSub, Dups));
      Enqueued = true;
    }

    if (ValidSimple(TrueBBI, Dups, Prediction) &&
        MeetIfcvtSizeLimit(*TrueBBI.BB, TrueBBI.NonPredSize + TrueBBI.ExtraCost,
                           TrueBBI.ExtraCost2, Prediction) &&
        FeasibilityAnalysis(TrueBBI, BBI.BrCond)) {
      // Simple (split, no rejoin):
      //   EBB
      //   | \_
      //   |  |
      //   | TBB---> exit
      //   |
      //   FBB
      Tokens.push_back(
          llvm::make_unique<IfcvtToken>(BBI, ICSimple, TNeedSub, Dups));
      Enqueued = true;
    }

    if (CanRevCond) {
      // Try the other path...
      if (ValidTriangle(FalseBBI, TrueBBI, false, Dups,
                        Prediction.getCompl()) &&
          MeetIfcvtSizeLimit(*FalseBBI.BB,
                             FalseBBI.NonPredSize + FalseBBI.ExtraCost,
                             FalseBBI.ExtraCost2, Prediction.getCompl()) &&
          FeasibilityAnalysis(FalseBBI, RevCond, true)) {
        Tokens.push_back(llvm::make_unique<IfcvtToken>(BBI, ICTriangleFalse,
                                                       FNeedSub, Dups));
        Enqueued = true;
      }

      if (ValidTriangle(FalseBBI, TrueBBI, true, Dups,
                        Prediction.getCompl()) &&
          MeetIfcvtSizeLimit(*FalseBBI.BB,
                             FalseBBI.NonPredSize + FalseBBI.ExtraCost,
                           FalseBBI.ExtraCost2, Prediction.getCompl()) &&
        FeasibilityAnalysis(FalseBBI, RevCond, true, true)) {
        Tokens.push_back(
            llvm::make_unique<IfcvtToken>(BBI, ICTriangleFRev, FNeedSub, Dups));
        Enqueued = true;
      }

      if (ValidSimple(FalseBBI, Dups, Prediction.getCompl()) &&
          MeetIfcvtSizeLimit(*FalseBBI.BB,
                             FalseBBI.NonPredSize + FalseBBI.ExtraCost,
                             FalseBBI.ExtraCost2, Prediction.getCompl()) &&
          FeasibilityAnalysis(FalseBBI, RevCond)) {
        Tokens.push_back(
            llvm::make_unique<IfcvtToken>(BBI, ICSimpleFalse, FNeedSub, Dups));
        Enqueued = true;
      }
    }

    BBI.IsEnqueued = Enqueued;
    BBI.IsBeingAnalyzed = false;
    BBI.IsAnalyzed = true;
    BBStack.pop_back();
  }
}

/// Analyze all blocks and find entries for all if-conversion candidates.
void IfConverter::AnalyzeBlocks(
    MachineFunction &MF, std::vector<std::unique_ptr<IfcvtToken>> &Tokens) {
  for (MachineBasicBlock &MBB : MF)
    AnalyzeBlock(MBB, Tokens);

  // Sort to favor more complex ifcvt scheme.
  std::stable_sort(Tokens.begin(), Tokens.end(), IfcvtTokenCmp);
}

/// Returns true either if ToMBB is the next block after MBB or that all the
/// intervening blocks are empty (given MBB can fall through to its next block).
static bool canFallThroughTo(MachineBasicBlock &MBB, MachineBasicBlock &ToMBB) {
  MachineFunction::iterator PI = MBB.getIterator();
  MachineFunction::iterator I = std::next(PI);
  MachineFunction::iterator TI = ToMBB.getIterator();
  MachineFunction::iterator E = MBB.getParent()->end();
  while (I != TI) {
    // Check isSuccessor to avoid case where the next block is empty, but
    // it's not a successor.
    if (I == E || !I->empty() || !PI->isSuccessor(&*I))
      return false;
    PI = I++;
  }
  // Finally see if the last I is indeed a successor to PI.
  return PI->isSuccessor(&*I);
}

/// Invalidate predecessor BB info so it would be re-analyzed to determine if it
/// can be if-converted. If predecessor is already enqueued, dequeue it!
void IfConverter::InvalidatePreds(MachineBasicBlock &MBB) {
  for (const MachineBasicBlock *Predecessor : MBB.predecessors()) {
    BBInfo &PBBI = BBAnalysis[Predecessor->getNumber()];
    if (PBBI.IsDone || PBBI.BB == &MBB)
      continue;
    PBBI.IsAnalyzed = false;
    PBBI.IsEnqueued = false;
  }
}

/// Inserts an unconditional branch from \p MBB to \p ToMBB.
static void InsertUncondBranch(MachineBasicBlock &MBB, MachineBasicBlock &ToMBB,
                               const TargetInstrInfo *TII) {
  DebugLoc dl;  // FIXME: this is nowhere
  SmallVector<MachineOperand, 0> NoCond;
  TII->insertBranch(MBB, &ToMBB, nullptr, NoCond, dl);
}

/// Behaves like LiveRegUnits::StepForward() but also adds implicit uses to all
/// values defined in MI which are also live/used by MI.
static void UpdatePredRedefs(MachineInstr &MI, LivePhysRegs &Redefs) {
  const TargetRegisterInfo *TRI = MI.getMF()->getSubtarget().getRegisterInfo();

  // Before stepping forward past MI, remember which regs were live
  // before MI. This is needed to set the Undef flag only when reg is
  // dead.
  SparseSet<MCPhysReg, identity<MCPhysReg>> LiveBeforeMI;
  LiveBeforeMI.setUniverse(TRI->getNumRegs());
  for (unsigned Reg : Redefs)
    LiveBeforeMI.insert(Reg);

  SmallVector<std::pair<MCPhysReg, const MachineOperand*>, 4> Clobbers;
  Redefs.stepForward(MI, Clobbers);

  // Now add the implicit uses for each of the clobbered values.
  for (auto Clobber : Clobbers) {
    // FIXME: Const cast here is nasty, but better than making StepForward
    // take a mutable instruction instead of const.
    unsigned Reg = Clobber.first;
    MachineOperand &Op = const_cast<MachineOperand&>(*Clobber.second);
    MachineInstr *OpMI = Op.getParent();
    MachineInstrBuilder MIB(*OpMI->getMF(), OpMI);
    if (Op.isRegMask()) {
      // First handle regmasks.  They clobber any entries in the mask which
      // means that we need a def for those registers.
      if (LiveBeforeMI.count(Reg))
        MIB.addReg(Reg, RegState::Implicit);

      // We also need to add an implicit def of this register for the later
      // use to read from.
      // For the register allocator to have allocated a register clobbered
      // by the call which is used later, it must be the case that
      // the call doesn't return.
      MIB.addReg(Reg, RegState::Implicit | RegState::Define);
      continue;
    }
    if (LiveBeforeMI.count(Reg))
      MIB.addReg(Reg, RegState::Implicit);
    else {
      bool HasLiveSubReg = false;
      for (MCSubRegIterator S(Reg, TRI); S.isValid(); ++S) {
        if (!LiveBeforeMI.count(*S))
          continue;
        HasLiveSubReg = true;
        break;
      }
      if (HasLiveSubReg)
        MIB.addReg(Reg, RegState::Implicit);
    }
  }
}

/// If convert a simple (split, no rejoin) sub-CFG.
bool IfConverter::IfConvertSimple(BBInfo &BBI, IfcvtKind Kind) {
  BBInfo &TrueBBI  = BBAnalysis[BBI.TrueBB->getNumber()];
  BBInfo &FalseBBI = BBAnalysis[BBI.FalseBB->getNumber()];
  BBInfo *CvtBBI = &TrueBBI;
  BBInfo *NextBBI = &FalseBBI;

  SmallVector<MachineOperand, 4> Cond(BBI.BrCond.begin(), BBI.BrCond.end());
  if (Kind == ICSimpleFalse)
    std::swap(CvtBBI, NextBBI);

  MachineBasicBlock &CvtMBB = *CvtBBI->BB;
  MachineBasicBlock &NextMBB = *NextBBI->BB;
  if (CvtBBI->IsDone ||
      (CvtBBI->CannotBeCopied && CvtMBB.pred_size() > 1)) {
    // Something has changed. It's no longer safe to predicate this block.
    BBI.IsAnalyzed = false;
    CvtBBI->IsAnalyzed = false;
    return false;
  }

  if (CvtMBB.hasAddressTaken())
    // Conservatively abort if-conversion if BB's address is taken.
    return false;

  if (Kind == ICSimpleFalse)
    if (TII->reverseBranchCondition(Cond))
      llvm_unreachable("Unable to reverse branch condition!");

  Redefs.init(*TRI);

  if (MRI->tracksLiveness()) {
    // Initialize liveins to the first BB. These are potentiall redefined by
    // predicated instructions.
    Redefs.addLiveIns(CvtMBB);
    Redefs.addLiveIns(NextMBB);
  }

  // Remove the branches from the entry so we can add the contents of the true
  // block to it.
  BBI.NonPredSize -= TII->removeBranch(*BBI.BB);

  if (CvtMBB.pred_size() > 1) {
    // Copy instructions in the true block, predicate them, and add them to
    // the entry block.
    CopyAndPredicateBlock(BBI, *CvtBBI, Cond);

    // Keep the CFG updated.
    BBI.BB->removeSuccessor(&CvtMBB, true);
  } else {
    // Predicate the instructions in the true block.
    PredicateBlock(*CvtBBI, CvtMBB.end(), Cond);

    // Merge converted block into entry block. The BB to Cvt edge is removed
    // by MergeBlocks.
    MergeBlocks(BBI, *CvtBBI);
  }

  bool IterIfcvt = true;
  if (!canFallThroughTo(*BBI.BB, NextMBB)) {
    InsertUncondBranch(*BBI.BB, NextMBB, TII);
    BBI.HasFallThrough = false;
    // Now ifcvt'd block will look like this:
    // BB:
    // ...
    // t, f = cmp
    // if t op
    // b BBf
    //
    // We cannot further ifcvt this block because the unconditional branch
    // will have to be predicated on the new condition, that will not be
    // available if cmp executes.
    IterIfcvt = false;
  }

  // Update block info. BB can be iteratively if-converted.
  if (!IterIfcvt)
    BBI.IsDone = true;
  InvalidatePreds(*BBI.BB);
  CvtBBI->IsDone = true;

  // FIXME: Must maintain LiveIns.
  return true;
}

/// If convert a triangle sub-CFG.
bool IfConverter::IfConvertTriangle(BBInfo &BBI, IfcvtKind Kind) {
  BBInfo &TrueBBI = BBAnalysis[BBI.TrueBB->getNumber()];
  BBInfo &FalseBBI = BBAnalysis[BBI.FalseBB->getNumber()];
  BBInfo *CvtBBI = &TrueBBI;
  BBInfo *NextBBI = &FalseBBI;
  DebugLoc dl;  // FIXME: this is nowhere

  SmallVector<MachineOperand, 4> Cond(BBI.BrCond.begin(), BBI.BrCond.end());
  if (Kind == ICTriangleFalse || Kind == ICTriangleFRev)
    std::swap(CvtBBI, NextBBI);

  MachineBasicBlock &CvtMBB = *CvtBBI->BB;
  MachineBasicBlock &NextMBB = *NextBBI->BB;
  if (CvtBBI->IsDone ||
      (CvtBBI->CannotBeCopied && CvtMBB.pred_size() > 1)) {
    // Something has changed. It's no longer safe to predicate this block.
    BBI.IsAnalyzed = false;
    CvtBBI->IsAnalyzed = false;
    return false;
  }

  if (CvtMBB.hasAddressTaken())
    // Conservatively abort if-conversion if BB's address is taken.
    return false;

  if (Kind == ICTriangleFalse || Kind == ICTriangleFRev)
    if (TII->reverseBranchCondition(Cond))
      llvm_unreachable("Unable to reverse branch condition!");

  if (Kind == ICTriangleRev || Kind == ICTriangleFRev) {
    if (reverseBranchCondition(*CvtBBI)) {
      // BB has been changed, modify its predecessors (except for this
      // one) so they don't get ifcvt'ed based on bad intel.
      for (MachineBasicBlock *PBB : CvtMBB.predecessors()) {
        if (PBB == BBI.BB)
          continue;
        BBInfo &PBBI = BBAnalysis[PBB->getNumber()];
        if (PBBI.IsEnqueued) {
          PBBI.IsAnalyzed = false;
          PBBI.IsEnqueued = false;
        }
      }
    }
  }

  // Initialize liveins to the first BB. These are potentially redefined by
  // predicated instructions.
  Redefs.init(*TRI);
  if (MRI->tracksLiveness()) {
    Redefs.addLiveIns(CvtMBB);
    Redefs.addLiveIns(NextMBB);
  }

  bool HasEarlyExit = CvtBBI->FalseBB != nullptr;
  BranchProbability CvtNext, CvtFalse, BBNext, BBCvt;

  if (HasEarlyExit) {
    // Get probabilities before modifying CvtMBB and BBI.BB.
    CvtNext = MBPI->getEdgeProbability(&CvtMBB, &NextMBB);
    CvtFalse = MBPI->getEdgeProbability(&CvtMBB, CvtBBI->FalseBB);
    BBNext = MBPI->getEdgeProbability(BBI.BB, &NextMBB);
    BBCvt = MBPI->getEdgeProbability(BBI.BB, &CvtMBB);
  }

  // Remove the branches from the entry so we can add the contents of the true
  // block to it.
  BBI.NonPredSize -= TII->removeBranch(*BBI.BB);

  if (CvtMBB.pred_size() > 1) {
    // Copy instructions in the true block, predicate them, and add them to
    // the entry block.
    CopyAndPredicateBlock(BBI, *CvtBBI, Cond, true);
  } else {
    // Predicate the 'true' block after removing its branch.
    CvtBBI->NonPredSize -= TII->removeBranch(CvtMBB);
    PredicateBlock(*CvtBBI, CvtMBB.end(), Cond);

    // Now merge the entry of the triangle with the true block.
    MergeBlocks(BBI, *CvtBBI, false);
  }

  // Keep the CFG updated.
  BBI.BB->removeSuccessor(&CvtMBB, true);

  // If 'true' block has a 'false' successor, add an exit branch to it.
  if (HasEarlyExit) {
    SmallVector<MachineOperand, 4> RevCond(CvtBBI->BrCond.begin(),
                                           CvtBBI->BrCond.end());
    if (TII->reverseBranchCondition(RevCond))
      llvm_unreachable("Unable to reverse branch condition!");

    // Update the edge probability for both CvtBBI->FalseBB and NextBBI.
    // NewNext = New_Prob(BBI.BB, NextMBB) =
    //   Prob(BBI.BB, NextMBB) +
    //   Prob(BBI.BB, CvtMBB) * Prob(CvtMBB, NextMBB)
    // NewFalse = New_Prob(BBI.BB, CvtBBI->FalseBB) =
    //   Prob(BBI.BB, CvtMBB) * Prob(CvtMBB, CvtBBI->FalseBB)
    auto NewTrueBB = getNextBlock(*BBI.BB);
    auto NewNext = BBNext + BBCvt * CvtNext;
    auto NewTrueBBIter = find(BBI.BB->successors(), NewTrueBB);
    if (NewTrueBBIter != BBI.BB->succ_end())
      BBI.BB->setSuccProbability(NewTrueBBIter, NewNext);

    auto NewFalse = BBCvt * CvtFalse;
    TII->insertBranch(*BBI.BB, CvtBBI->FalseBB, nullptr, RevCond, dl);
    BBI.BB->addSuccessor(CvtBBI->FalseBB, NewFalse);
  }

  // Merge in the 'false' block if the 'false' block has no other
  // predecessors. Otherwise, add an unconditional branch to 'false'.
  bool FalseBBDead = false;
  bool IterIfcvt = true;
  bool isFallThrough = canFallThroughTo(*BBI.BB, NextMBB);
  if (!isFallThrough) {
    // Only merge them if the true block does not fallthrough to the false
    // block. By not merging them, we make it possible to iteratively
    // ifcvt the blocks.
    if (!HasEarlyExit &&
        NextMBB.pred_size() == 1 && !NextBBI->HasFallThrough &&
        !NextMBB.hasAddressTaken()) {
      MergeBlocks(BBI, *NextBBI);
      FalseBBDead = true;
    } else {
      InsertUncondBranch(*BBI.BB, NextMBB, TII);
      BBI.HasFallThrough = false;
    }
    // Mixed predicated and unpredicated code. This cannot be iteratively
    // predicated.
    IterIfcvt = false;
  }

  // Update block info. BB can be iteratively if-converted.
  if (!IterIfcvt)
    BBI.IsDone = true;
  InvalidatePreds(*BBI.BB);
  CvtBBI->IsDone = true;
  if (FalseBBDead)
    NextBBI->IsDone = true;

  // FIXME: Must maintain LiveIns.
  return true;
}

/// Common code shared between diamond conversions.
/// \p BBI, \p TrueBBI, and \p FalseBBI form the diamond shape.
/// \p NumDups1 - number of shared instructions at the beginning of \p TrueBBI
///               and FalseBBI
/// \p NumDups2 - number of shared instructions at the end of \p TrueBBI
///               and \p FalseBBI
/// \p RemoveBranch - Remove the common branch of the two blocks before
///                   predicating. Only false for unanalyzable fallthrough
///                   cases. The caller will replace the branch if necessary.
/// \p MergeAddEdges - Add successor edges when merging blocks. Only false for
///                    unanalyzable fallthrough
bool IfConverter::IfConvertDiamondCommon(
    BBInfo &BBI, BBInfo &TrueBBI, BBInfo &FalseBBI,
    unsigned NumDups1, unsigned NumDups2,
    bool TClobbersPred, bool FClobbersPred,
    bool RemoveBranch, bool MergeAddEdges) {

  if (TrueBBI.IsDone || FalseBBI.IsDone ||
      TrueBBI.BB->pred_size() > 1 || FalseBBI.BB->pred_size() > 1) {
    // Something has changed. It's no longer safe to predicate these blocks.
    BBI.IsAnalyzed = false;
    TrueBBI.IsAnalyzed = false;
    FalseBBI.IsAnalyzed = false;
    return false;
  }

  if (TrueBBI.BB->hasAddressTaken() || FalseBBI.BB->hasAddressTaken())
    // Conservatively abort if-conversion if either BB has its address taken.
    return false;

  // Put the predicated instructions from the 'true' block before the
  // instructions from the 'false' block, unless the true block would clobber
  // the predicate, in which case, do the opposite.
  BBInfo *BBI1 = &TrueBBI;
  BBInfo *BBI2 = &FalseBBI;
  SmallVector<MachineOperand, 4> RevCond(BBI.BrCond.begin(), BBI.BrCond.end());
  if (TII->reverseBranchCondition(RevCond))
    llvm_unreachable("Unable to reverse branch condition!");
  SmallVector<MachineOperand, 4> *Cond1 = &BBI.BrCond;
  SmallVector<MachineOperand, 4> *Cond2 = &RevCond;

  // Figure out the more profitable ordering.
  bool DoSwap = false;
  if (TClobbersPred && !FClobbersPred)
    DoSwap = true;
  else if (!TClobbersPred && !FClobbersPred) {
    if (TrueBBI.NonPredSize > FalseBBI.NonPredSize)
      DoSwap = true;
  } else if (TClobbersPred && FClobbersPred)
    llvm_unreachable("Predicate info cannot be clobbered by both sides.");
  if (DoSwap) {
    std::swap(BBI1, BBI2);
    std::swap(Cond1, Cond2);
  }

  // Remove the conditional branch from entry to the blocks.
  BBI.NonPredSize -= TII->removeBranch(*BBI.BB);

  MachineBasicBlock &MBB1 = *BBI1->BB;
  MachineBasicBlock &MBB2 = *BBI2->BB;

  // Initialize the Redefs:
  // - BB2 live-in regs need implicit uses before being redefined by BB1
  //   instructions.
  // - BB1 live-out regs need implicit uses before being redefined by BB2
  //   instructions. We start with BB1 live-ins so we have the live-out regs
  //   after tracking the BB1 instructions.
  Redefs.init(*TRI);
  if (MRI->tracksLiveness()) {
    Redefs.addLiveIns(MBB1);
    Redefs.addLiveIns(MBB2);
  }

  // Remove the duplicated instructions at the beginnings of both paths.
  // Skip dbg_value instructions.
  MachineBasicBlock::iterator DI1 = MBB1.getFirstNonDebugInstr();
  MachineBasicBlock::iterator DI2 = MBB2.getFirstNonDebugInstr();
  BBI1->NonPredSize -= NumDups1;
  BBI2->NonPredSize -= NumDups1;

  // Skip past the dups on each side separately since there may be
  // differing dbg_value entries. NumDups1 can include a "return"
  // instruction, if it's not marked as "branch".
  for (unsigned i = 0; i < NumDups1; ++DI1) {
    if (DI1 == MBB1.end())
      break;
    if (!DI1->isDebugInstr())
      ++i;
  }
  while (NumDups1 != 0) {
    ++DI2;
    if (DI2 == MBB2.end())
      break;
    if (!DI2->isDebugInstr())
      --NumDups1;
  }

  if (MRI->tracksLiveness()) {
    for (const MachineInstr &MI : make_range(MBB1.begin(), DI1)) {
      SmallVector<std::pair<MCPhysReg, const MachineOperand*>, 4> Dummy;
      Redefs.stepForward(MI, Dummy);
    }
  }

  BBI.BB->splice(BBI.BB->end(), &MBB1, MBB1.begin(), DI1);
  MBB2.erase(MBB2.begin(), DI2);

  // The branches have been checked to match, so it is safe to remove the
  // branch in BB1 and rely on the copy in BB2. The complication is that
  // the blocks may end with a return instruction, which may or may not
  // be marked as "branch". If it's not, then it could be included in
  // "dups1", leaving the blocks potentially empty after moving the common
  // duplicates.
#ifndef NDEBUG
  // Unanalyzable branches must match exactly. Check that now.
  if (!BBI1->IsBrAnalyzable)
    verifySameBranchInstructions(&MBB1, &MBB2);
#endif
  BBI1->NonPredSize -= TII->removeBranch(*BBI1->BB);
  // Remove duplicated instructions.
  DI1 = MBB1.end();
  for (unsigned i = 0; i != NumDups2; ) {
    // NumDups2 only counted non-dbg_value instructions, so this won't
    // run off the head of the list.
    assert(DI1 != MBB1.begin());
    --DI1;
    // skip dbg_value instructions
    if (!DI1->isDebugInstr())
      ++i;
  }
  MBB1.erase(DI1, MBB1.end());

  DI2 = BBI2->BB->end();
  // The branches have been checked to match. Skip over the branch in the false
  // block so that we don't try to predicate it.
  if (RemoveBranch)
    BBI2->NonPredSize -= TII->removeBranch(*BBI2->BB);
  else {
    // Make DI2 point to the end of the range where the common "tail"
    // instructions could be found.
    while (DI2 != MBB2.begin()) {
      MachineBasicBlock::iterator Prev = std::prev(DI2);
      if (!Prev->isBranch() && !Prev->isDebugInstr())
        break;
      DI2 = Prev;
    }
  }
  while (NumDups2 != 0) {
    // NumDups2 only counted non-dbg_value instructions, so this won't
    // run off the head of the list.
    assert(DI2 != MBB2.begin());
    --DI2;
    // skip dbg_value instructions
    if (!DI2->isDebugInstr())
      --NumDups2;
  }

  // Remember which registers would later be defined by the false block.
  // This allows us not to predicate instructions in the true block that would
  // later be re-defined. That is, rather than
  //   subeq  r0, r1, #1
  //   addne  r0, r1, #1
  // generate:
  //   sub    r0, r1, #1
  //   addne  r0, r1, #1
  SmallSet<MCPhysReg, 4> RedefsByFalse;
  SmallSet<MCPhysReg, 4> ExtUses;
  if (TII->isProfitableToUnpredicate(MBB1, MBB2)) {
    for (const MachineInstr &FI : make_range(MBB2.begin(), DI2)) {
      if (FI.isDebugInstr())
        continue;
      SmallVector<MCPhysReg, 4> Defs;
      for (const MachineOperand &MO : FI.operands()) {
        if (!MO.isReg())
          continue;
        unsigned Reg = MO.getReg();
        if (!Reg)
          continue;
        if (MO.isDef()) {
          Defs.push_back(Reg);
        } else if (!RedefsByFalse.count(Reg)) {
          // These are defined before ctrl flow reach the 'false' instructions.
          // They cannot be modified by the 'true' instructions.
          for (MCSubRegIterator SubRegs(Reg, TRI, /*IncludeSelf=*/true);
               SubRegs.isValid(); ++SubRegs)
            ExtUses.insert(*SubRegs);
        }
      }

      for (MCPhysReg Reg : Defs) {
        if (!ExtUses.count(Reg)) {
          for (MCSubRegIterator SubRegs(Reg, TRI, /*IncludeSelf=*/true);
               SubRegs.isValid(); ++SubRegs)
            RedefsByFalse.insert(*SubRegs);
        }
      }
    }
  }

  // Predicate the 'true' block.
  PredicateBlock(*BBI1, MBB1.end(), *Cond1, &RedefsByFalse);

  // After predicating BBI1, if there is a predicated terminator in BBI1 and
  // a non-predicated in BBI2, then we don't want to predicate the one from
  // BBI2. The reason is that if we merged these blocks, we would end up with
  // two predicated terminators in the same block.
  // Also, if the branches in MBB1 and MBB2 were non-analyzable, then don't
  // predicate them either. They were checked to be identical, and so the
  // same branch would happen regardless of which path was taken.
  if (!MBB2.empty() && (DI2 == MBB2.end())) {
    MachineBasicBlock::iterator BBI1T = MBB1.getFirstTerminator();
    MachineBasicBlock::iterator BBI2T = MBB2.getFirstTerminator();
    bool BB1Predicated = BBI1T != MBB1.end() && TII->isPredicated(*BBI1T);
    bool BB2NonPredicated = BBI2T != MBB2.end() && !TII->isPredicated(*BBI2T);
    if (BB2NonPredicated && (BB1Predicated || !BBI2->IsBrAnalyzable))
      --DI2;
  }

  // Predicate the 'false' block.
  PredicateBlock(*BBI2, DI2, *Cond2);

  // Merge the true block into the entry of the diamond.
  MergeBlocks(BBI, *BBI1, MergeAddEdges);
  MergeBlocks(BBI, *BBI2, MergeAddEdges);
  return true;
}

/// If convert an almost-diamond sub-CFG where the true
/// and false blocks share a common tail.
bool IfConverter::IfConvertForkedDiamond(
    BBInfo &BBI, IfcvtKind Kind,
    unsigned NumDups1, unsigned NumDups2,
    bool TClobbersPred, bool FClobbersPred) {
  BBInfo &TrueBBI  = BBAnalysis[BBI.TrueBB->getNumber()];
  BBInfo &FalseBBI = BBAnalysis[BBI.FalseBB->getNumber()];

  // Save the debug location for later.
  DebugLoc dl;
  MachineBasicBlock::iterator TIE = TrueBBI.BB->getFirstTerminator();
  if (TIE != TrueBBI.BB->end())
    dl = TIE->getDebugLoc();
  // Removing branches from both blocks is safe, because we have already
  // determined that both blocks have the same branch instructions. The branch
  // will be added back at the end, unpredicated.
  if (!IfConvertDiamondCommon(
      BBI, TrueBBI, FalseBBI,
      NumDups1, NumDups2,
      TClobbersPred, FClobbersPred,
      /* RemoveBranch */ true, /* MergeAddEdges */ true))
    return false;

  // Add back the branch.
  // Debug location saved above when removing the branch from BBI2
  TII->insertBranch(*BBI.BB, TrueBBI.TrueBB, TrueBBI.FalseBB,
                    TrueBBI.BrCond, dl);

  // Update block info.
  BBI.IsDone = TrueBBI.IsDone = FalseBBI.IsDone = true;
  InvalidatePreds(*BBI.BB);

  // FIXME: Must maintain LiveIns.
  return true;
}

/// If convert a diamond sub-CFG.
bool IfConverter::IfConvertDiamond(BBInfo &BBI, IfcvtKind Kind,
                                   unsigned NumDups1, unsigned NumDups2,
                                   bool TClobbersPred, bool FClobbersPred) {
  BBInfo &TrueBBI  = BBAnalysis[BBI.TrueBB->getNumber()];
  BBInfo &FalseBBI = BBAnalysis[BBI.FalseBB->getNumber()];
  MachineBasicBlock *TailBB = TrueBBI.TrueBB;

  // True block must fall through or end with an unanalyzable terminator.
  if (!TailBB) {
    if (blockAlwaysFallThrough(TrueBBI))
      TailBB = FalseBBI.TrueBB;
    assert((TailBB || !TrueBBI.IsBrAnalyzable) && "Unexpected!");
  }

  if (!IfConvertDiamondCommon(
      BBI, TrueBBI, FalseBBI,
      NumDups1, NumDups2,
      TClobbersPred, FClobbersPred,
      /* RemoveBranch */ TrueBBI.IsBrAnalyzable,
      /* MergeAddEdges */ TailBB == nullptr))
    return false;

  // If the if-converted block falls through or unconditionally branches into
  // the tail block, and the tail block does not have other predecessors, then
  // fold the tail block in as well. Otherwise, unless it falls through to the
  // tail, add a unconditional branch to it.
  if (TailBB) {
    // We need to remove the edges to the true and false blocks manually since
    // we didn't let IfConvertDiamondCommon update the CFG.
    BBI.BB->removeSuccessor(TrueBBI.BB);
    BBI.BB->removeSuccessor(FalseBBI.BB, true);

    BBInfo &TailBBI = BBAnalysis[TailBB->getNumber()];
    bool CanMergeTail = !TailBBI.HasFallThrough &&
      !TailBBI.BB->hasAddressTaken();
    // The if-converted block can still have a predicated terminator
    // (e.g. a predicated return). If that is the case, we cannot merge
    // it with the tail block.
    MachineBasicBlock::const_iterator TI = BBI.BB->getFirstTerminator();
    if (TI != BBI.BB->end() && TII->isPredicated(*TI))
      CanMergeTail = false;
    // There may still be a fall-through edge from BBI1 or BBI2 to TailBB;
    // check if there are any other predecessors besides those.
    unsigned NumPreds = TailBB->pred_size();
    if (NumPreds > 1)
      CanMergeTail = false;
    else if (NumPreds == 1 && CanMergeTail) {
      MachineBasicBlock::pred_iterator PI = TailBB->pred_begin();
      if (*PI != TrueBBI.BB && *PI != FalseBBI.BB)
        CanMergeTail = false;
    }
    if (CanMergeTail) {
      MergeBlocks(BBI, TailBBI);
      TailBBI.IsDone = true;
    } else {
      BBI.BB->addSuccessor(TailBB, BranchProbability::getOne());
      InsertUncondBranch(*BBI.BB, *TailBB, TII);
      BBI.HasFallThrough = false;
    }
  }

  // Update block info.
  BBI.IsDone = TrueBBI.IsDone = FalseBBI.IsDone = true;
  InvalidatePreds(*BBI.BB);

  // FIXME: Must maintain LiveIns.
  return true;
}

static bool MaySpeculate(const MachineInstr &MI,
                         SmallSet<MCPhysReg, 4> &LaterRedefs) {
  bool SawStore = true;
  if (!MI.isSafeToMove(nullptr, SawStore))
    return false;

  for (const MachineOperand &MO : MI.operands()) {
    if (!MO.isReg())
      continue;
    unsigned Reg = MO.getReg();
    if (!Reg)
      continue;
    if (MO.isDef() && !LaterRedefs.count(Reg))
      return false;
  }

  return true;
}

/// Predicate instructions from the start of the block to the specified end with
/// the specified condition.
void IfConverter::PredicateBlock(BBInfo &BBI,
                                 MachineBasicBlock::iterator E,
                                 SmallVectorImpl<MachineOperand> &Cond,
                                 SmallSet<MCPhysReg, 4> *LaterRedefs) {
  bool AnyUnpred = false;
  bool MaySpec = LaterRedefs != nullptr;
  for (MachineInstr &I : make_range(BBI.BB->begin(), E)) {
    if (I.isDebugInstr() || TII->isPredicated(I))
      continue;
    // It may be possible not to predicate an instruction if it's the 'true'
    // side of a diamond and the 'false' side may re-define the instruction's
    // defs.
    if (MaySpec && MaySpeculate(I, *LaterRedefs)) {
      AnyUnpred = true;
      continue;
    }
    // If any instruction is predicated, then every instruction after it must
    // be predicated.
    MaySpec = false;
    if (!TII->PredicateInstruction(I, Cond)) {
#ifndef NDEBUG
      dbgs() << "Unable to predicate " << I << "!\n";
#endif
      llvm_unreachable(nullptr);
    }

    // If the predicated instruction now redefines a register as the result of
    // if-conversion, add an implicit kill.
    UpdatePredRedefs(I, Redefs);
  }

  BBI.Predicate.append(Cond.begin(), Cond.end());

  BBI.IsAnalyzed = false;
  BBI.NonPredSize = 0;

  ++NumIfConvBBs;
  if (AnyUnpred)
    ++NumUnpred;
}

/// Copy and predicate instructions from source BB to the destination block.
/// Skip end of block branches if IgnoreBr is true.
void IfConverter::CopyAndPredicateBlock(BBInfo &ToBBI, BBInfo &FromBBI,
                                        SmallVectorImpl<MachineOperand> &Cond,
                                        bool IgnoreBr) {
  MachineFunction &MF = *ToBBI.BB->getParent();

  MachineBasicBlock &FromMBB = *FromBBI.BB;
  for (MachineInstr &I : FromMBB) {
    // Do not copy the end of the block branches.
    if (IgnoreBr && I.isBranch())
      break;

    MachineInstr *MI = MF.CloneMachineInstr(&I);
    ToBBI.BB->insert(ToBBI.BB->end(), MI);
    ToBBI.NonPredSize++;
    unsigned ExtraPredCost = TII->getPredicationCost(I);
    unsigned NumCycles = SchedModel.computeInstrLatency(&I, false);
    if (NumCycles > 1)
      ToBBI.ExtraCost += NumCycles-1;
    ToBBI.ExtraCost2 += ExtraPredCost;

    if (!TII->isPredicated(I) && !MI->isDebugInstr()) {
      if (!TII->PredicateInstruction(*MI, Cond)) {
#ifndef NDEBUG
        dbgs() << "Unable to predicate " << I << "!\n";
#endif
        llvm_unreachable(nullptr);
      }
    }

    // If the predicated instruction now redefines a register as the result of
    // if-conversion, add an implicit kill.
    UpdatePredRedefs(*MI, Redefs);
  }

  if (!IgnoreBr) {
    std::vector<MachineBasicBlock *> Succs(FromMBB.succ_begin(),
                                           FromMBB.succ_end());
    MachineBasicBlock *NBB = getNextBlock(FromMBB);
    MachineBasicBlock *FallThrough = FromBBI.HasFallThrough ? NBB : nullptr;

    for (MachineBasicBlock *Succ : Succs) {
      // Fallthrough edge can't be transferred.
      if (Succ == FallThrough)
        continue;
      ToBBI.BB->addSuccessor(Succ);
    }
  }

  ToBBI.Predicate.append(FromBBI.Predicate.begin(), FromBBI.Predicate.end());
  ToBBI.Predicate.append(Cond.begin(), Cond.end());

  ToBBI.ClobbersPred |= FromBBI.ClobbersPred;
  ToBBI.IsAnalyzed = false;

  ++NumDupBBs;
}

/// Move all instructions from FromBB to the end of ToBB.  This will leave
/// FromBB as an empty block, so remove all of its successor edges except for
/// the fall-through edge.  If AddEdges is true, i.e., when FromBBI's branch is
/// being moved, add those successor edges to ToBBI and remove the old edge
/// from ToBBI to FromBBI.
void IfConverter::MergeBlocks(BBInfo &ToBBI, BBInfo &FromBBI, bool AddEdges) {
  MachineBasicBlock &FromMBB = *FromBBI.BB;
  assert(!FromMBB.hasAddressTaken() &&
         "Removing a BB whose address is taken!");

  // In case FromMBB contains terminators (e.g. return instruction),
  // first move the non-terminator instructions, then the terminators.
  MachineBasicBlock::iterator FromTI = FromMBB.getFirstTerminator();
  MachineBasicBlock::iterator ToTI = ToBBI.BB->getFirstTerminator();
  ToBBI.BB->splice(ToTI, &FromMBB, FromMBB.begin(), FromTI);

  // If FromBB has non-predicated terminator we should copy it at the end.
  if (FromTI != FromMBB.end() && !TII->isPredicated(*FromTI))
    ToTI = ToBBI.BB->end();
  ToBBI.BB->splice(ToTI, &FromMBB, FromTI, FromMBB.end());

  // Force normalizing the successors' probabilities of ToBBI.BB to convert all
  // unknown probabilities into known ones.
  // FIXME: This usage is too tricky and in the future we would like to
  // eliminate all unknown probabilities in MBB.
  if (ToBBI.IsBrAnalyzable)
    ToBBI.BB->normalizeSuccProbs();

  SmallVector<MachineBasicBlock *, 4> FromSuccs(FromMBB.succ_begin(),
                                                FromMBB.succ_end());
  MachineBasicBlock *NBB = getNextBlock(FromMBB);
  MachineBasicBlock *FallThrough = FromBBI.HasFallThrough ? NBB : nullptr;
  // The edge probability from ToBBI.BB to FromMBB, which is only needed when
  // AddEdges is true and FromMBB is a successor of ToBBI.BB.
  auto To2FromProb = BranchProbability::getZero();
  if (AddEdges && ToBBI.BB->isSuccessor(&FromMBB)) {
    // Remove the old edge but remember the edge probability so we can calculate
    // the correct weights on the new edges being added further down.
    To2FromProb = MBPI->getEdgeProbability(ToBBI.BB, &FromMBB);
    ToBBI.BB->removeSuccessor(&FromMBB);
  }

  for (MachineBasicBlock *Succ : FromSuccs) {
    // Fallthrough edge can't be transferred.
    if (Succ == FallThrough)
      continue;

    auto NewProb = BranchProbability::getZero();
    if (AddEdges) {
      // Calculate the edge probability for the edge from ToBBI.BB to Succ,
      // which is a portion of the edge probability from FromMBB to Succ. The
      // portion ratio is the edge probability from ToBBI.BB to FromMBB (if
      // FromBBI is a successor of ToBBI.BB. See comment below for excepion).
      NewProb = MBPI->getEdgeProbability(&FromMBB, Succ);

      // To2FromProb is 0 when FromMBB is not a successor of ToBBI.BB. This
      // only happens when if-converting a diamond CFG and FromMBB is the
      // tail BB.  In this case FromMBB post-dominates ToBBI.BB and hence we
      // could just use the probabilities on FromMBB's out-edges when adding
      // new successors.
      if (!To2FromProb.isZero())
        NewProb *= To2FromProb;
    }

    FromMBB.removeSuccessor(Succ);

    if (AddEdges) {
      // If the edge from ToBBI.BB to Succ already exists, update the
      // probability of this edge by adding NewProb to it. An example is shown
      // below, in which A is ToBBI.BB and B is FromMBB. In this case we
      // don't have to set C as A's successor as it already is. We only need to
      // update the edge probability on A->C. Note that B will not be
      // immediately removed from A's successors. It is possible that B->D is
      // not removed either if D is a fallthrough of B. Later the edge A->D
      // (generated here) and B->D will be combined into one edge. To maintain
      // correct edge probability of this combined edge, we need to set the edge
      // probability of A->B to zero, which is already done above. The edge
      // probability on A->D is calculated by scaling the original probability
      // on A->B by the probability of B->D.
      //
      // Before ifcvt:      After ifcvt (assume B->D is kept):
      //
      //       A                A
      //      /|               /|\
      //     / B              / B|
      //    | /|             |  ||
      //    |/ |             |  |/
      //    C  D             C  D
      //
      if (ToBBI.BB->isSuccessor(Succ))
        ToBBI.BB->setSuccProbability(
            find(ToBBI.BB->successors(), Succ),
            MBPI->getEdgeProbability(ToBBI.BB, Succ) + NewProb);
      else
        ToBBI.BB->addSuccessor(Succ, NewProb);
    }
  }

  // Move the now empty FromMBB out of the way to the end of the function so
  // it doesn't interfere with fallthrough checks done by canFallThroughTo().
  MachineBasicBlock *Last = &*FromMBB.getParent()->rbegin();
  if (Last != &FromMBB)
    FromMBB.moveAfter(Last);

  // Normalize the probabilities of ToBBI.BB's successors with all adjustment
  // we've done above.
  if (ToBBI.IsBrAnalyzable && FromBBI.IsBrAnalyzable)
    ToBBI.BB->normalizeSuccProbs();

  ToBBI.Predicate.append(FromBBI.Predicate.begin(), FromBBI.Predicate.end());
  FromBBI.Predicate.clear();

  ToBBI.NonPredSize += FromBBI.NonPredSize;
  ToBBI.ExtraCost += FromBBI.ExtraCost;
  ToBBI.ExtraCost2 += FromBBI.ExtraCost2;
  FromBBI.NonPredSize = 0;
  FromBBI.ExtraCost = 0;
  FromBBI.ExtraCost2 = 0;

  ToBBI.ClobbersPred |= FromBBI.ClobbersPred;
  ToBBI.HasFallThrough = FromBBI.HasFallThrough;
  ToBBI.IsAnalyzed = false;
  FromBBI.IsAnalyzed = false;
}

FunctionPass *
llvm::createIfConverter(std::function<bool(const MachineFunction &)> Ftor) {
  return new IfConverter(std::move(Ftor));
}