llvm.org GIT mirror llvm / eaa7353 lib / CodeGen / ExecutionDomainFix.cpp
eaa7353

Tree @eaa7353 (Download .tar.gz)

ExecutionDomainFix.cpp @eaa7353raw · history · blame

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
//===- ExecutionDomainFix.cpp - Fix execution domain issues ----*- C++ -*--===//
//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//

#include "llvm/CodeGen/ExecutionDomainFix.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/CodeGen/TargetInstrInfo.h"

using namespace llvm;

#define DEBUG_TYPE "execution-deps-fix"

iterator_range<SmallVectorImpl<int>::const_iterator>
ExecutionDomainFix::regIndices(unsigned Reg) const {
  assert(Reg < AliasMap.size() && "Invalid register");
  const auto &Entry = AliasMap[Reg];
  return make_range(Entry.begin(), Entry.end());
}

DomainValue *ExecutionDomainFix::alloc(int domain) {
  DomainValue *dv = Avail.empty() ? new (Allocator.Allocate()) DomainValue
                                  : Avail.pop_back_val();
  if (domain >= 0)
    dv->addDomain(domain);
  assert(dv->Refs == 0 && "Reference count wasn't cleared");
  assert(!dv->Next && "Chained DomainValue shouldn't have been recycled");
  return dv;
}

void ExecutionDomainFix::release(DomainValue *DV) {
  while (DV) {
    assert(DV->Refs && "Bad DomainValue");
    if (--DV->Refs)
      return;

    // There are no more DV references. Collapse any contained instructions.
    if (DV->AvailableDomains && !DV->isCollapsed())
      collapse(DV, DV->getFirstDomain());

    DomainValue *Next = DV->Next;
    DV->clear();
    Avail.push_back(DV);
    // Also release the next DomainValue in the chain.
    DV = Next;
  }
}

DomainValue *ExecutionDomainFix::resolve(DomainValue *&DVRef) {
  DomainValue *DV = DVRef;
  if (!DV || !DV->Next)
    return DV;

  // DV has a chain. Find the end.
  do
    DV = DV->Next;
  while (DV->Next);

  // Update DVRef to point to DV.
  retain(DV);
  release(DVRef);
  DVRef = DV;
  return DV;
}

void ExecutionDomainFix::setLiveReg(int rx, DomainValue *dv) {
  assert(unsigned(rx) < NumRegs && "Invalid index");
  assert(!LiveRegs.empty() && "Must enter basic block first.");

  if (LiveRegs[rx] == dv)
    return;
  if (LiveRegs[rx])
    release(LiveRegs[rx]);
  LiveRegs[rx] = retain(dv);
}

void ExecutionDomainFix::kill(int rx) {
  assert(unsigned(rx) < NumRegs && "Invalid index");
  assert(!LiveRegs.empty() && "Must enter basic block first.");
  if (!LiveRegs[rx])
    return;

  release(LiveRegs[rx]);
  LiveRegs[rx] = nullptr;
}

void ExecutionDomainFix::force(int rx, unsigned domain) {
  assert(unsigned(rx) < NumRegs && "Invalid index");
  assert(!LiveRegs.empty() && "Must enter basic block first.");
  if (DomainValue *dv = LiveRegs[rx]) {
    if (dv->isCollapsed())
      dv->addDomain(domain);
    else if (dv->hasDomain(domain))
      collapse(dv, domain);
    else {
      // This is an incompatible open DomainValue. Collapse it to whatever and
      // force the new value into domain. This costs a domain crossing.
      collapse(dv, dv->getFirstDomain());
      assert(LiveRegs[rx] && "Not live after collapse?");
      LiveRegs[rx]->addDomain(domain);
    }
  } else {
    // Set up basic collapsed DomainValue.
    setLiveReg(rx, alloc(domain));
  }
}

void ExecutionDomainFix::collapse(DomainValue *dv, unsigned domain) {
  assert(dv->hasDomain(domain) && "Cannot collapse");

  // Collapse all the instructions.
  while (!dv->Instrs.empty())
    TII->setExecutionDomain(*dv->Instrs.pop_back_val(), domain);
  dv->setSingleDomain(domain);

  // If there are multiple users, give them new, unique DomainValues.
  if (!LiveRegs.empty() && dv->Refs > 1)
    for (unsigned rx = 0; rx != NumRegs; ++rx)
      if (LiveRegs[rx] == dv)
        setLiveReg(rx, alloc(domain));
}

bool ExecutionDomainFix::merge(DomainValue *A, DomainValue *B) {
  assert(!A->isCollapsed() && "Cannot merge into collapsed");
  assert(!B->isCollapsed() && "Cannot merge from collapsed");
  if (A == B)
    return true;
  // Restrict to the domains that A and B have in common.
  unsigned common = A->getCommonDomains(B->AvailableDomains);
  if (!common)
    return false;
  A->AvailableDomains = common;
  A->Instrs.append(B->Instrs.begin(), B->Instrs.end());

  // Clear the old DomainValue so we won't try to swizzle instructions twice.
  B->clear();
  // All uses of B are referred to A.
  B->Next = retain(A);

  for (unsigned rx = 0; rx != NumRegs; ++rx) {
    assert(!LiveRegs.empty() && "no space allocated for live registers");
    if (LiveRegs[rx] == B)
      setLiveReg(rx, A);
  }
  return true;
}

void ExecutionDomainFix::enterBasicBlock(
    const LoopTraversal::TraversedMBBInfo &TraversedMBB) {

  MachineBasicBlock *MBB = TraversedMBB.MBB;

  // Set up LiveRegs to represent registers entering MBB.
  // Set default domain values to 'no domain' (nullptr)
  if (LiveRegs.empty())
    LiveRegs.assign(NumRegs, nullptr);

  // This is the entry block.
  if (MBB->pred_empty()) {
    LLVM_DEBUG(dbgs() << printMBBReference(*MBB) << ": entry\n");
    return;
  }

  // Try to coalesce live-out registers from predecessors.
  for (MachineBasicBlock *pred : MBB->predecessors()) {
    assert(unsigned(pred->getNumber()) < MBBOutRegsInfos.size() &&
           "Should have pre-allocated MBBInfos for all MBBs");
    LiveRegsDVInfo &Incoming = MBBOutRegsInfos[pred->getNumber()];
    // Incoming is null if this is a backedge from a BB
    // we haven't processed yet
    if (Incoming.empty())
      continue;

    for (unsigned rx = 0; rx != NumRegs; ++rx) {
      DomainValue *pdv = resolve(Incoming[rx]);
      if (!pdv)
        continue;
      if (!LiveRegs[rx]) {
        setLiveReg(rx, pdv);
        continue;
      }

      // We have a live DomainValue from more than one predecessor.
      if (LiveRegs[rx]->isCollapsed()) {
        // We are already collapsed, but predecessor is not. Force it.
        unsigned Domain = LiveRegs[rx]->getFirstDomain();
        if (!pdv->isCollapsed() && pdv->hasDomain(Domain))
          collapse(pdv, Domain);
        continue;
      }

      // Currently open, merge in predecessor.
      if (!pdv->isCollapsed())
        merge(LiveRegs[rx], pdv);
      else
        force(rx, pdv->getFirstDomain());
    }
  }
  LLVM_DEBUG(dbgs() << printMBBReference(*MBB)
                    << (!TraversedMBB.IsDone ? ": incomplete\n"
                                             : ": all preds known\n"));
}

void ExecutionDomainFix::leaveBasicBlock(
    const LoopTraversal::TraversedMBBInfo &TraversedMBB) {
  assert(!LiveRegs.empty() && "Must enter basic block first.");
  unsigned MBBNumber = TraversedMBB.MBB->getNumber();
  assert(MBBNumber < MBBOutRegsInfos.size() &&
         "Unexpected basic block number.");
  // Save register clearances at end of MBB - used by enterBasicBlock().
  for (DomainValue *OldLiveReg : MBBOutRegsInfos[MBBNumber]) {
    release(OldLiveReg);
  }
  MBBOutRegsInfos[MBBNumber] = LiveRegs;
  LiveRegs.clear();
}

bool ExecutionDomainFix::visitInstr(MachineInstr *MI) {
  // Update instructions with explicit execution domains.
  std::pair<uint16_t, uint16_t> DomP = TII->getExecutionDomain(*MI);
  if (DomP.first) {
    if (DomP.second)
      visitSoftInstr(MI, DomP.second);
    else
      visitHardInstr(MI, DomP.first);
  }

  return !DomP.first;
}

void ExecutionDomainFix::processDefs(MachineInstr *MI, bool Kill) {
  assert(!MI->isDebugInstr() && "Won't process debug values");
  const MCInstrDesc &MCID = MI->getDesc();
  for (unsigned i = 0,
                e = MI->isVariadic() ? MI->getNumOperands() : MCID.getNumDefs();
       i != e; ++i) {
    MachineOperand &MO = MI->getOperand(i);
    if (!MO.isReg())
      continue;
    if (MO.isUse())
      continue;
    for (int rx : regIndices(MO.getReg())) {
      // This instruction explicitly defines rx.
      LLVM_DEBUG(dbgs() << printReg(RC->getRegister(rx), TRI) << ":\t" << *MI);

      // Kill off domains redefined by generic instructions.
      if (Kill)
        kill(rx);
    }
  }
}

void ExecutionDomainFix::visitHardInstr(MachineInstr *mi, unsigned domain) {
  // Collapse all uses.
  for (unsigned i = mi->getDesc().getNumDefs(),
                e = mi->getDesc().getNumOperands();
       i != e; ++i) {
    MachineOperand &mo = mi->getOperand(i);
    if (!mo.isReg())
      continue;
    for (int rx : regIndices(mo.getReg())) {
      force(rx, domain);
    }
  }

  // Kill all defs and force them.
  for (unsigned i = 0, e = mi->getDesc().getNumDefs(); i != e; ++i) {
    MachineOperand &mo = mi->getOperand(i);
    if (!mo.isReg())
      continue;
    for (int rx : regIndices(mo.getReg())) {
      kill(rx);
      force(rx, domain);
    }
  }
}

void ExecutionDomainFix::visitSoftInstr(MachineInstr *mi, unsigned mask) {
  // Bitmask of available domains for this instruction after taking collapsed
  // operands into account.
  unsigned available = mask;

  // Scan the explicit use operands for incoming domains.
  SmallVector<int, 4> used;
  if (!LiveRegs.empty())
    for (unsigned i = mi->getDesc().getNumDefs(),
                  e = mi->getDesc().getNumOperands();
         i != e; ++i) {
      MachineOperand &mo = mi->getOperand(i);
      if (!mo.isReg())
        continue;
      for (int rx : regIndices(mo.getReg())) {
        DomainValue *dv = LiveRegs[rx];
        if (dv == nullptr)
          continue;
        // Bitmask of domains that dv and available have in common.
        unsigned common = dv->getCommonDomains(available);
        // Is it possible to use this collapsed register for free?
        if (dv->isCollapsed()) {
          // Restrict available domains to the ones in common with the operand.
          // If there are no common domains, we must pay the cross-domain
          // penalty for this operand.
          if (common)
            available = common;
        } else if (common)
          // Open DomainValue is compatible, save it for merging.
          used.push_back(rx);
        else
          // Open DomainValue is not compatible with instruction. It is useless
          // now.
          kill(rx);
      }
    }

  // If the collapsed operands force a single domain, propagate the collapse.
  if (isPowerOf2_32(available)) {
    unsigned domain = countTrailingZeros(available);
    TII->setExecutionDomain(*mi, domain);
    visitHardInstr(mi, domain);
    return;
  }

  // Kill off any remaining uses that don't match available, and build a list of
  // incoming DomainValues that we want to merge.
  SmallVector<int, 4> Regs;
  for (int rx : used) {
    assert(!LiveRegs.empty() && "no space allocated for live registers");
    DomainValue *&LR = LiveRegs[rx];
    // This useless DomainValue could have been missed above.
    if (!LR->getCommonDomains(available)) {
      kill(rx);
      continue;
    }
    // Sorted insertion.
    // Enables giving priority to the latest domains during merging.
    auto I = std::upper_bound(
        Regs.begin(), Regs.end(), rx, [&](int LHS, const int RHS) {
          return RDA->getReachingDef(mi, RC->getRegister(LHS)) <
                 RDA->getReachingDef(mi, RC->getRegister(RHS));
        });
    Regs.insert(I, rx);
  }

  // doms are now sorted in order of appearance. Try to merge them all, giving
  // priority to the latest ones.
  DomainValue *dv = nullptr;
  while (!Regs.empty()) {
    if (!dv) {
      dv = LiveRegs[Regs.pop_back_val()];
      // Force the first dv to match the current instruction.
      dv->AvailableDomains = dv->getCommonDomains(available);
      assert(dv->AvailableDomains && "Domain should have been filtered");
      continue;
    }

    DomainValue *Latest = LiveRegs[Regs.pop_back_val()];
    // Skip already merged values.
    if (Latest == dv || Latest->Next)
      continue;
    if (merge(dv, Latest))
      continue;

    // If latest didn't merge, it is useless now. Kill all registers using it.
    for (int i : used) {
      assert(!LiveRegs.empty() && "no space allocated for live registers");
      if (LiveRegs[i] == Latest)
        kill(i);
    }
  }

  // dv is the DomainValue we are going to use for this instruction.
  if (!dv) {
    dv = alloc();
    dv->AvailableDomains = available;
  }
  dv->Instrs.push_back(mi);

  // Finally set all defs and non-collapsed uses to dv. We must iterate through
  // all the operators, including imp-def ones.
  for (MachineOperand &mo : mi->operands()) {
    if (!mo.isReg())
      continue;
    for (int rx : regIndices(mo.getReg())) {
      if (!LiveRegs[rx] || (mo.isDef() && LiveRegs[rx] != dv)) {
        kill(rx);
        setLiveReg(rx, dv);
      }
    }
  }
}

void ExecutionDomainFix::processBasicBlock(
    const LoopTraversal::TraversedMBBInfo &TraversedMBB) {
  enterBasicBlock(TraversedMBB);
  // If this block is not done, it makes little sense to make any decisions
  // based on clearance information. We need to make a second pass anyway,
  // and by then we'll have better information, so we can avoid doing the work
  // to try and break dependencies now.
  for (MachineInstr &MI : *TraversedMBB.MBB) {
    if (!MI.isDebugInstr()) {
      bool Kill = false;
      if (TraversedMBB.PrimaryPass)
        Kill = visitInstr(&MI);
      processDefs(&MI, Kill);
    }
  }
  leaveBasicBlock(TraversedMBB);
}

bool ExecutionDomainFix::runOnMachineFunction(MachineFunction &mf) {
  if (skipFunction(mf.getFunction()))
    return false;
  MF = &mf;
  TII = MF->getSubtarget().getInstrInfo();
  TRI = MF->getSubtarget().getRegisterInfo();
  LiveRegs.clear();
  assert(NumRegs == RC->getNumRegs() && "Bad regclass");

  LLVM_DEBUG(dbgs() << "********** FIX EXECUTION DOMAIN: "
                    << TRI->getRegClassName(RC) << " **********\n");

  // If no relevant registers are used in the function, we can skip it
  // completely.
  bool anyregs = false;
  const MachineRegisterInfo &MRI = mf.getRegInfo();
  for (unsigned Reg : *RC) {
    if (MRI.isPhysRegUsed(Reg)) {
      anyregs = true;
      break;
    }
  }
  if (!anyregs)
    return false;

  RDA = &getAnalysis<ReachingDefAnalysis>();

  // Initialize the AliasMap on the first use.
  if (AliasMap.empty()) {
    // Given a PhysReg, AliasMap[PhysReg] returns a list of indices into RC and
    // therefore the LiveRegs array.
    AliasMap.resize(TRI->getNumRegs());
    for (unsigned i = 0, e = RC->getNumRegs(); i != e; ++i)
      for (MCRegAliasIterator AI(RC->getRegister(i), TRI, true); AI.isValid();
           ++AI)
        AliasMap[*AI].push_back(i);
  }

  // Initialize the MBBOutRegsInfos
  MBBOutRegsInfos.resize(mf.getNumBlockIDs());

  // Traverse the basic blocks.
  LoopTraversal Traversal;
  LoopTraversal::TraversalOrder TraversedMBBOrder = Traversal.traverse(mf);
  for (LoopTraversal::TraversedMBBInfo TraversedMBB : TraversedMBBOrder) {
    processBasicBlock(TraversedMBB);
  }

  for (LiveRegsDVInfo OutLiveRegs : MBBOutRegsInfos) {
    for (DomainValue *OutLiveReg : OutLiveRegs) {
      if (OutLiveReg)
        release(OutLiveReg);
    }
  }
  MBBOutRegsInfos.clear();
  Avail.clear();
  Allocator.DestroyAll();

  return false;
}