llvm.org GIT mirror llvm / eaa7353 include / llvm / IR / CFG.h
eaa7353

Tree @eaa7353 (Download .tar.gz)

CFG.h @eaa7353raw · history · blame

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
//===- CFG.h ----------------------------------------------------*- C++ -*-===//
//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
/// \file
///
/// This file provides various utilities for inspecting and working with the
/// control flow graph in LLVM IR. This includes generic facilities for
/// iterating successors and predecessors of basic blocks, the successors of
/// specific terminator instructions, etc. It also defines specializations of
/// GraphTraits that allow Function and BasicBlock graphs to be treated as
/// proper graphs for generic algorithms.
///
//===----------------------------------------------------------------------===//

#ifndef LLVM_IR_CFG_H
#define LLVM_IR_CFG_H

#include "llvm/ADT/GraphTraits.h"
#include "llvm/ADT/iterator.h"
#include "llvm/ADT/iterator_range.h"
#include "llvm/IR/BasicBlock.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/InstrTypes.h"
#include "llvm/IR/Value.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/type_traits.h"
#include <cassert>
#include <cstddef>
#include <iterator>

namespace llvm {

//===----------------------------------------------------------------------===//
// BasicBlock pred_iterator definition
//===----------------------------------------------------------------------===//

template <class Ptr, class USE_iterator> // Predecessor Iterator
class PredIterator : public std::iterator<std::forward_iterator_tag,
                                          Ptr, ptrdiff_t, Ptr*, Ptr*> {
  using super =
      std::iterator<std::forward_iterator_tag, Ptr, ptrdiff_t, Ptr*, Ptr*>;
  using Self = PredIterator<Ptr, USE_iterator>;
  USE_iterator It;

  inline void advancePastNonTerminators() {
    // Loop to ignore non-terminator uses (for example BlockAddresses).
    while (!It.atEnd()) {
      if (auto *Inst = dyn_cast<Instruction>(*It))
        if (Inst->isTerminator())
          break;

      ++It;
    }
  }

public:
  using pointer = typename super::pointer;
  using reference = typename super::reference;

  PredIterator() = default;
  explicit inline PredIterator(Ptr *bb) : It(bb->user_begin()) {
    advancePastNonTerminators();
  }
  inline PredIterator(Ptr *bb, bool) : It(bb->user_end()) {}

  inline bool operator==(const Self& x) const { return It == x.It; }
  inline bool operator!=(const Self& x) const { return !operator==(x); }

  inline reference operator*() const {
    assert(!It.atEnd() && "pred_iterator out of range!");
    return cast<Instruction>(*It)->getParent();
  }
  inline pointer *operator->() const { return &operator*(); }

  inline Self& operator++() {   // Preincrement
    assert(!It.atEnd() && "pred_iterator out of range!");
    ++It; advancePastNonTerminators();
    return *this;
  }

  inline Self operator++(int) { // Postincrement
    Self tmp = *this; ++*this; return tmp;
  }

  /// getOperandNo - Return the operand number in the predecessor's
  /// terminator of the successor.
  unsigned getOperandNo() const {
    return It.getOperandNo();
  }

  /// getUse - Return the operand Use in the predecessor's terminator
  /// of the successor.
  Use &getUse() const {
    return It.getUse();
  }
};

using pred_iterator = PredIterator<BasicBlock, Value::user_iterator>;
using const_pred_iterator =
    PredIterator<const BasicBlock, Value::const_user_iterator>;
using pred_range = iterator_range<pred_iterator>;
using pred_const_range = iterator_range<const_pred_iterator>;

inline pred_iterator pred_begin(BasicBlock *BB) { return pred_iterator(BB); }
inline const_pred_iterator pred_begin(const BasicBlock *BB) {
  return const_pred_iterator(BB);
}
inline pred_iterator pred_end(BasicBlock *BB) { return pred_iterator(BB, true);}
inline const_pred_iterator pred_end(const BasicBlock *BB) {
  return const_pred_iterator(BB, true);
}
inline bool pred_empty(const BasicBlock *BB) {
  return pred_begin(BB) == pred_end(BB);
}
inline unsigned pred_size(const BasicBlock *BB) {
  return std::distance(pred_begin(BB), pred_end(BB));
}
inline pred_range predecessors(BasicBlock *BB) {
  return pred_range(pred_begin(BB), pred_end(BB));
}
inline pred_const_range predecessors(const BasicBlock *BB) {
  return pred_const_range(pred_begin(BB), pred_end(BB));
}

//===----------------------------------------------------------------------===//
// Instruction and BasicBlock succ_iterator helpers
//===----------------------------------------------------------------------===//

template <class InstructionT, class BlockT>
class SuccIterator
    : public iterator_facade_base<SuccIterator<InstructionT, BlockT>,
                                  std::random_access_iterator_tag, BlockT, int,
                                  BlockT *, BlockT *> {
public:
  using difference_type = int;
  using pointer = BlockT *;
  using reference = BlockT *;

private:
  InstructionT *Inst;
  int Idx;
  using Self = SuccIterator<InstructionT, BlockT>;

  inline bool index_is_valid(int Idx) {
    // Note that we specially support the index of zero being valid even in the
    // face of a null instruction.
    return Idx >= 0 && (Idx == 0 || Idx <= (int)Inst->getNumSuccessors());
  }

  /// Proxy object to allow write access in operator[]
  class SuccessorProxy {
    Self It;

  public:
    explicit SuccessorProxy(const Self &It) : It(It) {}

    SuccessorProxy(const SuccessorProxy &) = default;

    SuccessorProxy &operator=(SuccessorProxy RHS) {
      *this = reference(RHS);
      return *this;
    }

    SuccessorProxy &operator=(reference RHS) {
      It.Inst->setSuccessor(It.Idx, RHS);
      return *this;
    }

    operator reference() const { return *It; }
  };

public:
  // begin iterator
  explicit inline SuccIterator(InstructionT *Inst) : Inst(Inst), Idx(0) {}
  // end iterator
  inline SuccIterator(InstructionT *Inst, bool) : Inst(Inst) {
    if (Inst)
      Idx = Inst->getNumSuccessors();
    else
      // Inst == NULL happens, if a basic block is not fully constructed and
      // consequently getTerminator() returns NULL. In this case we construct
      // a SuccIterator which describes a basic block that has zero
      // successors.
      // Defining SuccIterator for incomplete and malformed CFGs is especially
      // useful for debugging.
      Idx = 0;
  }

  /// This is used to interface between code that wants to
  /// operate on terminator instructions directly.
  int getSuccessorIndex() const { return Idx; }

  inline bool operator==(const Self &x) const { return Idx == x.Idx; }

  inline BlockT *operator*() const { return Inst->getSuccessor(Idx); }

  // We use the basic block pointer directly for operator->.
  inline BlockT *operator->() const { return operator*(); }

  inline bool operator<(const Self &RHS) const {
    assert(Inst == RHS.Inst && "Cannot compare iterators of different blocks!");
    return Idx < RHS.Idx;
  }

  int operator-(const Self &RHS) const {
    assert(Inst == RHS.Inst && "Cannot compare iterators of different blocks!");
    return Idx - RHS.Idx;
  }

  inline Self &operator+=(int RHS) {
    int NewIdx = Idx + RHS;
    assert(index_is_valid(NewIdx) && "Iterator index out of bound");
    Idx = NewIdx;
    return *this;
  }

  inline Self &operator-=(int RHS) { return operator+=(-RHS); }

  // Specially implement the [] operation using a proxy object to support
  // assignment.
  inline SuccessorProxy operator[](int Offset) {
    Self TmpIt = *this;
    TmpIt += Offset;
    return SuccessorProxy(TmpIt);
  }

  /// Get the source BlockT of this iterator.
  inline BlockT *getSource() {
    assert(Inst && "Source not available, if basic block was malformed");
    return Inst->getParent();
  }
};

template <typename T, typename U> struct isPodLike<SuccIterator<T, U>> {
  static const bool value = isPodLike<T>::value;
};

using succ_iterator = SuccIterator<Instruction, BasicBlock>;
using succ_const_iterator = SuccIterator<const Instruction, const BasicBlock>;
using succ_range = iterator_range<succ_iterator>;
using succ_const_range = iterator_range<succ_const_iterator>;

inline succ_iterator succ_begin(Instruction *I) { return succ_iterator(I); }
inline succ_const_iterator succ_begin(const Instruction *I) {
  return succ_const_iterator(I);
}
inline succ_iterator succ_end(Instruction *I) { return succ_iterator(I, true); }
inline succ_const_iterator succ_end(const Instruction *I) {
  return succ_const_iterator(I, true);
}
inline bool succ_empty(const Instruction *I) {
  return succ_begin(I) == succ_end(I);
}
inline unsigned succ_size(const Instruction *I) {
  return std::distance(succ_begin(I), succ_end(I));
}
inline succ_range successors(Instruction *I) {
  return succ_range(succ_begin(I), succ_end(I));
}
inline succ_const_range successors(const Instruction *I) {
  return succ_const_range(succ_begin(I), succ_end(I));
}

inline succ_iterator succ_begin(BasicBlock *BB) {
  return succ_iterator(BB->getTerminator());
}
inline succ_const_iterator succ_begin(const BasicBlock *BB) {
  return succ_const_iterator(BB->getTerminator());
}
inline succ_iterator succ_end(BasicBlock *BB) {
  return succ_iterator(BB->getTerminator(), true);
}
inline succ_const_iterator succ_end(const BasicBlock *BB) {
  return succ_const_iterator(BB->getTerminator(), true);
}
inline bool succ_empty(const BasicBlock *BB) {
  return succ_begin(BB) == succ_end(BB);
}
inline unsigned succ_size(const BasicBlock *BB) {
  return std::distance(succ_begin(BB), succ_end(BB));
}
inline succ_range successors(BasicBlock *BB) {
  return succ_range(succ_begin(BB), succ_end(BB));
}
inline succ_const_range successors(const BasicBlock *BB) {
  return succ_const_range(succ_begin(BB), succ_end(BB));
}

//===--------------------------------------------------------------------===//
// GraphTraits specializations for basic block graphs (CFGs)
//===--------------------------------------------------------------------===//

// Provide specializations of GraphTraits to be able to treat a function as a
// graph of basic blocks...

template <> struct GraphTraits<BasicBlock*> {
  using NodeRef = BasicBlock *;
  using ChildIteratorType = succ_iterator;

  static NodeRef getEntryNode(BasicBlock *BB) { return BB; }
  static ChildIteratorType child_begin(NodeRef N) { return succ_begin(N); }
  static ChildIteratorType child_end(NodeRef N) { return succ_end(N); }
};

template <> struct GraphTraits<const BasicBlock*> {
  using NodeRef = const BasicBlock *;
  using ChildIteratorType = succ_const_iterator;

  static NodeRef getEntryNode(const BasicBlock *BB) { return BB; }

  static ChildIteratorType child_begin(NodeRef N) { return succ_begin(N); }
  static ChildIteratorType child_end(NodeRef N) { return succ_end(N); }
};

// Provide specializations of GraphTraits to be able to treat a function as a
// graph of basic blocks... and to walk it in inverse order.  Inverse order for
// a function is considered to be when traversing the predecessor edges of a BB
// instead of the successor edges.
//
template <> struct GraphTraits<Inverse<BasicBlock*>> {
  using NodeRef = BasicBlock *;
  using ChildIteratorType = pred_iterator;

  static NodeRef getEntryNode(Inverse<BasicBlock *> G) { return G.Graph; }
  static ChildIteratorType child_begin(NodeRef N) { return pred_begin(N); }
  static ChildIteratorType child_end(NodeRef N) { return pred_end(N); }
};

template <> struct GraphTraits<Inverse<const BasicBlock*>> {
  using NodeRef = const BasicBlock *;
  using ChildIteratorType = const_pred_iterator;

  static NodeRef getEntryNode(Inverse<const BasicBlock *> G) { return G.Graph; }
  static ChildIteratorType child_begin(NodeRef N) { return pred_begin(N); }
  static ChildIteratorType child_end(NodeRef N) { return pred_end(N); }
};

//===--------------------------------------------------------------------===//
// GraphTraits specializations for function basic block graphs (CFGs)
//===--------------------------------------------------------------------===//

// Provide specializations of GraphTraits to be able to treat a function as a
// graph of basic blocks... these are the same as the basic block iterators,
// except that the root node is implicitly the first node of the function.
//
template <> struct GraphTraits<Function*> : public GraphTraits<BasicBlock*> {
  static NodeRef getEntryNode(Function *F) { return &F->getEntryBlock(); }

  // nodes_iterator/begin/end - Allow iteration over all nodes in the graph
  using nodes_iterator = pointer_iterator<Function::iterator>;

  static nodes_iterator nodes_begin(Function *F) {
    return nodes_iterator(F->begin());
  }

  static nodes_iterator nodes_end(Function *F) {
    return nodes_iterator(F->end());
  }

  static size_t size(Function *F) { return F->size(); }
};
template <> struct GraphTraits<const Function*> :
  public GraphTraits<const BasicBlock*> {
  static NodeRef getEntryNode(const Function *F) { return &F->getEntryBlock(); }

  // nodes_iterator/begin/end - Allow iteration over all nodes in the graph
  using nodes_iterator = pointer_iterator<Function::const_iterator>;

  static nodes_iterator nodes_begin(const Function *F) {
    return nodes_iterator(F->begin());
  }

  static nodes_iterator nodes_end(const Function *F) {
    return nodes_iterator(F->end());
  }

  static size_t size(const Function *F) { return F->size(); }
};

// Provide specializations of GraphTraits to be able to treat a function as a
// graph of basic blocks... and to walk it in inverse order.  Inverse order for
// a function is considered to be when traversing the predecessor edges of a BB
// instead of the successor edges.
//
template <> struct GraphTraits<Inverse<Function*>> :
  public GraphTraits<Inverse<BasicBlock*>> {
  static NodeRef getEntryNode(Inverse<Function *> G) {
    return &G.Graph->getEntryBlock();
  }
};
template <> struct GraphTraits<Inverse<const Function*>> :
  public GraphTraits<Inverse<const BasicBlock*>> {
  static NodeRef getEntryNode(Inverse<const Function *> G) {
    return &G.Graph->getEntryBlock();
  }
};

} // end namespace llvm

#endif // LLVM_IR_CFG_H