llvm.org GIT mirror llvm / e7df36e lib / Transforms / Utils / LoopUtils.cpp
e7df36e

Tree @e7df36e (Download .tar.gz)

LoopUtils.cpp @e7df36eraw · history · blame

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
//===-- LoopUtils.cpp - Loop Utility functions -------------------------===//
//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file defines common loop utility functions.
//
//===----------------------------------------------------------------------===//

#include "llvm/Transforms/Utils/LoopUtils.h"
#include "llvm/ADT/ScopeExit.h"
#include "llvm/Analysis/AliasAnalysis.h"
#include "llvm/Analysis/BasicAliasAnalysis.h"
#include "llvm/Analysis/GlobalsModRef.h"
#include "llvm/Analysis/LoopInfo.h"
#include "llvm/Analysis/LoopPass.h"
#include "llvm/Analysis/ScalarEvolution.h"
#include "llvm/Analysis/ScalarEvolutionAliasAnalysis.h"
#include "llvm/Analysis/ScalarEvolutionExpander.h"
#include "llvm/Analysis/ScalarEvolutionExpressions.h"
#include "llvm/Analysis/TargetTransformInfo.h"
#include "llvm/IR/Dominators.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/Module.h"
#include "llvm/IR/PatternMatch.h"
#include "llvm/IR/ValueHandle.h"
#include "llvm/Pass.h"
#include "llvm/Support/Debug.h"
#include "llvm/Transforms/Utils/BasicBlockUtils.h"

using namespace llvm;
using namespace llvm::PatternMatch;

#define DEBUG_TYPE "loop-utils"

bool RecurrenceDescriptor::areAllUsesIn(Instruction *I,
                                        SmallPtrSetImpl<Instruction *> &Set) {
  for (User::op_iterator Use = I->op_begin(), E = I->op_end(); Use != E; ++Use)
    if (!Set.count(dyn_cast<Instruction>(*Use)))
      return false;
  return true;
}

bool RecurrenceDescriptor::isIntegerRecurrenceKind(RecurrenceKind Kind) {
  switch (Kind) {
  default:
    break;
  case RK_IntegerAdd:
  case RK_IntegerMult:
  case RK_IntegerOr:
  case RK_IntegerAnd:
  case RK_IntegerXor:
  case RK_IntegerMinMax:
    return true;
  }
  return false;
}

bool RecurrenceDescriptor::isFloatingPointRecurrenceKind(RecurrenceKind Kind) {
  return (Kind != RK_NoRecurrence) && !isIntegerRecurrenceKind(Kind);
}

bool RecurrenceDescriptor::isArithmeticRecurrenceKind(RecurrenceKind Kind) {
  switch (Kind) {
  default:
    break;
  case RK_IntegerAdd:
  case RK_IntegerMult:
  case RK_FloatAdd:
  case RK_FloatMult:
    return true;
  }
  return false;
}

Instruction *
RecurrenceDescriptor::lookThroughAnd(PHINode *Phi, Type *&RT,
                                     SmallPtrSetImpl<Instruction *> &Visited,
                                     SmallPtrSetImpl<Instruction *> &CI) {
  if (!Phi->hasOneUse())
    return Phi;

  const APInt *M = nullptr;
  Instruction *I, *J = cast<Instruction>(Phi->use_begin()->getUser());

  // Matches either I & 2^x-1 or 2^x-1 & I. If we find a match, we update RT
  // with a new integer type of the corresponding bit width.
  if (match(J, m_c_And(m_Instruction(I), m_APInt(M)))) {
    int32_t Bits = (*M + 1).exactLogBase2();
    if (Bits > 0) {
      RT = IntegerType::get(Phi->getContext(), Bits);
      Visited.insert(Phi);
      CI.insert(J);
      return J;
    }
  }
  return Phi;
}

bool RecurrenceDescriptor::getSourceExtensionKind(
    Instruction *Start, Instruction *Exit, Type *RT, bool &IsSigned,
    SmallPtrSetImpl<Instruction *> &Visited,
    SmallPtrSetImpl<Instruction *> &CI) {

  SmallVector<Instruction *, 8> Worklist;
  bool FoundOneOperand = false;
  unsigned DstSize = RT->getPrimitiveSizeInBits();
  Worklist.push_back(Exit);

  // Traverse the instructions in the reduction expression, beginning with the
  // exit value.
  while (!Worklist.empty()) {
    Instruction *I = Worklist.pop_back_val();
    for (Use &U : I->operands()) {

      // Terminate the traversal if the operand is not an instruction, or we
      // reach the starting value.
      Instruction *J = dyn_cast<Instruction>(U.get());
      if (!J || J == Start)
        continue;

      // Otherwise, investigate the operation if it is also in the expression.
      if (Visited.count(J)) {
        Worklist.push_back(J);
        continue;
      }

      // If the operand is not in Visited, it is not a reduction operation, but
      // it does feed into one. Make sure it is either a single-use sign- or
      // zero-extend instruction.
      CastInst *Cast = dyn_cast<CastInst>(J);
      bool IsSExtInst = isa<SExtInst>(J);
      if (!Cast || !Cast->hasOneUse() || !(isa<ZExtInst>(J) || IsSExtInst))
        return false;

      // Ensure the source type of the extend is no larger than the reduction
      // type. It is not necessary for the types to be identical.
      unsigned SrcSize = Cast->getSrcTy()->getPrimitiveSizeInBits();
      if (SrcSize > DstSize)
        return false;

      // Furthermore, ensure that all such extends are of the same kind.
      if (FoundOneOperand) {
        if (IsSigned != IsSExtInst)
          return false;
      } else {
        FoundOneOperand = true;
        IsSigned = IsSExtInst;
      }

      // Lastly, if the source type of the extend matches the reduction type,
      // add the extend to CI so that we can avoid accounting for it in the
      // cost model.
      if (SrcSize == DstSize)
        CI.insert(Cast);
    }
  }
  return true;
}

bool RecurrenceDescriptor::AddReductionVar(PHINode *Phi, RecurrenceKind Kind,
                                           Loop *TheLoop, bool HasFunNoNaNAttr,
                                           RecurrenceDescriptor &RedDes) {
  if (Phi->getNumIncomingValues() != 2)
    return false;

  // Reduction variables are only found in the loop header block.
  if (Phi->getParent() != TheLoop->getHeader())
    return false;

  // Obtain the reduction start value from the value that comes from the loop
  // preheader.
  Value *RdxStart = Phi->getIncomingValueForBlock(TheLoop->getLoopPreheader());

  // ExitInstruction is the single value which is used outside the loop.
  // We only allow for a single reduction value to be used outside the loop.
  // This includes users of the reduction, variables (which form a cycle
  // which ends in the phi node).
  Instruction *ExitInstruction = nullptr;
  // Indicates that we found a reduction operation in our scan.
  bool FoundReduxOp = false;

  // We start with the PHI node and scan for all of the users of this
  // instruction. All users must be instructions that can be used as reduction
  // variables (such as ADD). We must have a single out-of-block user. The cycle
  // must include the original PHI.
  bool FoundStartPHI = false;

  // To recognize min/max patterns formed by a icmp select sequence, we store
  // the number of instruction we saw from the recognized min/max pattern,
  //  to make sure we only see exactly the two instructions.
  unsigned NumCmpSelectPatternInst = 0;
  InstDesc ReduxDesc(false, nullptr);

  // Data used for determining if the recurrence has been type-promoted.
  Type *RecurrenceType = Phi->getType();
  SmallPtrSet<Instruction *, 4> CastInsts;
  Instruction *Start = Phi;
  bool IsSigned = false;

  SmallPtrSet<Instruction *, 8> VisitedInsts;
  SmallVector<Instruction *, 8> Worklist;

  // Return early if the recurrence kind does not match the type of Phi. If the
  // recurrence kind is arithmetic, we attempt to look through AND operations
  // resulting from the type promotion performed by InstCombine.  Vector
  // operations are not limited to the legal integer widths, so we may be able
  // to evaluate the reduction in the narrower width.
  if (RecurrenceType->isFloatingPointTy()) {
    if (!isFloatingPointRecurrenceKind(Kind))
      return false;
  } else {
    if (!isIntegerRecurrenceKind(Kind))
      return false;
    if (isArithmeticRecurrenceKind(Kind))
      Start = lookThroughAnd(Phi, RecurrenceType, VisitedInsts, CastInsts);
  }

  Worklist.push_back(Start);
  VisitedInsts.insert(Start);

  // A value in the reduction can be used:
  //  - By the reduction:
  //      - Reduction operation:
  //        - One use of reduction value (safe).
  //        - Multiple use of reduction value (not safe).
  //      - PHI:
  //        - All uses of the PHI must be the reduction (safe).
  //        - Otherwise, not safe.
  //  - By instructions outside of the loop (safe).
  //      * One value may have several outside users, but all outside
  //        uses must be of the same value.
  //  - By an instruction that is not part of the reduction (not safe).
  //    This is either:
  //      * An instruction type other than PHI or the reduction operation.
  //      * A PHI in the header other than the initial PHI.
  while (!Worklist.empty()) {
    Instruction *Cur = Worklist.back();
    Worklist.pop_back();

    // No Users.
    // If the instruction has no users then this is a broken chain and can't be
    // a reduction variable.
    if (Cur->use_empty())
      return false;

    bool IsAPhi = isa<PHINode>(Cur);

    // A header PHI use other than the original PHI.
    if (Cur != Phi && IsAPhi && Cur->getParent() == Phi->getParent())
      return false;

    // Reductions of instructions such as Div, and Sub is only possible if the
    // LHS is the reduction variable.
    if (!Cur->isCommutative() && !IsAPhi && !isa<SelectInst>(Cur) &&
        !isa<ICmpInst>(Cur) && !isa<FCmpInst>(Cur) &&
        !VisitedInsts.count(dyn_cast<Instruction>(Cur->getOperand(0))))
      return false;

    // Any reduction instruction must be of one of the allowed kinds. We ignore
    // the starting value (the Phi or an AND instruction if the Phi has been
    // type-promoted).
    if (Cur != Start) {
      ReduxDesc = isRecurrenceInstr(Cur, Kind, ReduxDesc, HasFunNoNaNAttr);
      if (!ReduxDesc.isRecurrence())
        return false;
    }

    // A reduction operation must only have one use of the reduction value.
    if (!IsAPhi && Kind != RK_IntegerMinMax && Kind != RK_FloatMinMax &&
        hasMultipleUsesOf(Cur, VisitedInsts))
      return false;

    // All inputs to a PHI node must be a reduction value.
    if (IsAPhi && Cur != Phi && !areAllUsesIn(Cur, VisitedInsts))
      return false;

    if (Kind == RK_IntegerMinMax &&
        (isa<ICmpInst>(Cur) || isa<SelectInst>(Cur)))
      ++NumCmpSelectPatternInst;
    if (Kind == RK_FloatMinMax && (isa<FCmpInst>(Cur) || isa<SelectInst>(Cur)))
      ++NumCmpSelectPatternInst;

    // Check  whether we found a reduction operator.
    FoundReduxOp |= !IsAPhi && Cur != Start;

    // Process users of current instruction. Push non-PHI nodes after PHI nodes
    // onto the stack. This way we are going to have seen all inputs to PHI
    // nodes once we get to them.
    SmallVector<Instruction *, 8> NonPHIs;
    SmallVector<Instruction *, 8> PHIs;
    for (User *U : Cur->users()) {
      Instruction *UI = cast<Instruction>(U);

      // Check if we found the exit user.
      BasicBlock *Parent = UI->getParent();
      if (!TheLoop->contains(Parent)) {
        // If we already know this instruction is used externally, move on to
        // the next user.
        if (ExitInstruction == Cur)
          continue;

        // Exit if you find multiple values used outside or if the header phi
        // node is being used. In this case the user uses the value of the
        // previous iteration, in which case we would loose "VF-1" iterations of
        // the reduction operation if we vectorize.
        if (ExitInstruction != nullptr || Cur == Phi)
          return false;

        // The instruction used by an outside user must be the last instruction
        // before we feed back to the reduction phi. Otherwise, we loose VF-1
        // operations on the value.
        if (!is_contained(Phi->operands(), Cur))
          return false;

        ExitInstruction = Cur;
        continue;
      }

      // Process instructions only once (termination). Each reduction cycle
      // value must only be used once, except by phi nodes and min/max
      // reductions which are represented as a cmp followed by a select.
      InstDesc IgnoredVal(false, nullptr);
      if (VisitedInsts.insert(UI).second) {
        if (isa<PHINode>(UI))
          PHIs.push_back(UI);
        else
          NonPHIs.push_back(UI);
      } else if (!isa<PHINode>(UI) &&
                 ((!isa<FCmpInst>(UI) && !isa<ICmpInst>(UI) &&
                   !isa<SelectInst>(UI)) ||
                  !isMinMaxSelectCmpPattern(UI, IgnoredVal).isRecurrence()))
        return false;

      // Remember that we completed the cycle.
      if (UI == Phi)
        FoundStartPHI = true;
    }
    Worklist.append(PHIs.begin(), PHIs.end());
    Worklist.append(NonPHIs.begin(), NonPHIs.end());
  }

  // This means we have seen one but not the other instruction of the
  // pattern or more than just a select and cmp.
  if ((Kind == RK_IntegerMinMax || Kind == RK_FloatMinMax) &&
      NumCmpSelectPatternInst != 2)
    return false;

  if (!FoundStartPHI || !FoundReduxOp || !ExitInstruction)
    return false;

  // If we think Phi may have been type-promoted, we also need to ensure that
  // all source operands of the reduction are either SExtInsts or ZEstInsts. If
  // so, we will be able to evaluate the reduction in the narrower bit width.
  if (Start != Phi)
    if (!getSourceExtensionKind(Start, ExitInstruction, RecurrenceType,
                                IsSigned, VisitedInsts, CastInsts))
      return false;

  // We found a reduction var if we have reached the original phi node and we
  // only have a single instruction with out-of-loop users.

  // The ExitInstruction(Instruction which is allowed to have out-of-loop users)
  // is saved as part of the RecurrenceDescriptor.

  // Save the description of this reduction variable.
  RecurrenceDescriptor RD(
      RdxStart, ExitInstruction, Kind, ReduxDesc.getMinMaxKind(),
      ReduxDesc.getUnsafeAlgebraInst(), RecurrenceType, IsSigned, CastInsts);
  RedDes = RD;

  return true;
}

/// Returns true if the instruction is a Select(ICmp(X, Y), X, Y) instruction
/// pattern corresponding to a min(X, Y) or max(X, Y).
RecurrenceDescriptor::InstDesc
RecurrenceDescriptor::isMinMaxSelectCmpPattern(Instruction *I, InstDesc &Prev) {

  assert((isa<ICmpInst>(I) || isa<FCmpInst>(I) || isa<SelectInst>(I)) &&
         "Expect a select instruction");
  Instruction *Cmp = nullptr;
  SelectInst *Select = nullptr;

  // We must handle the select(cmp()) as a single instruction. Advance to the
  // select.
  if ((Cmp = dyn_cast<ICmpInst>(I)) || (Cmp = dyn_cast<FCmpInst>(I))) {
    if (!Cmp->hasOneUse() || !(Select = dyn_cast<SelectInst>(*I->user_begin())))
      return InstDesc(false, I);
    return InstDesc(Select, Prev.getMinMaxKind());
  }

  // Only handle single use cases for now.
  if (!(Select = dyn_cast<SelectInst>(I)))
    return InstDesc(false, I);
  if (!(Cmp = dyn_cast<ICmpInst>(I->getOperand(0))) &&
      !(Cmp = dyn_cast<FCmpInst>(I->getOperand(0))))
    return InstDesc(false, I);
  if (!Cmp->hasOneUse())
    return InstDesc(false, I);

  Value *CmpLeft;
  Value *CmpRight;

  // Look for a min/max pattern.
  if (m_UMin(m_Value(CmpLeft), m_Value(CmpRight)).match(Select))
    return InstDesc(Select, MRK_UIntMin);
  else if (m_UMax(m_Value(CmpLeft), m_Value(CmpRight)).match(Select))
    return InstDesc(Select, MRK_UIntMax);
  else if (m_SMax(m_Value(CmpLeft), m_Value(CmpRight)).match(Select))
    return InstDesc(Select, MRK_SIntMax);
  else if (m_SMin(m_Value(CmpLeft), m_Value(CmpRight)).match(Select))
    return InstDesc(Select, MRK_SIntMin);
  else if (m_OrdFMin(m_Value(CmpLeft), m_Value(CmpRight)).match(Select))
    return InstDesc(Select, MRK_FloatMin);
  else if (m_OrdFMax(m_Value(CmpLeft), m_Value(CmpRight)).match(Select))
    return InstDesc(Select, MRK_FloatMax);
  else if (m_UnordFMin(m_Value(CmpLeft), m_Value(CmpRight)).match(Select))
    return InstDesc(Select, MRK_FloatMin);
  else if (m_UnordFMax(m_Value(CmpLeft), m_Value(CmpRight)).match(Select))
    return InstDesc(Select, MRK_FloatMax);

  return InstDesc(false, I);
}

RecurrenceDescriptor::InstDesc
RecurrenceDescriptor::isRecurrenceInstr(Instruction *I, RecurrenceKind Kind,
                                        InstDesc &Prev, bool HasFunNoNaNAttr) {
  bool FP = I->getType()->isFloatingPointTy();
  Instruction *UAI = Prev.getUnsafeAlgebraInst();
  if (!UAI && FP && !I->hasUnsafeAlgebra())
    UAI = I; // Found an unsafe (unvectorizable) algebra instruction.

  switch (I->getOpcode()) {
  default:
    return InstDesc(false, I);
  case Instruction::PHI:
    return InstDesc(I, Prev.getMinMaxKind(), Prev.getUnsafeAlgebraInst());
  case Instruction::Sub:
  case Instruction::Add:
    return InstDesc(Kind == RK_IntegerAdd, I);
  case Instruction::Mul:
    return InstDesc(Kind == RK_IntegerMult, I);
  case Instruction::And:
    return InstDesc(Kind == RK_IntegerAnd, I);
  case Instruction::Or:
    return InstDesc(Kind == RK_IntegerOr, I);
  case Instruction::Xor:
    return InstDesc(Kind == RK_IntegerXor, I);
  case Instruction::FMul:
    return InstDesc(Kind == RK_FloatMult, I, UAI);
  case Instruction::FSub:
  case Instruction::FAdd:
    return InstDesc(Kind == RK_FloatAdd, I, UAI);
  case Instruction::FCmp:
  case Instruction::ICmp:
  case Instruction::Select:
    if (Kind != RK_IntegerMinMax &&
        (!HasFunNoNaNAttr || Kind != RK_FloatMinMax))
      return InstDesc(false, I);
    return isMinMaxSelectCmpPattern(I, Prev);
  }
}

bool RecurrenceDescriptor::hasMultipleUsesOf(
    Instruction *I, SmallPtrSetImpl<Instruction *> &Insts) {
  unsigned NumUses = 0;
  for (User::op_iterator Use = I->op_begin(), E = I->op_end(); Use != E;
       ++Use) {
    if (Insts.count(dyn_cast<Instruction>(*Use)))
      ++NumUses;
    if (NumUses > 1)
      return true;
  }

  return false;
}
bool RecurrenceDescriptor::isReductionPHI(PHINode *Phi, Loop *TheLoop,
                                          RecurrenceDescriptor &RedDes) {

  BasicBlock *Header = TheLoop->getHeader();
  Function &F = *Header->getParent();
  bool HasFunNoNaNAttr =
      F.getFnAttribute("no-nans-fp-math").getValueAsString() == "true";

  if (AddReductionVar(Phi, RK_IntegerAdd, TheLoop, HasFunNoNaNAttr, RedDes)) {
    DEBUG(dbgs() << "Found an ADD reduction PHI." << *Phi << "\n");
    return true;
  }
  if (AddReductionVar(Phi, RK_IntegerMult, TheLoop, HasFunNoNaNAttr, RedDes)) {
    DEBUG(dbgs() << "Found a MUL reduction PHI." << *Phi << "\n");
    return true;
  }
  if (AddReductionVar(Phi, RK_IntegerOr, TheLoop, HasFunNoNaNAttr, RedDes)) {
    DEBUG(dbgs() << "Found an OR reduction PHI." << *Phi << "\n");
    return true;
  }
  if (AddReductionVar(Phi, RK_IntegerAnd, TheLoop, HasFunNoNaNAttr, RedDes)) {
    DEBUG(dbgs() << "Found an AND reduction PHI." << *Phi << "\n");
    return true;
  }
  if (AddReductionVar(Phi, RK_IntegerXor, TheLoop, HasFunNoNaNAttr, RedDes)) {
    DEBUG(dbgs() << "Found a XOR reduction PHI." << *Phi << "\n");
    return true;
  }
  if (AddReductionVar(Phi, RK_IntegerMinMax, TheLoop, HasFunNoNaNAttr,
                      RedDes)) {
    DEBUG(dbgs() << "Found a MINMAX reduction PHI." << *Phi << "\n");
    return true;
  }
  if (AddReductionVar(Phi, RK_FloatMult, TheLoop, HasFunNoNaNAttr, RedDes)) {
    DEBUG(dbgs() << "Found an FMult reduction PHI." << *Phi << "\n");
    return true;
  }
  if (AddReductionVar(Phi, RK_FloatAdd, TheLoop, HasFunNoNaNAttr, RedDes)) {
    DEBUG(dbgs() << "Found an FAdd reduction PHI." << *Phi << "\n");
    return true;
  }
  if (AddReductionVar(Phi, RK_FloatMinMax, TheLoop, HasFunNoNaNAttr, RedDes)) {
    DEBUG(dbgs() << "Found an float MINMAX reduction PHI." << *Phi << "\n");
    return true;
  }
  // Not a reduction of known type.
  return false;
}

bool RecurrenceDescriptor::isFirstOrderRecurrence(
    PHINode *Phi, Loop *TheLoop,
    DenseMap<Instruction *, Instruction *> &SinkAfter, DominatorTree *DT) {

  // Ensure the phi node is in the loop header and has two incoming values.
  if (Phi->getParent() != TheLoop->getHeader() ||
      Phi->getNumIncomingValues() != 2)
    return false;

  // Ensure the loop has a preheader and a single latch block. The loop
  // vectorizer will need the latch to set up the next iteration of the loop.
  auto *Preheader = TheLoop->getLoopPreheader();
  auto *Latch = TheLoop->getLoopLatch();
  if (!Preheader || !Latch)
    return false;

  // Ensure the phi node's incoming blocks are the loop preheader and latch.
  if (Phi->getBasicBlockIndex(Preheader) < 0 ||
      Phi->getBasicBlockIndex(Latch) < 0)
    return false;

  // Get the previous value. The previous value comes from the latch edge while
  // the initial value comes form the preheader edge.
  auto *Previous = dyn_cast<Instruction>(Phi->getIncomingValueForBlock(Latch));
  if (!Previous || !TheLoop->contains(Previous) || isa<PHINode>(Previous) ||
      SinkAfter.count(Previous)) // Cannot rely on dominance due to motion.
    return false;

  // Ensure every user of the phi node is dominated by the previous value.
  // The dominance requirement ensures the loop vectorizer will not need to
  // vectorize the initial value prior to the first iteration of the loop.
  // TODO: Consider extending this sinking to handle other kinds of instructions
  // and expressions, beyond sinking a single cast past Previous.
  if (Phi->hasOneUse()) {
    auto *I = Phi->user_back();
    if (I->isCast() && (I->getParent() == Phi->getParent()) && I->hasOneUse() &&
        DT->dominates(Previous, I->user_back())) {
      if (!DT->dominates(Previous, I)) // Otherwise we're good w/o sinking.
        SinkAfter[I] = Previous;
      return true;
    }
  }

  for (User *U : Phi->users())
    if (auto *I = dyn_cast<Instruction>(U)) {
      if (!DT->dominates(Previous, I))
        return false;
    }

  return true;
}

/// This function returns the identity element (or neutral element) for
/// the operation K.
Constant *RecurrenceDescriptor::getRecurrenceIdentity(RecurrenceKind K,
                                                      Type *Tp) {
  switch (K) {
  case RK_IntegerXor:
  case RK_IntegerAdd:
  case RK_IntegerOr:
    // Adding, Xoring, Oring zero to a number does not change it.
    return ConstantInt::get(Tp, 0);
  case RK_IntegerMult:
    // Multiplying a number by 1 does not change it.
    return ConstantInt::get(Tp, 1);
  case RK_IntegerAnd:
    // AND-ing a number with an all-1 value does not change it.
    return ConstantInt::get(Tp, -1, true);
  case RK_FloatMult:
    // Multiplying a number by 1 does not change it.
    return ConstantFP::get(Tp, 1.0L);
  case RK_FloatAdd:
    // Adding zero to a number does not change it.
    return ConstantFP::get(Tp, 0.0L);
  default:
    llvm_unreachable("Unknown recurrence kind");
  }
}

/// This function translates the recurrence kind to an LLVM binary operator.
unsigned RecurrenceDescriptor::getRecurrenceBinOp(RecurrenceKind Kind) {
  switch (Kind) {
  case RK_IntegerAdd:
    return Instruction::Add;
  case RK_IntegerMult:
    return Instruction::Mul;
  case RK_IntegerOr:
    return Instruction::Or;
  case RK_IntegerAnd:
    return Instruction::And;
  case RK_IntegerXor:
    return Instruction::Xor;
  case RK_FloatMult:
    return Instruction::FMul;
  case RK_FloatAdd:
    return Instruction::FAdd;
  case RK_IntegerMinMax:
    return Instruction::ICmp;
  case RK_FloatMinMax:
    return Instruction::FCmp;
  default:
    llvm_unreachable("Unknown recurrence operation");
  }
}

Value *RecurrenceDescriptor::createMinMaxOp(IRBuilder<> &Builder,
                                            MinMaxRecurrenceKind RK,
                                            Value *Left, Value *Right) {
  CmpInst::Predicate P = CmpInst::ICMP_NE;
  switch (RK) {
  default:
    llvm_unreachable("Unknown min/max recurrence kind");
  case MRK_UIntMin:
    P = CmpInst::ICMP_ULT;
    break;
  case MRK_UIntMax:
    P = CmpInst::ICMP_UGT;
    break;
  case MRK_SIntMin:
    P = CmpInst::ICMP_SLT;
    break;
  case MRK_SIntMax:
    P = CmpInst::ICMP_SGT;
    break;
  case MRK_FloatMin:
    P = CmpInst::FCMP_OLT;
    break;
  case MRK_FloatMax:
    P = CmpInst::FCMP_OGT;
    break;
  }

  // We only match FP sequences with unsafe algebra, so we can unconditionally
  // set it on any generated instructions.
  IRBuilder<>::FastMathFlagGuard FMFG(Builder);
  FastMathFlags FMF;
  FMF.setUnsafeAlgebra();
  Builder.setFastMathFlags(FMF);

  Value *Cmp;
  if (RK == MRK_FloatMin || RK == MRK_FloatMax)
    Cmp = Builder.CreateFCmp(P, Left, Right, "rdx.minmax.cmp");
  else
    Cmp = Builder.CreateICmp(P, Left, Right, "rdx.minmax.cmp");

  Value *Select = Builder.CreateSelect(Cmp, Left, Right, "rdx.minmax.select");
  return Select;
}

InductionDescriptor::InductionDescriptor(Value *Start, InductionKind K,
                                         const SCEV *Step, BinaryOperator *BOp)
  : StartValue(Start), IK(K), Step(Step), InductionBinOp(BOp) {
  assert(IK != IK_NoInduction && "Not an induction");

  // Start value type should match the induction kind and the value
  // itself should not be null.
  assert(StartValue && "StartValue is null");
  assert((IK != IK_PtrInduction || StartValue->getType()->isPointerTy()) &&
         "StartValue is not a pointer for pointer induction");
  assert((IK != IK_IntInduction || StartValue->getType()->isIntegerTy()) &&
         "StartValue is not an integer for integer induction");

  // Check the Step Value. It should be non-zero integer value.
  assert((!getConstIntStepValue() || !getConstIntStepValue()->isZero()) &&
         "Step value is zero");

  assert((IK != IK_PtrInduction || getConstIntStepValue()) &&
         "Step value should be constant for pointer induction");
  assert((IK == IK_FpInduction || Step->getType()->isIntegerTy()) &&
         "StepValue is not an integer");

  assert((IK != IK_FpInduction || Step->getType()->isFloatingPointTy()) &&
         "StepValue is not FP for FpInduction");
  assert((IK != IK_FpInduction || (InductionBinOp &&
          (InductionBinOp->getOpcode() == Instruction::FAdd ||
           InductionBinOp->getOpcode() == Instruction::FSub))) &&
         "Binary opcode should be specified for FP induction");
}

int InductionDescriptor::getConsecutiveDirection() const {
  ConstantInt *ConstStep = getConstIntStepValue();
  if (ConstStep && (ConstStep->isOne() || ConstStep->isMinusOne()))
    return ConstStep->getSExtValue();
  return 0;
}

ConstantInt *InductionDescriptor::getConstIntStepValue() const {
  if (isa<SCEVConstant>(Step))
    return dyn_cast<ConstantInt>(cast<SCEVConstant>(Step)->getValue());
  return nullptr;
}

Value *InductionDescriptor::transform(IRBuilder<> &B, Value *Index,
                                      ScalarEvolution *SE,
                                      const DataLayout& DL) const {

  SCEVExpander Exp(*SE, DL, "induction");
  assert(Index->getType() == Step->getType() &&
         "Index type does not match StepValue type");
  switch (IK) {
  case IK_IntInduction: {
    assert(Index->getType() == StartValue->getType() &&
           "Index type does not match StartValue type");

    // FIXME: Theoretically, we can call getAddExpr() of ScalarEvolution
    // and calculate (Start + Index * Step) for all cases, without
    // special handling for "isOne" and "isMinusOne".
    // But in the real life the result code getting worse. We mix SCEV
    // expressions and ADD/SUB operations and receive redundant
    // intermediate values being calculated in different ways and
    // Instcombine is unable to reduce them all.

    if (getConstIntStepValue() &&
        getConstIntStepValue()->isMinusOne())
      return B.CreateSub(StartValue, Index);
    if (getConstIntStepValue() &&
        getConstIntStepValue()->isOne())
      return B.CreateAdd(StartValue, Index);
    const SCEV *S = SE->getAddExpr(SE->getSCEV(StartValue),
                                   SE->getMulExpr(Step, SE->getSCEV(Index)));
    return Exp.expandCodeFor(S, StartValue->getType(), &*B.GetInsertPoint());
  }
  case IK_PtrInduction: {
    assert(isa<SCEVConstant>(Step) &&
           "Expected constant step for pointer induction");
    const SCEV *S = SE->getMulExpr(SE->getSCEV(Index), Step);
    Index = Exp.expandCodeFor(S, Index->getType(), &*B.GetInsertPoint());
    return B.CreateGEP(nullptr, StartValue, Index);
  }
  case IK_FpInduction: {
    assert(Step->getType()->isFloatingPointTy() && "Expected FP Step value");
    assert(InductionBinOp &&
           (InductionBinOp->getOpcode() == Instruction::FAdd ||
            InductionBinOp->getOpcode() == Instruction::FSub) &&
           "Original bin op should be defined for FP induction");

    Value *StepValue = cast<SCEVUnknown>(Step)->getValue();

    // Floating point operations had to be 'fast' to enable the induction.
    FastMathFlags Flags;
    Flags.setUnsafeAlgebra();

    Value *MulExp = B.CreateFMul(StepValue, Index);
    if (isa<Instruction>(MulExp))
      // We have to check, the MulExp may be a constant.
      cast<Instruction>(MulExp)->setFastMathFlags(Flags);

    Value *BOp = B.CreateBinOp(InductionBinOp->getOpcode() , StartValue,
                               MulExp, "induction");
    if (isa<Instruction>(BOp))
      cast<Instruction>(BOp)->setFastMathFlags(Flags);

    return BOp;
  }
  case IK_NoInduction:
    return nullptr;
  }
  llvm_unreachable("invalid enum");
}

bool InductionDescriptor::isFPInductionPHI(PHINode *Phi, const Loop *TheLoop,
                                           ScalarEvolution *SE,
                                           InductionDescriptor &D) {

  // Here we only handle FP induction variables.
  assert(Phi->getType()->isFloatingPointTy() && "Unexpected Phi type");

  if (TheLoop->getHeader() != Phi->getParent())
    return false;

  // The loop may have multiple entrances or multiple exits; we can analyze
  // this phi if it has a unique entry value and a unique backedge value.
  if (Phi->getNumIncomingValues() != 2)
    return false;
  Value *BEValue = nullptr, *StartValue = nullptr;
  if (TheLoop->contains(Phi->getIncomingBlock(0))) {
    BEValue = Phi->getIncomingValue(0);
    StartValue = Phi->getIncomingValue(1);
  } else {
    assert(TheLoop->contains(Phi->getIncomingBlock(1)) &&
           "Unexpected Phi node in the loop"); 
    BEValue = Phi->getIncomingValue(1);
    StartValue = Phi->getIncomingValue(0);
  }

  BinaryOperator *BOp = dyn_cast<BinaryOperator>(BEValue);
  if (!BOp)
    return false;

  Value *Addend = nullptr;
  if (BOp->getOpcode() == Instruction::FAdd) {
    if (BOp->getOperand(0) == Phi)
      Addend = BOp->getOperand(1);
    else if (BOp->getOperand(1) == Phi)
      Addend = BOp->getOperand(0);
  } else if (BOp->getOpcode() == Instruction::FSub)
    if (BOp->getOperand(0) == Phi)
      Addend = BOp->getOperand(1);

  if (!Addend)
    return false;

  // The addend should be loop invariant
  if (auto *I = dyn_cast<Instruction>(Addend))
    if (TheLoop->contains(I))
      return false;

  // FP Step has unknown SCEV
  const SCEV *Step = SE->getUnknown(Addend);
  D = InductionDescriptor(StartValue, IK_FpInduction, Step, BOp);
  return true;
}

bool InductionDescriptor::isInductionPHI(PHINode *Phi, const Loop *TheLoop,
                                         PredicatedScalarEvolution &PSE,
                                         InductionDescriptor &D,
                                         bool Assume) {
  Type *PhiTy = Phi->getType();

  // Handle integer and pointer inductions variables.
  // Now we handle also FP induction but not trying to make a
  // recurrent expression from the PHI node in-place.

  if (!PhiTy->isIntegerTy() && !PhiTy->isPointerTy() &&
      !PhiTy->isFloatTy() && !PhiTy->isDoubleTy() && !PhiTy->isHalfTy())
    return false;

  if (PhiTy->isFloatingPointTy())
    return isFPInductionPHI(Phi, TheLoop, PSE.getSE(), D);

  const SCEV *PhiScev = PSE.getSCEV(Phi);
  const auto *AR = dyn_cast<SCEVAddRecExpr>(PhiScev);

  // We need this expression to be an AddRecExpr.
  if (Assume && !AR)
    AR = PSE.getAsAddRec(Phi);

  if (!AR) {
    DEBUG(dbgs() << "LV: PHI is not a poly recurrence.\n");
    return false;
  }

  return isInductionPHI(Phi, TheLoop, PSE.getSE(), D, AR);
}

bool InductionDescriptor::isInductionPHI(PHINode *Phi, const Loop *TheLoop,
                                         ScalarEvolution *SE,
                                         InductionDescriptor &D,
                                         const SCEV *Expr) {
  Type *PhiTy = Phi->getType();
  // We only handle integer and pointer inductions variables.
  if (!PhiTy->isIntegerTy() && !PhiTy->isPointerTy())
    return false;

  // Check that the PHI is consecutive.
  const SCEV *PhiScev = Expr ? Expr : SE->getSCEV(Phi);
  const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(PhiScev);

  if (!AR) {
    DEBUG(dbgs() << "LV: PHI is not a poly recurrence.\n");
    return false;
  }

  if (AR->getLoop() != TheLoop) {
    // FIXME: We should treat this as a uniform. Unfortunately, we
    // don't currently know how to handled uniform PHIs.
    DEBUG(dbgs() << "LV: PHI is a recurrence with respect to an outer loop.\n");
    return false;    
  }

  Value *StartValue =
    Phi->getIncomingValueForBlock(AR->getLoop()->getLoopPreheader());
  const SCEV *Step = AR->getStepRecurrence(*SE);
  // Calculate the pointer stride and check if it is consecutive.
  // The stride may be a constant or a loop invariant integer value.
  const SCEVConstant *ConstStep = dyn_cast<SCEVConstant>(Step);
  if (!ConstStep && !SE->isLoopInvariant(Step, TheLoop))
    return false;

  if (PhiTy->isIntegerTy()) {
    D = InductionDescriptor(StartValue, IK_IntInduction, Step);
    return true;
  }

  assert(PhiTy->isPointerTy() && "The PHI must be a pointer");
  // Pointer induction should be a constant.
  if (!ConstStep)
    return false;

  ConstantInt *CV = ConstStep->getValue();
  Type *PointerElementType = PhiTy->getPointerElementType();
  // The pointer stride cannot be determined if the pointer element type is not
  // sized.
  if (!PointerElementType->isSized())
    return false;

  const DataLayout &DL = Phi->getModule()->getDataLayout();
  int64_t Size = static_cast<int64_t>(DL.getTypeAllocSize(PointerElementType));
  if (!Size)
    return false;

  int64_t CVSize = CV->getSExtValue();
  if (CVSize % Size)
    return false;
  auto *StepValue = SE->getConstant(CV->getType(), CVSize / Size,
                                    true /* signed */);
  D = InductionDescriptor(StartValue, IK_PtrInduction, StepValue);
  return true;
}

bool llvm::formDedicatedExitBlocks(Loop *L, DominatorTree *DT, LoopInfo *LI,
                                   bool PreserveLCSSA) {
  bool Changed = false;

  // We re-use a vector for the in-loop predecesosrs.
  SmallVector<BasicBlock *, 4> InLoopPredecessors;

  auto RewriteExit = [&](BasicBlock *BB) {
    assert(InLoopPredecessors.empty() &&
           "Must start with an empty predecessors list!");
    auto Cleanup = make_scope_exit([&] { InLoopPredecessors.clear(); });

    // See if there are any non-loop predecessors of this exit block and
    // keep track of the in-loop predecessors.
    bool IsDedicatedExit = true;
    for (auto *PredBB : predecessors(BB))
      if (L->contains(PredBB)) {
        if (isa<IndirectBrInst>(PredBB->getTerminator()))
          // We cannot rewrite exiting edges from an indirectbr.
          return false;

        InLoopPredecessors.push_back(PredBB);
      } else {
        IsDedicatedExit = false;
      }

    assert(!InLoopPredecessors.empty() && "Must have *some* loop predecessor!");

    // Nothing to do if this is already a dedicated exit.
    if (IsDedicatedExit)
      return false;

    auto *NewExitBB = SplitBlockPredecessors(
        BB, InLoopPredecessors, ".loopexit", DT, LI, PreserveLCSSA);

    if (!NewExitBB)
      DEBUG(dbgs() << "WARNING: Can't create a dedicated exit block for loop: "
                   << *L << "\n");
    else
      DEBUG(dbgs() << "LoopSimplify: Creating dedicated exit block "
                   << NewExitBB->getName() << "\n");
    return true;
  };

  // Walk the exit blocks directly rather than building up a data structure for
  // them, but only visit each one once.
  SmallPtrSet<BasicBlock *, 4> Visited;
  for (auto *BB : L->blocks())
    for (auto *SuccBB : successors(BB)) {
      // We're looking for exit blocks so skip in-loop successors.
      if (L->contains(SuccBB))
        continue;

      // Visit each exit block exactly once.
      if (!Visited.insert(SuccBB).second)
        continue;

      Changed |= RewriteExit(SuccBB);
    }

  return Changed;
}

/// \brief Returns the instructions that use values defined in the loop.
SmallVector<Instruction *, 8> llvm::findDefsUsedOutsideOfLoop(Loop *L) {
  SmallVector<Instruction *, 8> UsedOutside;

  for (auto *Block : L->getBlocks())
    // FIXME: I believe that this could use copy_if if the Inst reference could
    // be adapted into a pointer.
    for (auto &Inst : *Block) {
      auto Users = Inst.users();
      if (any_of(Users, [&](User *U) {
            auto *Use = cast<Instruction>(U);
            return !L->contains(Use->getParent());
          }))
        UsedOutside.push_back(&Inst);
    }

  return UsedOutside;
}

void llvm::getLoopAnalysisUsage(AnalysisUsage &AU) {
  // By definition, all loop passes need the LoopInfo analysis and the
  // Dominator tree it depends on. Because they all participate in the loop
  // pass manager, they must also preserve these.
  AU.addRequired<DominatorTreeWrapperPass>();
  AU.addPreserved<DominatorTreeWrapperPass>();
  AU.addRequired<LoopInfoWrapperPass>();
  AU.addPreserved<LoopInfoWrapperPass>();

  // We must also preserve LoopSimplify and LCSSA. We locally access their IDs
  // here because users shouldn't directly get them from this header.
  extern char &LoopSimplifyID;
  extern char &LCSSAID;
  AU.addRequiredID(LoopSimplifyID);
  AU.addPreservedID(LoopSimplifyID);
  AU.addRequiredID(LCSSAID);
  AU.addPreservedID(LCSSAID);
  // This is used in the LPPassManager to perform LCSSA verification on passes
  // which preserve lcssa form
  AU.addRequired<LCSSAVerificationPass>();
  AU.addPreserved<LCSSAVerificationPass>();

  // Loop passes are designed to run inside of a loop pass manager which means
  // that any function analyses they require must be required by the first loop
  // pass in the manager (so that it is computed before the loop pass manager
  // runs) and preserved by all loop pasess in the manager. To make this
  // reasonably robust, the set needed for most loop passes is maintained here.
  // If your loop pass requires an analysis not listed here, you will need to
  // carefully audit the loop pass manager nesting structure that results.
  AU.addRequired<AAResultsWrapperPass>();
  AU.addPreserved<AAResultsWrapperPass>();
  AU.addPreserved<BasicAAWrapperPass>();
  AU.addPreserved<GlobalsAAWrapperPass>();
  AU.addPreserved<SCEVAAWrapperPass>();
  AU.addRequired<ScalarEvolutionWrapperPass>();
  AU.addPreserved<ScalarEvolutionWrapperPass>();
}

/// Manually defined generic "LoopPass" dependency initialization. This is used
/// to initialize the exact set of passes from above in \c
/// getLoopAnalysisUsage. It can be used within a loop pass's initialization
/// with:
///
///   INITIALIZE_PASS_DEPENDENCY(LoopPass)
///
/// As-if "LoopPass" were a pass.
void llvm::initializeLoopPassPass(PassRegistry &Registry) {
  INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
  INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
  INITIALIZE_PASS_DEPENDENCY(LoopSimplify)
  INITIALIZE_PASS_DEPENDENCY(LCSSAWrapperPass)
  INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
  INITIALIZE_PASS_DEPENDENCY(BasicAAWrapperPass)
  INITIALIZE_PASS_DEPENDENCY(GlobalsAAWrapperPass)
  INITIALIZE_PASS_DEPENDENCY(SCEVAAWrapperPass)
  INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass)
}

/// \brief Find string metadata for loop
///
/// If it has a value (e.g. {"llvm.distribute", 1} return the value as an
/// operand or null otherwise.  If the string metadata is not found return
/// Optional's not-a-value.
Optional<const MDOperand *> llvm::findStringMetadataForLoop(Loop *TheLoop,
                                                            StringRef Name) {
  MDNode *LoopID = TheLoop->getLoopID();
  // Return none if LoopID is false.
  if (!LoopID)
    return None;

  // First operand should refer to the loop id itself.
  assert(LoopID->getNumOperands() > 0 && "requires at least one operand");
  assert(LoopID->getOperand(0) == LoopID && "invalid loop id");

  // Iterate over LoopID operands and look for MDString Metadata
  for (unsigned i = 1, e = LoopID->getNumOperands(); i < e; ++i) {
    MDNode *MD = dyn_cast<MDNode>(LoopID->getOperand(i));
    if (!MD)
      continue;
    MDString *S = dyn_cast<MDString>(MD->getOperand(0));
    if (!S)
      continue;
    // Return true if MDString holds expected MetaData.
    if (Name.equals(S->getString()))
      switch (MD->getNumOperands()) {
      case 1:
        return nullptr;
      case 2:
        return &MD->getOperand(1);
      default:
        llvm_unreachable("loop metadata has 0 or 1 operand");
      }
  }
  return None;
}

/// Does a BFS from a given node to all of its children inside a given loop.
/// The returned vector of nodes includes the starting point.
SmallVector<DomTreeNode *, 16>
llvm::collectChildrenInLoop(DomTreeNode *N, const Loop *CurLoop) {
  SmallVector<DomTreeNode *, 16> Worklist;
  auto AddRegionToWorklist = [&](DomTreeNode *DTN) {
    // Only include subregions in the top level loop.
    BasicBlock *BB = DTN->getBlock();
    if (CurLoop->contains(BB))
      Worklist.push_back(DTN);
  };

  AddRegionToWorklist(N);

  for (size_t I = 0; I < Worklist.size(); I++)
    for (DomTreeNode *Child : Worklist[I]->getChildren())
      AddRegionToWorklist(Child);

  return Worklist;
}

void llvm::deleteDeadLoop(Loop *L, DominatorTree *DT = nullptr,
                          ScalarEvolution *SE = nullptr,
                          LoopInfo *LI = nullptr) {
  assert((!DT || L->isLCSSAForm(*DT)) && "Expected LCSSA!");
  auto *Preheader = L->getLoopPreheader();
  assert(Preheader && "Preheader should exist!");

  // Now that we know the removal is safe, remove the loop by changing the
  // branch from the preheader to go to the single exit block.
  //
  // Because we're deleting a large chunk of code at once, the sequence in which
  // we remove things is very important to avoid invalidation issues.

  // Tell ScalarEvolution that the loop is deleted. Do this before
  // deleting the loop so that ScalarEvolution can look at the loop
  // to determine what it needs to clean up.
  if (SE)
    SE->forgetLoop(L);

  auto *ExitBlock = L->getUniqueExitBlock();
  assert(ExitBlock && "Should have a unique exit block!");
  assert(L->hasDedicatedExits() && "Loop should have dedicated exits!");

  auto *OldBr = dyn_cast<BranchInst>(Preheader->getTerminator());
  assert(OldBr && "Preheader must end with a branch");
  assert(OldBr->isUnconditional() && "Preheader must have a single successor");
  // Connect the preheader to the exit block. Keep the old edge to the header
  // around to perform the dominator tree update in two separate steps
  // -- #1 insertion of the edge preheader -> exit and #2 deletion of the edge
  // preheader -> header.
  //
  //
  // 0.  Preheader          1.  Preheader           2.  Preheader
  //        |                    |   |                   |
  //        V                    |   V                   |
  //      Header <--\            | Header <--\           | Header <--\
  //       |  |     |            |  |  |     |           |  |  |     |
  //       |  V     |            |  |  V     |           |  |  V     |
  //       | Body --/            |  | Body --/           |  | Body --/
  //       V                     V  V                    V  V
  //      Exit                   Exit                    Exit
  //
  // By doing this is two separate steps we can perform the dominator tree
  // update without using the batch update API.
  //
  // Even when the loop is never executed, we cannot remove the edge from the
  // source block to the exit block. Consider the case where the unexecuted loop
  // branches back to an outer loop. If we deleted the loop and removed the edge
  // coming to this inner loop, this will break the outer loop structure (by
  // deleting the backedge of the outer loop). If the outer loop is indeed a
  // non-loop, it will be deleted in a future iteration of loop deletion pass.
  IRBuilder<> Builder(OldBr);
  Builder.CreateCondBr(Builder.getFalse(), L->getHeader(), ExitBlock);
  // Remove the old branch. The conditional branch becomes a new terminator.
  OldBr->eraseFromParent();

  // Rewrite phis in the exit block to get their inputs from the Preheader
  // instead of the exiting block.
  BasicBlock::iterator BI = ExitBlock->begin();
  while (PHINode *P = dyn_cast<PHINode>(BI)) {
    // Set the zero'th element of Phi to be from the preheader and remove all
    // other incoming values. Given the loop has dedicated exits, all other
    // incoming values must be from the exiting blocks.
    int PredIndex = 0;
    P->setIncomingBlock(PredIndex, Preheader);
    // Removes all incoming values from all other exiting blocks (including
    // duplicate values from an exiting block).
    // Nuke all entries except the zero'th entry which is the preheader entry.
    // NOTE! We need to remove Incoming Values in the reverse order as done
    // below, to keep the indices valid for deletion (removeIncomingValues
    // updates getNumIncomingValues and shifts all values down into the operand
    // being deleted).
    for (unsigned i = 0, e = P->getNumIncomingValues() - 1; i != e; ++i)
      P->removeIncomingValue(e - i, false);

    assert((P->getNumIncomingValues() == 1 &&
            P->getIncomingBlock(PredIndex) == Preheader) &&
           "Should have exactly one value and that's from the preheader!");
    ++BI;
  }

  // Disconnect the loop body by branching directly to its exit.
  Builder.SetInsertPoint(Preheader->getTerminator());
  Builder.CreateBr(ExitBlock);
  // Remove the old branch.
  Preheader->getTerminator()->eraseFromParent();

  if (DT) {
    // Update the dominator tree by informing it about the new edge from the
    // preheader to the exit.
    DT->insertEdge(Preheader, ExitBlock);
    // Inform the dominator tree about the removed edge.
    DT->deleteEdge(Preheader, L->getHeader());
  }

  // Remove the block from the reference counting scheme, so that we can
  // delete it freely later.
  for (auto *Block : L->blocks())
    Block->dropAllReferences();

  if (LI) {
    // Erase the instructions and the blocks without having to worry
    // about ordering because we already dropped the references.
    // NOTE: This iteration is safe because erasing the block does not remove
    // its entry from the loop's block list.  We do that in the next section.
    for (Loop::block_iterator LpI = L->block_begin(), LpE = L->block_end();
         LpI != LpE; ++LpI)
      (*LpI)->eraseFromParent();

    // Finally, the blocks from loopinfo.  This has to happen late because
    // otherwise our loop iterators won't work.

    SmallPtrSet<BasicBlock *, 8> blocks;
    blocks.insert(L->block_begin(), L->block_end());
    for (BasicBlock *BB : blocks)
      LI->removeBlock(BB);

    // The last step is to update LoopInfo now that we've eliminated this loop.
    LI->erase(L);
  }
}

/// Returns true if the instruction in a loop is guaranteed to execute at least
/// once.
bool llvm::isGuaranteedToExecute(const Instruction &Inst,
                                 const DominatorTree *DT, const Loop *CurLoop,
                                 const LoopSafetyInfo *SafetyInfo) {
  // We have to check to make sure that the instruction dominates all
  // of the exit blocks.  If it doesn't, then there is a path out of the loop
  // which does not execute this instruction, so we can't hoist it.

  // If the instruction is in the header block for the loop (which is very
  // common), it is always guaranteed to dominate the exit blocks.  Since this
  // is a common case, and can save some work, check it now.
  if (Inst.getParent() == CurLoop->getHeader())
    // If there's a throw in the header block, we can't guarantee we'll reach
    // Inst.
    return !SafetyInfo->HeaderMayThrow;

  // Somewhere in this loop there is an instruction which may throw and make us
  // exit the loop.
  if (SafetyInfo->MayThrow)
    return false;

  // Get the exit blocks for the current loop.
  SmallVector<BasicBlock *, 8> ExitBlocks;
  CurLoop->getExitBlocks(ExitBlocks);

  // Verify that the block dominates each of the exit blocks of the loop.
  for (BasicBlock *ExitBlock : ExitBlocks)
    if (!DT->dominates(Inst.getParent(), ExitBlock))
      return false;

  // As a degenerate case, if the loop is statically infinite then we haven't
  // proven anything since there are no exit blocks.
  if (ExitBlocks.empty())
    return false;

  // FIXME: In general, we have to prove that the loop isn't an infinite loop.
  // See http::llvm.org/PR24078 .  (The "ExitBlocks.empty()" check above is
  // just a special case of this.)
  return true;
}

Optional<unsigned> llvm::getLoopEstimatedTripCount(Loop *L) {
  // Only support loops with a unique exiting block, and a latch.
  if (!L->getExitingBlock())
    return None;

  // Get the branch weights for the the loop's backedge.
  BranchInst *LatchBR =
      dyn_cast<BranchInst>(L->getLoopLatch()->getTerminator());
  if (!LatchBR || LatchBR->getNumSuccessors() != 2)
    return None;

  assert((LatchBR->getSuccessor(0) == L->getHeader() ||
          LatchBR->getSuccessor(1) == L->getHeader()) &&
         "At least one edge out of the latch must go to the header");

  // To estimate the number of times the loop body was executed, we want to
  // know the number of times the backedge was taken, vs. the number of times
  // we exited the loop.
  uint64_t TrueVal, FalseVal;
  if (!LatchBR->extractProfMetadata(TrueVal, FalseVal))
    return None;

  if (!TrueVal || !FalseVal)
    return 0;

  // Divide the count of the backedge by the count of the edge exiting the loop,
  // rounding to nearest.
  if (LatchBR->getSuccessor(0) == L->getHeader())
    return (TrueVal + (FalseVal / 2)) / FalseVal;
  else
    return (FalseVal + (TrueVal / 2)) / TrueVal;
}

/// \brief Adds a 'fast' flag to floating point operations.
static Value *addFastMathFlag(Value *V) {
  if (isa<FPMathOperator>(V)) {
    FastMathFlags Flags;
    Flags.setUnsafeAlgebra();
    cast<Instruction>(V)->setFastMathFlags(Flags);
  }
  return V;
}

// Helper to generate a log2 shuffle reduction.
Value *
llvm::getShuffleReduction(IRBuilder<> &Builder, Value *Src, unsigned Op,
                          RecurrenceDescriptor::MinMaxRecurrenceKind MinMaxKind,
                          ArrayRef<Value *> RedOps) {
  unsigned VF = Src->getType()->getVectorNumElements();
  // VF is a power of 2 so we can emit the reduction using log2(VF) shuffles
  // and vector ops, reducing the set of values being computed by half each
  // round.
  assert(isPowerOf2_32(VF) &&
         "Reduction emission only supported for pow2 vectors!");
  Value *TmpVec = Src;
  SmallVector<Constant *, 32> ShuffleMask(VF, nullptr);
  for (unsigned i = VF; i != 1; i >>= 1) {
    // Move the upper half of the vector to the lower half.
    for (unsigned j = 0; j != i / 2; ++j)
      ShuffleMask[j] = Builder.getInt32(i / 2 + j);

    // Fill the rest of the mask with undef.
    std::fill(&ShuffleMask[i / 2], ShuffleMask.end(),
              UndefValue::get(Builder.getInt32Ty()));

    Value *Shuf = Builder.CreateShuffleVector(
        TmpVec, UndefValue::get(TmpVec->getType()),
        ConstantVector::get(ShuffleMask), "rdx.shuf");

    if (Op != Instruction::ICmp && Op != Instruction::FCmp) {
      // Floating point operations had to be 'fast' to enable the reduction.
      TmpVec = addFastMathFlag(Builder.CreateBinOp((Instruction::BinaryOps)Op,
                                                   TmpVec, Shuf, "bin.rdx"));
    } else {
      assert(MinMaxKind != RecurrenceDescriptor::MRK_Invalid &&
             "Invalid min/max");
      TmpVec = RecurrenceDescriptor::createMinMaxOp(Builder, MinMaxKind, TmpVec,
                                                    Shuf);
    }
    if (!RedOps.empty())
      propagateIRFlags(TmpVec, RedOps);
  }
  // The result is in the first element of the vector.
  return Builder.CreateExtractElement(TmpVec, Builder.getInt32(0));
}

/// Create a simple vector reduction specified by an opcode and some
/// flags (if generating min/max reductions).
Value *llvm::createSimpleTargetReduction(
    IRBuilder<> &Builder, const TargetTransformInfo *TTI, unsigned Opcode,
    Value *Src, TargetTransformInfo::ReductionFlags Flags,
    ArrayRef<Value *> RedOps) {
  assert(isa<VectorType>(Src->getType()) && "Type must be a vector");

  Value *ScalarUdf = UndefValue::get(Src->getType()->getVectorElementType());
  std::function<Value*()> BuildFunc;
  using RD = RecurrenceDescriptor;
  RD::MinMaxRecurrenceKind MinMaxKind = RD::MRK_Invalid;
  // TODO: Support creating ordered reductions.
  FastMathFlags FMFUnsafe;
  FMFUnsafe.setUnsafeAlgebra();

  switch (Opcode) {
  case Instruction::Add:
    BuildFunc = [&]() { return Builder.CreateAddReduce(Src); };
    break;
  case Instruction::Mul:
    BuildFunc = [&]() { return Builder.CreateMulReduce(Src); };
    break;
  case Instruction::And:
    BuildFunc = [&]() { return Builder.CreateAndReduce(Src); };
    break;
  case Instruction::Or:
    BuildFunc = [&]() { return Builder.CreateOrReduce(Src); };
    break;
  case Instruction::Xor:
    BuildFunc = [&]() { return Builder.CreateXorReduce(Src); };
    break;
  case Instruction::FAdd:
    BuildFunc = [&]() {
      auto Rdx = Builder.CreateFAddReduce(ScalarUdf, Src);
      cast<CallInst>(Rdx)->setFastMathFlags(FMFUnsafe);
      return Rdx;
    };
    break;
  case Instruction::FMul:
    BuildFunc = [&]() {
      auto Rdx = Builder.CreateFMulReduce(ScalarUdf, Src);
      cast<CallInst>(Rdx)->setFastMathFlags(FMFUnsafe);
      return Rdx;
    };
    break;
  case Instruction::ICmp:
    if (Flags.IsMaxOp) {
      MinMaxKind = Flags.IsSigned ? RD::MRK_SIntMax : RD::MRK_UIntMax;
      BuildFunc = [&]() {
        return Builder.CreateIntMaxReduce(Src, Flags.IsSigned);
      };
    } else {
      MinMaxKind = Flags.IsSigned ? RD::MRK_SIntMin : RD::MRK_UIntMin;
      BuildFunc = [&]() {
        return Builder.CreateIntMinReduce(Src, Flags.IsSigned);
      };
    }
    break;
  case Instruction::FCmp:
    if (Flags.IsMaxOp) {
      MinMaxKind = RD::MRK_FloatMax;
      BuildFunc = [&]() { return Builder.CreateFPMaxReduce(Src, Flags.NoNaN); };
    } else {
      MinMaxKind = RD::MRK_FloatMin;
      BuildFunc = [&]() { return Builder.CreateFPMinReduce(Src, Flags.NoNaN); };
    }
    break;
  default:
    llvm_unreachable("Unhandled opcode");
    break;
  }
  if (TTI->useReductionIntrinsic(Opcode, Src->getType(), Flags))
    return BuildFunc();
  return getShuffleReduction(Builder, Src, Opcode, MinMaxKind, RedOps);
}

/// Create a vector reduction using a given recurrence descriptor.
Value *llvm::createTargetReduction(IRBuilder<> &Builder,
                                   const TargetTransformInfo *TTI,
                                   RecurrenceDescriptor &Desc, Value *Src,
                                   bool NoNaN) {
  // TODO: Support in-order reductions based on the recurrence descriptor.
  RecurrenceDescriptor::RecurrenceKind RecKind = Desc.getRecurrenceKind();
  TargetTransformInfo::ReductionFlags Flags;
  Flags.NoNaN = NoNaN;
  auto getSimpleRdx = [&](unsigned Opc) {
    return createSimpleTargetReduction(Builder, TTI, Opc, Src, Flags);
  };
  switch (RecKind) {
  case RecurrenceDescriptor::RK_FloatAdd:
    return getSimpleRdx(Instruction::FAdd);
  case RecurrenceDescriptor::RK_FloatMult:
    return getSimpleRdx(Instruction::FMul);
  case RecurrenceDescriptor::RK_IntegerAdd:
    return getSimpleRdx(Instruction::Add);
  case RecurrenceDescriptor::RK_IntegerMult:
    return getSimpleRdx(Instruction::Mul);
  case RecurrenceDescriptor::RK_IntegerAnd:
    return getSimpleRdx(Instruction::And);
  case RecurrenceDescriptor::RK_IntegerOr:
    return getSimpleRdx(Instruction::Or);
  case RecurrenceDescriptor::RK_IntegerXor:
    return getSimpleRdx(Instruction::Xor);
  case RecurrenceDescriptor::RK_IntegerMinMax: {
    switch (Desc.getMinMaxRecurrenceKind()) {
    case RecurrenceDescriptor::MRK_SIntMax:
      Flags.IsSigned = true;
      Flags.IsMaxOp = true;
      break;
    case RecurrenceDescriptor::MRK_UIntMax:
      Flags.IsMaxOp = true;
      break;
    case RecurrenceDescriptor::MRK_SIntMin:
      Flags.IsSigned = true;
      break;
    case RecurrenceDescriptor::MRK_UIntMin:
      break;
    default:
      llvm_unreachable("Unhandled MRK");
    }
    return getSimpleRdx(Instruction::ICmp);
  }
  case RecurrenceDescriptor::RK_FloatMinMax: {
    Flags.IsMaxOp =
        Desc.getMinMaxRecurrenceKind() == RecurrenceDescriptor::MRK_FloatMax;
    return getSimpleRdx(Instruction::FCmp);
  }
  default:
    llvm_unreachable("Unhandled RecKind");
  }
}

void llvm::propagateIRFlags(Value *I, ArrayRef<Value *> VL, Value *OpValue) {
  auto *VecOp = dyn_cast<Instruction>(I);
  if (!VecOp)
    return;
  auto *Intersection = (OpValue == nullptr) ? dyn_cast<Instruction>(VL[0])
                                            : dyn_cast<Instruction>(OpValue);
  if (!Intersection)
    return;
  const unsigned Opcode = Intersection->getOpcode();
  VecOp->copyIRFlags(Intersection);
  for (auto *V : VL) {
    auto *Instr = dyn_cast<Instruction>(V);
    if (!Instr)
      continue;
    if (OpValue == nullptr || Opcode == Instr->getOpcode())
      VecOp->andIRFlags(V);
  }
}