llvm.org GIT mirror llvm / e7df36e lib / Transforms / Utils / LoopUnrollRuntime.cpp
e7df36e

Tree @e7df36e (Download .tar.gz)

LoopUnrollRuntime.cpp @e7df36eraw · history · blame

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
//===-- UnrollLoopRuntime.cpp - Runtime Loop unrolling utilities ----------===//
//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements some loop unrolling utilities for loops with run-time
// trip counts.  See LoopUnroll.cpp for unrolling loops with compile-time
// trip counts.
//
// The functions in this file are used to generate extra code when the
// run-time trip count modulo the unroll factor is not 0.  When this is the
// case, we need to generate code to execute these 'left over' iterations.
//
// The current strategy generates an if-then-else sequence prior to the
// unrolled loop to execute the 'left over' iterations before or after the
// unrolled loop.
//
//===----------------------------------------------------------------------===//

#include "llvm/ADT/Statistic.h"
#include "llvm/ADT/SmallSet.h"
#include "llvm/Analysis/AliasAnalysis.h"
#include "llvm/Analysis/LoopIterator.h"
#include "llvm/Analysis/LoopPass.h"
#include "llvm/Analysis/ScalarEvolution.h"
#include "llvm/Analysis/ScalarEvolutionExpander.h"
#include "llvm/IR/BasicBlock.h"
#include "llvm/IR/Dominators.h"
#include "llvm/IR/Metadata.h"
#include "llvm/IR/Module.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Transforms/Scalar.h"
#include "llvm/Transforms/Utils/BasicBlockUtils.h"
#include "llvm/Transforms/Utils/Cloning.h"
#include "llvm/Transforms/Utils/LoopUtils.h"
#include "llvm/Transforms/Utils/UnrollLoop.h"
#include <algorithm>

using namespace llvm;

#define DEBUG_TYPE "loop-unroll"

STATISTIC(NumRuntimeUnrolled,
          "Number of loops unrolled with run-time trip counts");
static cl::opt<bool> UnrollRuntimeMultiExit(
    "unroll-runtime-multi-exit", cl::init(false), cl::Hidden,
    cl::desc("Allow runtime unrolling for loops with multiple exits, when "
             "epilog is generated"));

/// Connect the unrolling prolog code to the original loop.
/// The unrolling prolog code contains code to execute the
/// 'extra' iterations if the run-time trip count modulo the
/// unroll count is non-zero.
///
/// This function performs the following:
/// - Create PHI nodes at prolog end block to combine values
///   that exit the prolog code and jump around the prolog.
/// - Add a PHI operand to a PHI node at the loop exit block
///   for values that exit the prolog and go around the loop.
/// - Branch around the original loop if the trip count is less
///   than the unroll factor.
///
static void ConnectProlog(Loop *L, Value *BECount, unsigned Count,
                          BasicBlock *PrologExit,
                          BasicBlock *OriginalLoopLatchExit,
                          BasicBlock *PreHeader, BasicBlock *NewPreHeader,
                          ValueToValueMapTy &VMap, DominatorTree *DT,
                          LoopInfo *LI, bool PreserveLCSSA) {
  BasicBlock *Latch = L->getLoopLatch();
  assert(Latch && "Loop must have a latch");
  BasicBlock *PrologLatch = cast<BasicBlock>(VMap[Latch]);

  // Create a PHI node for each outgoing value from the original loop
  // (which means it is an outgoing value from the prolog code too).
  // The new PHI node is inserted in the prolog end basic block.
  // The new PHI node value is added as an operand of a PHI node in either
  // the loop header or the loop exit block.
  for (BasicBlock *Succ : successors(Latch)) {
    for (Instruction &BBI : *Succ) {
      PHINode *PN = dyn_cast<PHINode>(&BBI);
      // Exit when we passed all PHI nodes.
      if (!PN)
        break;
      // Add a new PHI node to the prolog end block and add the
      // appropriate incoming values.
      PHINode *NewPN = PHINode::Create(PN->getType(), 2, PN->getName() + ".unr",
                                       PrologExit->getFirstNonPHI());
      // Adding a value to the new PHI node from the original loop preheader.
      // This is the value that skips all the prolog code.
      if (L->contains(PN)) {
        NewPN->addIncoming(PN->getIncomingValueForBlock(NewPreHeader),
                           PreHeader);
      } else {
        NewPN->addIncoming(UndefValue::get(PN->getType()), PreHeader);
      }

      Value *V = PN->getIncomingValueForBlock(Latch);
      if (Instruction *I = dyn_cast<Instruction>(V)) {
        if (L->contains(I)) {
          V = VMap.lookup(I);
        }
      }
      // Adding a value to the new PHI node from the last prolog block
      // that was created.
      NewPN->addIncoming(V, PrologLatch);

      // Update the existing PHI node operand with the value from the
      // new PHI node.  How this is done depends on if the existing
      // PHI node is in the original loop block, or the exit block.
      if (L->contains(PN)) {
        PN->setIncomingValue(PN->getBasicBlockIndex(NewPreHeader), NewPN);
      } else {
        PN->addIncoming(NewPN, PrologExit);
      }
    }
  }

  // Make sure that created prolog loop is in simplified form
  SmallVector<BasicBlock *, 4> PrologExitPreds;
  Loop *PrologLoop = LI->getLoopFor(PrologLatch);
  if (PrologLoop) {
    for (BasicBlock *PredBB : predecessors(PrologExit))
      if (PrologLoop->contains(PredBB))
        PrologExitPreds.push_back(PredBB);

    SplitBlockPredecessors(PrologExit, PrologExitPreds, ".unr-lcssa", DT, LI,
                           PreserveLCSSA);
  }

  // Create a branch around the original loop, which is taken if there are no
  // iterations remaining to be executed after running the prologue.
  Instruction *InsertPt = PrologExit->getTerminator();
  IRBuilder<> B(InsertPt);

  assert(Count != 0 && "nonsensical Count!");

  // If BECount <u (Count - 1) then (BECount + 1) % Count == (BECount + 1)
  // This means %xtraiter is (BECount + 1) and all of the iterations of this
  // loop were executed by the prologue.  Note that if BECount <u (Count - 1)
  // then (BECount + 1) cannot unsigned-overflow.
  Value *BrLoopExit =
      B.CreateICmpULT(BECount, ConstantInt::get(BECount->getType(), Count - 1));
  // Split the exit to maintain loop canonicalization guarantees
  SmallVector<BasicBlock *, 4> Preds(predecessors(OriginalLoopLatchExit));
  SplitBlockPredecessors(OriginalLoopLatchExit, Preds, ".unr-lcssa", DT, LI,
                         PreserveLCSSA);
  // Add the branch to the exit block (around the unrolled loop)
  B.CreateCondBr(BrLoopExit, OriginalLoopLatchExit, NewPreHeader);
  InsertPt->eraseFromParent();
  if (DT)
    DT->changeImmediateDominator(OriginalLoopLatchExit, PrologExit);
}

/// Connect the unrolling epilog code to the original loop.
/// The unrolling epilog code contains code to execute the
/// 'extra' iterations if the run-time trip count modulo the
/// unroll count is non-zero.
///
/// This function performs the following:
/// - Update PHI nodes at the unrolling loop exit and epilog loop exit
/// - Create PHI nodes at the unrolling loop exit to combine
///   values that exit the unrolling loop code and jump around it.
/// - Update PHI operands in the epilog loop by the new PHI nodes
/// - Branch around the epilog loop if extra iters (ModVal) is zero.
///
static void ConnectEpilog(Loop *L, Value *ModVal, BasicBlock *NewExit,
                          BasicBlock *Exit, BasicBlock *PreHeader,
                          BasicBlock *EpilogPreHeader, BasicBlock *NewPreHeader,
                          ValueToValueMapTy &VMap, DominatorTree *DT,
                          LoopInfo *LI, bool PreserveLCSSA)  {
  BasicBlock *Latch = L->getLoopLatch();
  assert(Latch && "Loop must have a latch");
  BasicBlock *EpilogLatch = cast<BasicBlock>(VMap[Latch]);

  // Loop structure should be the following:
  //
  // PreHeader
  // NewPreHeader
  //   Header
  //   ...
  //   Latch
  // NewExit (PN)
  // EpilogPreHeader
  //   EpilogHeader
  //   ...
  //   EpilogLatch
  // Exit (EpilogPN)

  // Update PHI nodes at NewExit and Exit.
  for (Instruction &BBI : *NewExit) {
    PHINode *PN = dyn_cast<PHINode>(&BBI);
    // Exit when we passed all PHI nodes.
    if (!PN)
      break;
    // PN should be used in another PHI located in Exit block as
    // Exit was split by SplitBlockPredecessors into Exit and NewExit
    // Basicaly it should look like:
    // NewExit:
    //   PN = PHI [I, Latch]
    // ...
    // Exit:
    //   EpilogPN = PHI [PN, EpilogPreHeader]
    //
    // There is EpilogPreHeader incoming block instead of NewExit as
    // NewExit was spilt 1 more time to get EpilogPreHeader.
    assert(PN->hasOneUse() && "The phi should have 1 use");
    PHINode *EpilogPN = cast<PHINode> (PN->use_begin()->getUser());
    assert(EpilogPN->getParent() == Exit && "EpilogPN should be in Exit block");

    // Add incoming PreHeader from branch around the Loop
    PN->addIncoming(UndefValue::get(PN->getType()), PreHeader);

    Value *V = PN->getIncomingValueForBlock(Latch);
    Instruction *I = dyn_cast<Instruction>(V);
    if (I && L->contains(I))
      // If value comes from an instruction in the loop add VMap value.
      V = VMap.lookup(I);
    // For the instruction out of the loop, constant or undefined value
    // insert value itself.
    EpilogPN->addIncoming(V, EpilogLatch);

    assert(EpilogPN->getBasicBlockIndex(EpilogPreHeader) >= 0 &&
          "EpilogPN should have EpilogPreHeader incoming block");
    // Change EpilogPreHeader incoming block to NewExit.
    EpilogPN->setIncomingBlock(EpilogPN->getBasicBlockIndex(EpilogPreHeader),
                               NewExit);
    // Now PHIs should look like:
    // NewExit:
    //   PN = PHI [I, Latch], [undef, PreHeader]
    // ...
    // Exit:
    //   EpilogPN = PHI [PN, NewExit], [VMap[I], EpilogLatch]
  }

  // Create PHI nodes at NewExit (from the unrolling loop Latch and PreHeader).
  // Update corresponding PHI nodes in epilog loop.
  for (BasicBlock *Succ : successors(Latch)) {
    // Skip this as we already updated phis in exit blocks.
    if (!L->contains(Succ))
      continue;
    for (Instruction &BBI : *Succ) {
      PHINode *PN = dyn_cast<PHINode>(&BBI);
      // Exit when we passed all PHI nodes.
      if (!PN)
        break;
      // Add new PHI nodes to the loop exit block and update epilog
      // PHIs with the new PHI values.
      PHINode *NewPN = PHINode::Create(PN->getType(), 2, PN->getName() + ".unr",
                                       NewExit->getFirstNonPHI());
      // Adding a value to the new PHI node from the unrolling loop preheader.
      NewPN->addIncoming(PN->getIncomingValueForBlock(NewPreHeader), PreHeader);
      // Adding a value to the new PHI node from the unrolling loop latch.
      NewPN->addIncoming(PN->getIncomingValueForBlock(Latch), Latch);

      // Update the existing PHI node operand with the value from the new PHI
      // node.  Corresponding instruction in epilog loop should be PHI.
      PHINode *VPN = cast<PHINode>(VMap[&BBI]);
      VPN->setIncomingValue(VPN->getBasicBlockIndex(EpilogPreHeader), NewPN);
    }
  }

  Instruction *InsertPt = NewExit->getTerminator();
  IRBuilder<> B(InsertPt);
  Value *BrLoopExit = B.CreateIsNotNull(ModVal, "lcmp.mod");
  assert(Exit && "Loop must have a single exit block only");
  // Split the epilogue exit to maintain loop canonicalization guarantees
  SmallVector<BasicBlock*, 4> Preds(predecessors(Exit));
  SplitBlockPredecessors(Exit, Preds, ".epilog-lcssa", DT, LI,
                         PreserveLCSSA);
  // Add the branch to the exit block (around the unrolling loop)
  B.CreateCondBr(BrLoopExit, EpilogPreHeader, Exit);
  InsertPt->eraseFromParent();
  if (DT)
    DT->changeImmediateDominator(Exit, NewExit);

  // Split the main loop exit to maintain canonicalization guarantees.
  SmallVector<BasicBlock*, 4> NewExitPreds{Latch};
  SplitBlockPredecessors(NewExit, NewExitPreds, ".loopexit", DT, LI,
                         PreserveLCSSA);
}

/// Create a clone of the blocks in a loop and connect them together.
/// If CreateRemainderLoop is false, loop structure will not be cloned,
/// otherwise a new loop will be created including all cloned blocks, and the
/// iterator of it switches to count NewIter down to 0.
/// The cloned blocks should be inserted between InsertTop and InsertBot.
/// If loop structure is cloned InsertTop should be new preheader, InsertBot
/// new loop exit.
/// Return the new cloned loop that is created when CreateRemainderLoop is true.
static Loop *
CloneLoopBlocks(Loop *L, Value *NewIter, const bool CreateRemainderLoop,
                const bool UseEpilogRemainder, const bool UnrollRemainder,
                BasicBlock *InsertTop,
                BasicBlock *InsertBot, BasicBlock *Preheader,
                std::vector<BasicBlock *> &NewBlocks, LoopBlocksDFS &LoopBlocks,
                ValueToValueMapTy &VMap, DominatorTree *DT, LoopInfo *LI) {
  StringRef suffix = UseEpilogRemainder ? "epil" : "prol";
  BasicBlock *Header = L->getHeader();
  BasicBlock *Latch = L->getLoopLatch();
  Function *F = Header->getParent();
  LoopBlocksDFS::RPOIterator BlockBegin = LoopBlocks.beginRPO();
  LoopBlocksDFS::RPOIterator BlockEnd = LoopBlocks.endRPO();
  Loop *ParentLoop = L->getParentLoop();
  NewLoopsMap NewLoops;
  NewLoops[ParentLoop] = ParentLoop;
  if (!CreateRemainderLoop)
    NewLoops[L] = ParentLoop;

  // For each block in the original loop, create a new copy,
  // and update the value map with the newly created values.
  for (LoopBlocksDFS::RPOIterator BB = BlockBegin; BB != BlockEnd; ++BB) {
    BasicBlock *NewBB = CloneBasicBlock(*BB, VMap, "." + suffix, F);
    NewBlocks.push_back(NewBB);

    // If we're unrolling the outermost loop, there's no remainder loop,
    // and this block isn't in a nested loop, then the new block is not
    // in any loop. Otherwise, add it to loopinfo.
    if (CreateRemainderLoop || LI->getLoopFor(*BB) != L || ParentLoop)
      addClonedBlockToLoopInfo(*BB, NewBB, LI, NewLoops);

    VMap[*BB] = NewBB;
    if (Header == *BB) {
      // For the first block, add a CFG connection to this newly
      // created block.
      InsertTop->getTerminator()->setSuccessor(0, NewBB);
    }

    if (DT) {
      if (Header == *BB) {
        // The header is dominated by the preheader.
        DT->addNewBlock(NewBB, InsertTop);
      } else {
        // Copy information from original loop to unrolled loop.
        BasicBlock *IDomBB = DT->getNode(*BB)->getIDom()->getBlock();
        DT->addNewBlock(NewBB, cast<BasicBlock>(VMap[IDomBB]));
      }
    }

    if (Latch == *BB) {
      // For the last block, if CreateRemainderLoop is false, create a direct
      // jump to InsertBot. If not, create a loop back to cloned head.
      VMap.erase((*BB)->getTerminator());
      BasicBlock *FirstLoopBB = cast<BasicBlock>(VMap[Header]);
      BranchInst *LatchBR = cast<BranchInst>(NewBB->getTerminator());
      IRBuilder<> Builder(LatchBR);
      if (!CreateRemainderLoop) {
        Builder.CreateBr(InsertBot);
      } else {
        PHINode *NewIdx = PHINode::Create(NewIter->getType(), 2,
                                          suffix + ".iter",
                                          FirstLoopBB->getFirstNonPHI());
        Value *IdxSub =
            Builder.CreateSub(NewIdx, ConstantInt::get(NewIdx->getType(), 1),
                              NewIdx->getName() + ".sub");
        Value *IdxCmp =
            Builder.CreateIsNotNull(IdxSub, NewIdx->getName() + ".cmp");
        Builder.CreateCondBr(IdxCmp, FirstLoopBB, InsertBot);
        NewIdx->addIncoming(NewIter, InsertTop);
        NewIdx->addIncoming(IdxSub, NewBB);
      }
      LatchBR->eraseFromParent();
    }
  }

  // Change the incoming values to the ones defined in the preheader or
  // cloned loop.
  for (BasicBlock::iterator I = Header->begin(); isa<PHINode>(I); ++I) {
    PHINode *NewPHI = cast<PHINode>(VMap[&*I]);
    if (!CreateRemainderLoop) {
      if (UseEpilogRemainder) {
        unsigned idx = NewPHI->getBasicBlockIndex(Preheader);
        NewPHI->setIncomingBlock(idx, InsertTop);
        NewPHI->removeIncomingValue(Latch, false);
      } else {
        VMap[&*I] = NewPHI->getIncomingValueForBlock(Preheader);
        cast<BasicBlock>(VMap[Header])->getInstList().erase(NewPHI);
      }
    } else {
      unsigned idx = NewPHI->getBasicBlockIndex(Preheader);
      NewPHI->setIncomingBlock(idx, InsertTop);
      BasicBlock *NewLatch = cast<BasicBlock>(VMap[Latch]);
      idx = NewPHI->getBasicBlockIndex(Latch);
      Value *InVal = NewPHI->getIncomingValue(idx);
      NewPHI->setIncomingBlock(idx, NewLatch);
      if (Value *V = VMap.lookup(InVal))
        NewPHI->setIncomingValue(idx, V);
    }
  }
  if (CreateRemainderLoop) {
    Loop *NewLoop = NewLoops[L];
    assert(NewLoop && "L should have been cloned");

    // Only add loop metadata if the loop is not going to be completely
    // unrolled.
    if (UnrollRemainder)
      return NewLoop;

    // Add unroll disable metadata to disable future unrolling for this loop.
    NewLoop->setLoopAlreadyUnrolled();
    return NewLoop;
  }
  else
    return nullptr;
}

/// Returns true if we can safely unroll a multi-exit/exiting loop. OtherExits
/// is populated with all the loop exit blocks other than the LatchExit block.
static bool
canSafelyUnrollMultiExitLoop(Loop *L, SmallVectorImpl<BasicBlock *> &OtherExits,
                             BasicBlock *LatchExit, bool PreserveLCSSA,
                             bool UseEpilogRemainder) {

  // We currently have some correctness constrains in unrolling a multi-exit
  // loop. Check for these below.

  // We rely on LCSSA form being preserved when the exit blocks are transformed.
  if (!PreserveLCSSA)
    return false;
  SmallVector<BasicBlock *, 4> Exits;
  L->getUniqueExitBlocks(Exits);
  for (auto *BB : Exits)
    if (BB != LatchExit)
      OtherExits.push_back(BB);

  // TODO: Support multiple exiting blocks jumping to the `LatchExit` when
  // UnrollRuntimeMultiExit is true. This will need updating the logic in
  // connectEpilog/connectProlog.
  if (!LatchExit->getSinglePredecessor()) {
    DEBUG(dbgs() << "Bailout for multi-exit handling when latch exit has >1 "
                    "predecessor.\n");
    return false;
  }
  // FIXME: We bail out of multi-exit unrolling when epilog loop is generated
  // and L is an inner loop. This is because in presence of multiple exits, the
  // outer loop is incorrect: we do not add the EpilogPreheader and exit to the
  // outer loop. This is automatically handled in the prolog case, so we do not
  // have that bug in prolog generation.
  if (UseEpilogRemainder && L->getParentLoop())
    return false;

  // All constraints have been satisfied.
  return true;
}

/// Returns true if we can profitably unroll the multi-exit loop L. Currently,
/// we return true only if UnrollRuntimeMultiExit is set to true.
static bool canProfitablyUnrollMultiExitLoop(
    Loop *L, SmallVectorImpl<BasicBlock *> &OtherExits, BasicBlock *LatchExit,
    bool PreserveLCSSA, bool UseEpilogRemainder) {

#if !defined(NDEBUG)
  SmallVector<BasicBlock *, 8> OtherExitsDummyCheck;
  assert(canSafelyUnrollMultiExitLoop(L, OtherExitsDummyCheck, LatchExit,
                                      PreserveLCSSA, UseEpilogRemainder) &&
         "Should be safe to unroll before checking profitability!");
#endif

  // Priority goes to UnrollRuntimeMultiExit if it's supplied.
  if (UnrollRuntimeMultiExit.getNumOccurrences())
    return UnrollRuntimeMultiExit;

  // The main pain point with multi-exit loop unrolling is that once unrolled,
  // we will not be able to merge all blocks into a straight line code.
  // There are branches within the unrolled loop that go to the OtherExits.
  // The second point is the increase in code size, but this is true
  // irrespective of multiple exits.

  // Note: Both the heuristics below are coarse grained. We are essentially
  // enabling unrolling of loops that have a single side exit other than the
  // normal LatchExit (i.e. exiting into a deoptimize block).
  // The heuristics considered are:
  // 1. low number of branches in the unrolled version.
  // 2. high predictability of these extra branches.
  // We avoid unrolling loops that have more than two exiting blocks. This
  // limits the total number of branches in the unrolled loop to be atmost
  // the unroll factor (since one of the exiting blocks is the latch block).
  SmallVector<BasicBlock*, 4> ExitingBlocks;
  L->getExitingBlocks(ExitingBlocks);
  if (ExitingBlocks.size() > 2)
    return false;

  // The second heuristic is that L has one exit other than the latchexit and
  // that exit is a deoptimize block. We know that deoptimize blocks are rarely
  // taken, which also implies the branch leading to the deoptimize block is
  // highly predictable.
  return (OtherExits.size() == 1 &&
          OtherExits[0]->getTerminatingDeoptimizeCall());
  // TODO: These can be fine-tuned further to consider code size or deopt states
  // that are captured by the deoptimize exit block.
  // Also, we can extend this to support more cases, if we actually
  // know of kinds of multiexit loops that would benefit from unrolling.
}

/// Insert code in the prolog/epilog code when unrolling a loop with a
/// run-time trip-count.
///
/// This method assumes that the loop unroll factor is total number
/// of loop bodies in the loop after unrolling. (Some folks refer
/// to the unroll factor as the number of *extra* copies added).
/// We assume also that the loop unroll factor is a power-of-two. So, after
/// unrolling the loop, the number of loop bodies executed is 2,
/// 4, 8, etc.  Note - LLVM converts the if-then-sequence to a switch
/// instruction in SimplifyCFG.cpp.  Then, the backend decides how code for
/// the switch instruction is generated.
///
/// ***Prolog case***
///        extraiters = tripcount % loopfactor
///        if (extraiters == 0) jump Loop:
///        else jump Prol:
/// Prol:  LoopBody;
///        extraiters -= 1                 // Omitted if unroll factor is 2.
///        if (extraiters != 0) jump Prol: // Omitted if unroll factor is 2.
///        if (tripcount < loopfactor) jump End:
/// Loop:
/// ...
/// End:
///
/// ***Epilog case***
///        extraiters = tripcount % loopfactor
///        if (tripcount < loopfactor) jump LoopExit:
///        unroll_iters = tripcount - extraiters
/// Loop:  LoopBody; (executes unroll_iter times);
///        unroll_iter -= 1
///        if (unroll_iter != 0) jump Loop:
/// LoopExit:
///        if (extraiters == 0) jump EpilExit:
/// Epil:  LoopBody; (executes extraiters times)
///        extraiters -= 1                 // Omitted if unroll factor is 2.
///        if (extraiters != 0) jump Epil: // Omitted if unroll factor is 2.
/// EpilExit:

bool llvm::UnrollRuntimeLoopRemainder(Loop *L, unsigned Count,
                                      bool AllowExpensiveTripCount,
                                      bool UseEpilogRemainder,
                                      bool UnrollRemainder,
                                      LoopInfo *LI, ScalarEvolution *SE,
                                      DominatorTree *DT, AssumptionCache *AC,
                                      OptimizationRemarkEmitter *ORE,
                                      bool PreserveLCSSA) {
  DEBUG(dbgs() << "Trying runtime unrolling on Loop: \n");
  DEBUG(L->dump());
  DEBUG(UseEpilogRemainder ? dbgs() << "Using epilog remainder.\n" :
        dbgs() << "Using prolog remainder.\n");

  // Make sure the loop is in canonical form.
  if (!L->isLoopSimplifyForm()) {
    DEBUG(dbgs() << "Not in simplify form!\n");
    return false;
  }

  // Guaranteed by LoopSimplifyForm.
  BasicBlock *Latch = L->getLoopLatch();
  BasicBlock *Header = L->getHeader();

  BranchInst *LatchBR = cast<BranchInst>(Latch->getTerminator());
  unsigned ExitIndex = LatchBR->getSuccessor(0) == Header ? 1 : 0;
  BasicBlock *LatchExit = LatchBR->getSuccessor(ExitIndex);
  // Cloning the loop basic blocks (`CloneLoopBlocks`) requires that one of the
  // targets of the Latch be an exit block out of the loop. This needs
  // to be guaranteed by the callers of UnrollRuntimeLoopRemainder.
  assert(!L->contains(LatchExit) &&
         "one of the loop latch successors should be the exit block!");
  // These are exit blocks other than the target of the latch exiting block.
  SmallVector<BasicBlock *, 4> OtherExits;
  bool isMultiExitUnrollingEnabled =
      canSafelyUnrollMultiExitLoop(L, OtherExits, LatchExit, PreserveLCSSA,
                                   UseEpilogRemainder) &&
      canProfitablyUnrollMultiExitLoop(L, OtherExits, LatchExit, PreserveLCSSA,
                                       UseEpilogRemainder);
  // Support only single exit and exiting block unless multi-exit loop unrolling is enabled.
  if (!isMultiExitUnrollingEnabled &&
      (!L->getExitingBlock() || OtherExits.size())) {
    DEBUG(
        dbgs()
        << "Multiple exit/exiting blocks in loop and multi-exit unrolling not "
           "enabled!\n");
    return false;
  }
  // Use Scalar Evolution to compute the trip count. This allows more loops to
  // be unrolled than relying on induction var simplification.
  if (!SE)
    return false;

  // Only unroll loops with a computable trip count, and the trip count needs
  // to be an int value (allowing a pointer type is a TODO item).
  // We calculate the backedge count by using getExitCount on the Latch block,
  // which is proven to be the only exiting block in this loop. This is same as
  // calculating getBackedgeTakenCount on the loop (which computes SCEV for all
  // exiting blocks).
  const SCEV *BECountSC = SE->getExitCount(L, Latch);
  if (isa<SCEVCouldNotCompute>(BECountSC) ||
      !BECountSC->getType()->isIntegerTy()) {
    DEBUG(dbgs() << "Could not compute exit block SCEV\n");
    return false;
  }

  unsigned BEWidth = cast<IntegerType>(BECountSC->getType())->getBitWidth();

  // Add 1 since the backedge count doesn't include the first loop iteration.
  const SCEV *TripCountSC =
      SE->getAddExpr(BECountSC, SE->getConstant(BECountSC->getType(), 1));
  if (isa<SCEVCouldNotCompute>(TripCountSC)) {
    DEBUG(dbgs() << "Could not compute trip count SCEV.\n");
    return false;
  }

  BasicBlock *PreHeader = L->getLoopPreheader();
  BranchInst *PreHeaderBR = cast<BranchInst>(PreHeader->getTerminator());
  const DataLayout &DL = Header->getModule()->getDataLayout();
  SCEVExpander Expander(*SE, DL, "loop-unroll");
  if (!AllowExpensiveTripCount &&
      Expander.isHighCostExpansion(TripCountSC, L, PreHeaderBR)) {
    DEBUG(dbgs() << "High cost for expanding trip count scev!\n");
    return false;
  }

  // This constraint lets us deal with an overflowing trip count easily; see the
  // comment on ModVal below.
  if (Log2_32(Count) > BEWidth) {
    DEBUG(dbgs()
          << "Count failed constraint on overflow trip count calculation.\n");
    return false;
  }

  // Loop structure is the following:
  //
  // PreHeader
  //   Header
  //   ...
  //   Latch
  // LatchExit

  BasicBlock *NewPreHeader;
  BasicBlock *NewExit = nullptr;
  BasicBlock *PrologExit = nullptr;
  BasicBlock *EpilogPreHeader = nullptr;
  BasicBlock *PrologPreHeader = nullptr;

  if (UseEpilogRemainder) {
    // If epilog remainder
    // Split PreHeader to insert a branch around loop for unrolling.
    NewPreHeader = SplitBlock(PreHeader, PreHeader->getTerminator(), DT, LI);
    NewPreHeader->setName(PreHeader->getName() + ".new");
    // Split LatchExit to create phi nodes from branch above.
    SmallVector<BasicBlock*, 4> Preds(predecessors(LatchExit));
    NewExit = SplitBlockPredecessors(LatchExit, Preds, ".unr-lcssa",
                                     DT, LI, PreserveLCSSA);
    // Split NewExit to insert epilog remainder loop.
    EpilogPreHeader = SplitBlock(NewExit, NewExit->getTerminator(), DT, LI);
    EpilogPreHeader->setName(Header->getName() + ".epil.preheader");
  } else {
    // If prolog remainder
    // Split the original preheader twice to insert prolog remainder loop
    PrologPreHeader = SplitEdge(PreHeader, Header, DT, LI);
    PrologPreHeader->setName(Header->getName() + ".prol.preheader");
    PrologExit = SplitBlock(PrologPreHeader, PrologPreHeader->getTerminator(),
                            DT, LI);
    PrologExit->setName(Header->getName() + ".prol.loopexit");
    // Split PrologExit to get NewPreHeader.
    NewPreHeader = SplitBlock(PrologExit, PrologExit->getTerminator(), DT, LI);
    NewPreHeader->setName(PreHeader->getName() + ".new");
  }
  // Loop structure should be the following:
  //  Epilog             Prolog
  //
  // PreHeader         PreHeader
  // *NewPreHeader     *PrologPreHeader
  //   Header          *PrologExit
  //   ...             *NewPreHeader
  //   Latch             Header
  // *NewExit            ...
  // *EpilogPreHeader    Latch
  // LatchExit              LatchExit

  // Calculate conditions for branch around loop for unrolling
  // in epilog case and around prolog remainder loop in prolog case.
  // Compute the number of extra iterations required, which is:
  //  extra iterations = run-time trip count % loop unroll factor
  PreHeaderBR = cast<BranchInst>(PreHeader->getTerminator());
  Value *TripCount = Expander.expandCodeFor(TripCountSC, TripCountSC->getType(),
                                            PreHeaderBR);
  Value *BECount = Expander.expandCodeFor(BECountSC, BECountSC->getType(),
                                          PreHeaderBR);
  IRBuilder<> B(PreHeaderBR);
  Value *ModVal;
  // Calculate ModVal = (BECount + 1) % Count.
  // Note that TripCount is BECount + 1.
  if (isPowerOf2_32(Count)) {
    // When Count is power of 2 we don't BECount for epilog case, however we'll
    // need it for a branch around unrolling loop for prolog case.
    ModVal = B.CreateAnd(TripCount, Count - 1, "xtraiter");
    //  1. There are no iterations to be run in the prolog/epilog loop.
    // OR
    //  2. The addition computing TripCount overflowed.
    //
    // If (2) is true, we know that TripCount really is (1 << BEWidth) and so
    // the number of iterations that remain to be run in the original loop is a
    // multiple Count == (1 << Log2(Count)) because Log2(Count) <= BEWidth (we
    // explicitly check this above).
  } else {
    // As (BECount + 1) can potentially unsigned overflow we count
    // (BECount % Count) + 1 which is overflow safe as BECount % Count < Count.
    Value *ModValTmp = B.CreateURem(BECount,
                                    ConstantInt::get(BECount->getType(),
                                                     Count));
    Value *ModValAdd = B.CreateAdd(ModValTmp,
                                   ConstantInt::get(ModValTmp->getType(), 1));
    // At that point (BECount % Count) + 1 could be equal to Count.
    // To handle this case we need to take mod by Count one more time.
    ModVal = B.CreateURem(ModValAdd,
                          ConstantInt::get(BECount->getType(), Count),
                          "xtraiter");
  }
  Value *BranchVal =
      UseEpilogRemainder ? B.CreateICmpULT(BECount,
                                           ConstantInt::get(BECount->getType(),
                                                            Count - 1)) :
                           B.CreateIsNotNull(ModVal, "lcmp.mod");
  BasicBlock *RemainderLoop = UseEpilogRemainder ? NewExit : PrologPreHeader;
  BasicBlock *UnrollingLoop = UseEpilogRemainder ? NewPreHeader : PrologExit;
  // Branch to either remainder (extra iterations) loop or unrolling loop.
  B.CreateCondBr(BranchVal, RemainderLoop, UnrollingLoop);
  PreHeaderBR->eraseFromParent();
  if (DT) {
    if (UseEpilogRemainder)
      DT->changeImmediateDominator(NewExit, PreHeader);
    else
      DT->changeImmediateDominator(PrologExit, PreHeader);
  }
  Function *F = Header->getParent();
  // Get an ordered list of blocks in the loop to help with the ordering of the
  // cloned blocks in the prolog/epilog code
  LoopBlocksDFS LoopBlocks(L);
  LoopBlocks.perform(LI);

  //
  // For each extra loop iteration, create a copy of the loop's basic blocks
  // and generate a condition that branches to the copy depending on the
  // number of 'left over' iterations.
  //
  std::vector<BasicBlock *> NewBlocks;
  ValueToValueMapTy VMap;

  // For unroll factor 2 remainder loop will have 1 iterations.
  // Do not create 1 iteration loop.
  bool CreateRemainderLoop = (Count != 2);

  // Clone all the basic blocks in the loop. If Count is 2, we don't clone
  // the loop, otherwise we create a cloned loop to execute the extra
  // iterations. This function adds the appropriate CFG connections.
  BasicBlock *InsertBot = UseEpilogRemainder ? LatchExit : PrologExit;
  BasicBlock *InsertTop = UseEpilogRemainder ? EpilogPreHeader : PrologPreHeader;
  Loop *remainderLoop = CloneLoopBlocks(
      L, ModVal, CreateRemainderLoop, UseEpilogRemainder, UnrollRemainder,
      InsertTop, InsertBot,
      NewPreHeader, NewBlocks, LoopBlocks, VMap, DT, LI);

  // Insert the cloned blocks into the function.
  F->getBasicBlockList().splice(InsertBot->getIterator(),
                                F->getBasicBlockList(),
                                NewBlocks[0]->getIterator(),
                                F->end());

  // Now the loop blocks are cloned and the other exiting blocks from the
  // remainder are connected to the original Loop's exit blocks. The remaining
  // work is to update the phi nodes in the original loop, and take in the
  // values from the cloned region. Also update the dominator info for
  // OtherExits and their immediate successors, since we have new edges into
  // OtherExits.
  SmallSet<BasicBlock*, 8> ImmediateSuccessorsOfExitBlocks;
  for (auto *BB : OtherExits) {
   for (auto &II : *BB) {

     // Given we preserve LCSSA form, we know that the values used outside the
     // loop will be used through these phi nodes at the exit blocks that are
     // transformed below.
     if (!isa<PHINode>(II))
       break;
     PHINode *Phi = cast<PHINode>(&II);
     unsigned oldNumOperands = Phi->getNumIncomingValues();
     // Add the incoming values from the remainder code to the end of the phi
     // node.
     for (unsigned i =0; i < oldNumOperands; i++){
       Value *newVal = VMap.lookup(Phi->getIncomingValue(i));
       // newVal can be a constant or derived from values outside the loop, and
       // hence need not have a VMap value. Also, since lookup already generated
       // a default "null" VMap entry for this value, we need to populate that
       // VMap entry correctly, with the mapped entry being itself.
       if (!newVal) {
         newVal = Phi->getIncomingValue(i);
         VMap[Phi->getIncomingValue(i)] = Phi->getIncomingValue(i);
       }
       Phi->addIncoming(newVal,
                           cast<BasicBlock>(VMap[Phi->getIncomingBlock(i)]));
     }
   }
#if defined(EXPENSIVE_CHECKS) && !defined(NDEBUG)
    for (BasicBlock *SuccBB : successors(BB)) {
      assert(!(any_of(OtherExits,
                      [SuccBB](BasicBlock *EB) { return EB == SuccBB; }) ||
               SuccBB == LatchExit) &&
             "Breaks the definition of dedicated exits!");
    }
#endif
   // Update the dominator info because the immediate dominator is no longer the
   // header of the original Loop. BB has edges both from L and remainder code.
   // Since the preheader determines which loop is run (L or directly jump to
   // the remainder code), we set the immediate dominator as the preheader.
   if (DT) {
     DT->changeImmediateDominator(BB, PreHeader);
     // Also update the IDom for immediate successors of BB.  If the current
     // IDom is the header, update the IDom to be the preheader because that is
     // the nearest common dominator of all predecessors of SuccBB.  We need to
     // check for IDom being the header because successors of exit blocks can
     // have edges from outside the loop, and we should not incorrectly update
     // the IDom in that case.
     for (BasicBlock *SuccBB: successors(BB))
       if (ImmediateSuccessorsOfExitBlocks.insert(SuccBB).second) {
         if (DT->getNode(SuccBB)->getIDom()->getBlock() == Header) {
           assert(!SuccBB->getSinglePredecessor() &&
                  "BB should be the IDom then!");
           DT->changeImmediateDominator(SuccBB, PreHeader);
         }
       }
    }
  }

  // Loop structure should be the following:
  //  Epilog             Prolog
  //
  // PreHeader         PreHeader
  // NewPreHeader      PrologPreHeader
  //   Header            PrologHeader
  //   ...               ...
  //   Latch             PrologLatch
  // NewExit           PrologExit
  // EpilogPreHeader   NewPreHeader
  //   EpilogHeader      Header
  //   ...               ...
  //   EpilogLatch       Latch
  // LatchExit              LatchExit

  // Rewrite the cloned instruction operands to use the values created when the
  // clone is created.
  for (BasicBlock *BB : NewBlocks) {
    for (Instruction &I : *BB) {
      RemapInstruction(&I, VMap,
                       RF_NoModuleLevelChanges | RF_IgnoreMissingLocals);
    }
  }

  if (UseEpilogRemainder) {
    // Connect the epilog code to the original loop and update the
    // PHI functions.
    ConnectEpilog(L, ModVal, NewExit, LatchExit, PreHeader,
                  EpilogPreHeader, NewPreHeader, VMap, DT, LI,
                  PreserveLCSSA);

    // Update counter in loop for unrolling.
    // I should be multiply of Count.
    IRBuilder<> B2(NewPreHeader->getTerminator());
    Value *TestVal = B2.CreateSub(TripCount, ModVal, "unroll_iter");
    BranchInst *LatchBR = cast<BranchInst>(Latch->getTerminator());
    B2.SetInsertPoint(LatchBR);
    PHINode *NewIdx = PHINode::Create(TestVal->getType(), 2, "niter",
                                      Header->getFirstNonPHI());
    Value *IdxSub =
        B2.CreateSub(NewIdx, ConstantInt::get(NewIdx->getType(), 1),
                     NewIdx->getName() + ".nsub");
    Value *IdxCmp;
    if (LatchBR->getSuccessor(0) == Header)
      IdxCmp = B2.CreateIsNotNull(IdxSub, NewIdx->getName() + ".ncmp");
    else
      IdxCmp = B2.CreateIsNull(IdxSub, NewIdx->getName() + ".ncmp");
    NewIdx->addIncoming(TestVal, NewPreHeader);
    NewIdx->addIncoming(IdxSub, Latch);
    LatchBR->setCondition(IdxCmp);
  } else {
    // Connect the prolog code to the original loop and update the
    // PHI functions.
    ConnectProlog(L, BECount, Count, PrologExit, LatchExit, PreHeader,
                  NewPreHeader, VMap, DT, LI, PreserveLCSSA);
  }

  // If this loop is nested, then the loop unroller changes the code in the
  // parent loop, so the Scalar Evolution pass needs to be run again.
  if (Loop *ParentLoop = L->getParentLoop())
    SE->forgetLoop(ParentLoop);

  // Canonicalize to LoopSimplifyForm both original and remainder loops. We
  // cannot rely on the LoopUnrollPass to do this because it only does
  // canonicalization for parent/subloops and not the sibling loops.
  if (OtherExits.size() > 0) {
    // Generate dedicated exit blocks for the original loop, to preserve
    // LoopSimplifyForm.
    formDedicatedExitBlocks(L, DT, LI, PreserveLCSSA);
    // Generate dedicated exit blocks for the remainder loop if one exists, to
    // preserve LoopSimplifyForm.
    if (remainderLoop)
      formDedicatedExitBlocks(remainderLoop, DT, LI, PreserveLCSSA);
  }

  if (remainderLoop && UnrollRemainder) {
    DEBUG(dbgs() << "Unrolling remainder loop\n");
    UnrollLoop(remainderLoop, /*Count*/Count - 1, /*TripCount*/Count - 1,
               /*Force*/false, /*AllowRuntime*/false,
               /*AllowExpensiveTripCount*/false, /*PreserveCondBr*/true,
               /*PreserveOnlyFirst*/false, /*TripMultiple*/1,
               /*PeelCount*/0, /*UnrollRemainder*/false, LI, SE, DT, AC, ORE,
               PreserveLCSSA);
  }

  NumRuntimeUnrolled++;
  return true;
}