llvm.org GIT mirror llvm / e482a05 lib / Linker / IRMover.cpp
e482a05

Tree @e482a05 (Download .tar.gz)

IRMover.cpp @e482a05raw · history · blame

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
//===- lib/Linker/IRMover.cpp ---------------------------------------------===//
//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//

#include "llvm/Linker/IRMover.h"
#include "LinkDiagnosticInfo.h"
#include "llvm/ADT/SetVector.h"
#include "llvm/ADT/SmallString.h"
#include "llvm/ADT/Triple.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/DebugInfo.h"
#include "llvm/IR/DiagnosticPrinter.h"
#include "llvm/IR/GVMaterializer.h"
#include "llvm/IR/Intrinsics.h"
#include "llvm/IR/TypeFinder.h"
#include "llvm/Support/Error.h"
#include "llvm/Transforms/Utils/Cloning.h"
#include <utility>
using namespace llvm;

//===----------------------------------------------------------------------===//
// TypeMap implementation.
//===----------------------------------------------------------------------===//

namespace {
class TypeMapTy : public ValueMapTypeRemapper {
  /// This is a mapping from a source type to a destination type to use.
  DenseMap<Type *, Type *> MappedTypes;

  /// When checking to see if two subgraphs are isomorphic, we speculatively
  /// add types to MappedTypes, but keep track of them here in case we need to
  /// roll back.
  SmallVector<Type *, 16> SpeculativeTypes;

  SmallVector<StructType *, 16> SpeculativeDstOpaqueTypes;

  /// This is a list of non-opaque structs in the source module that are mapped
  /// to an opaque struct in the destination module.
  SmallVector<StructType *, 16> SrcDefinitionsToResolve;

  /// This is the set of opaque types in the destination modules who are
  /// getting a body from the source module.
  SmallPtrSet<StructType *, 16> DstResolvedOpaqueTypes;

public:
  TypeMapTy(IRMover::IdentifiedStructTypeSet &DstStructTypesSet)
      : DstStructTypesSet(DstStructTypesSet) {}

  IRMover::IdentifiedStructTypeSet &DstStructTypesSet;
  /// Indicate that the specified type in the destination module is conceptually
  /// equivalent to the specified type in the source module.
  void addTypeMapping(Type *DstTy, Type *SrcTy);

  /// Produce a body for an opaque type in the dest module from a type
  /// definition in the source module.
  void linkDefinedTypeBodies();

  /// Return the mapped type to use for the specified input type from the
  /// source module.
  Type *get(Type *SrcTy);
  Type *get(Type *SrcTy, SmallPtrSet<StructType *, 8> &Visited);

  void finishType(StructType *DTy, StructType *STy, ArrayRef<Type *> ETypes);

  FunctionType *get(FunctionType *T) {
    return cast<FunctionType>(get((Type *)T));
  }

private:
  Type *remapType(Type *SrcTy) override { return get(SrcTy); }

  bool areTypesIsomorphic(Type *DstTy, Type *SrcTy);
};
}

void TypeMapTy::addTypeMapping(Type *DstTy, Type *SrcTy) {
  assert(SpeculativeTypes.empty());
  assert(SpeculativeDstOpaqueTypes.empty());

  // Check to see if these types are recursively isomorphic and establish a
  // mapping between them if so.
  if (!areTypesIsomorphic(DstTy, SrcTy)) {
    // Oops, they aren't isomorphic.  Just discard this request by rolling out
    // any speculative mappings we've established.
    for (Type *Ty : SpeculativeTypes)
      MappedTypes.erase(Ty);

    SrcDefinitionsToResolve.resize(SrcDefinitionsToResolve.size() -
                                   SpeculativeDstOpaqueTypes.size());
    for (StructType *Ty : SpeculativeDstOpaqueTypes)
      DstResolvedOpaqueTypes.erase(Ty);
  } else {
    for (Type *Ty : SpeculativeTypes)
      if (auto *STy = dyn_cast<StructType>(Ty))
        if (STy->hasName())
          STy->setName("");
  }
  SpeculativeTypes.clear();
  SpeculativeDstOpaqueTypes.clear();
}

/// Recursively walk this pair of types, returning true if they are isomorphic,
/// false if they are not.
bool TypeMapTy::areTypesIsomorphic(Type *DstTy, Type *SrcTy) {
  // Two types with differing kinds are clearly not isomorphic.
  if (DstTy->getTypeID() != SrcTy->getTypeID())
    return false;

  // If we have an entry in the MappedTypes table, then we have our answer.
  Type *&Entry = MappedTypes[SrcTy];
  if (Entry)
    return Entry == DstTy;

  // Two identical types are clearly isomorphic.  Remember this
  // non-speculatively.
  if (DstTy == SrcTy) {
    Entry = DstTy;
    return true;
  }

  // Okay, we have two types with identical kinds that we haven't seen before.

  // If this is an opaque struct type, special case it.
  if (StructType *SSTy = dyn_cast<StructType>(SrcTy)) {
    // Mapping an opaque type to any struct, just keep the dest struct.
    if (SSTy->isOpaque()) {
      Entry = DstTy;
      SpeculativeTypes.push_back(SrcTy);
      return true;
    }

    // Mapping a non-opaque source type to an opaque dest.  If this is the first
    // type that we're mapping onto this destination type then we succeed.  Keep
    // the dest, but fill it in later. If this is the second (different) type
    // that we're trying to map onto the same opaque type then we fail.
    if (cast<StructType>(DstTy)->isOpaque()) {
      // We can only map one source type onto the opaque destination type.
      if (!DstResolvedOpaqueTypes.insert(cast<StructType>(DstTy)).second)
        return false;
      SrcDefinitionsToResolve.push_back(SSTy);
      SpeculativeTypes.push_back(SrcTy);
      SpeculativeDstOpaqueTypes.push_back(cast<StructType>(DstTy));
      Entry = DstTy;
      return true;
    }
  }

  // If the number of subtypes disagree between the two types, then we fail.
  if (SrcTy->getNumContainedTypes() != DstTy->getNumContainedTypes())
    return false;

  // Fail if any of the extra properties (e.g. array size) of the type disagree.
  if (isa<IntegerType>(DstTy))
    return false; // bitwidth disagrees.
  if (PointerType *PT = dyn_cast<PointerType>(DstTy)) {
    if (PT->getAddressSpace() != cast<PointerType>(SrcTy)->getAddressSpace())
      return false;

  } else if (FunctionType *FT = dyn_cast<FunctionType>(DstTy)) {
    if (FT->isVarArg() != cast<FunctionType>(SrcTy)->isVarArg())
      return false;
  } else if (StructType *DSTy = dyn_cast<StructType>(DstTy)) {
    StructType *SSTy = cast<StructType>(SrcTy);
    if (DSTy->isLiteral() != SSTy->isLiteral() ||
        DSTy->isPacked() != SSTy->isPacked())
      return false;
  } else if (auto *DSeqTy = dyn_cast<SequentialType>(DstTy)) {
    if (DSeqTy->getNumElements() !=
        cast<SequentialType>(SrcTy)->getNumElements())
      return false;
  }

  // Otherwise, we speculate that these two types will line up and recursively
  // check the subelements.
  Entry = DstTy;
  SpeculativeTypes.push_back(SrcTy);

  for (unsigned I = 0, E = SrcTy->getNumContainedTypes(); I != E; ++I)
    if (!areTypesIsomorphic(DstTy->getContainedType(I),
                            SrcTy->getContainedType(I)))
      return false;

  // If everything seems to have lined up, then everything is great.
  return true;
}

void TypeMapTy::linkDefinedTypeBodies() {
  SmallVector<Type *, 16> Elements;
  for (StructType *SrcSTy : SrcDefinitionsToResolve) {
    StructType *DstSTy = cast<StructType>(MappedTypes[SrcSTy]);
    assert(DstSTy->isOpaque());

    // Map the body of the source type over to a new body for the dest type.
    Elements.resize(SrcSTy->getNumElements());
    for (unsigned I = 0, E = Elements.size(); I != E; ++I)
      Elements[I] = get(SrcSTy->getElementType(I));

    DstSTy->setBody(Elements, SrcSTy->isPacked());
    DstStructTypesSet.switchToNonOpaque(DstSTy);
  }
  SrcDefinitionsToResolve.clear();
  DstResolvedOpaqueTypes.clear();
}

void TypeMapTy::finishType(StructType *DTy, StructType *STy,
                           ArrayRef<Type *> ETypes) {
  DTy->setBody(ETypes, STy->isPacked());

  // Steal STy's name.
  if (STy->hasName()) {
    SmallString<16> TmpName = STy->getName();
    STy->setName("");
    DTy->setName(TmpName);
  }

  DstStructTypesSet.addNonOpaque(DTy);
}

Type *TypeMapTy::get(Type *Ty) {
  SmallPtrSet<StructType *, 8> Visited;
  return get(Ty, Visited);
}

Type *TypeMapTy::get(Type *Ty, SmallPtrSet<StructType *, 8> &Visited) {
  // If we already have an entry for this type, return it.
  Type **Entry = &MappedTypes[Ty];
  if (*Entry)
    return *Entry;

  // These are types that LLVM itself will unique.
  bool IsUniqued = !isa<StructType>(Ty) || cast<StructType>(Ty)->isLiteral();

#ifndef NDEBUG
  if (!IsUniqued) {
    for (auto &Pair : MappedTypes) {
      assert(!(Pair.first != Ty && Pair.second == Ty) &&
             "mapping to a source type");
    }
  }
#endif

  if (!IsUniqued && !Visited.insert(cast<StructType>(Ty)).second) {
    StructType *DTy = StructType::create(Ty->getContext());
    return *Entry = DTy;
  }

  // If this is not a recursive type, then just map all of the elements and
  // then rebuild the type from inside out.
  SmallVector<Type *, 4> ElementTypes;

  // If there are no element types to map, then the type is itself.  This is
  // true for the anonymous {} struct, things like 'float', integers, etc.
  if (Ty->getNumContainedTypes() == 0 && IsUniqued)
    return *Entry = Ty;

  // Remap all of the elements, keeping track of whether any of them change.
  bool AnyChange = false;
  ElementTypes.resize(Ty->getNumContainedTypes());
  for (unsigned I = 0, E = Ty->getNumContainedTypes(); I != E; ++I) {
    ElementTypes[I] = get(Ty->getContainedType(I), Visited);
    AnyChange |= ElementTypes[I] != Ty->getContainedType(I);
  }

  // If we found our type while recursively processing stuff, just use it.
  Entry = &MappedTypes[Ty];
  if (*Entry) {
    if (auto *DTy = dyn_cast<StructType>(*Entry)) {
      if (DTy->isOpaque()) {
        auto *STy = cast<StructType>(Ty);
        finishType(DTy, STy, ElementTypes);
      }
    }
    return *Entry;
  }

  // If all of the element types mapped directly over and the type is not
  // a named struct, then the type is usable as-is.
  if (!AnyChange && IsUniqued)
    return *Entry = Ty;

  // Otherwise, rebuild a modified type.
  switch (Ty->getTypeID()) {
  default:
    llvm_unreachable("unknown derived type to remap");
  case Type::ArrayTyID:
    return *Entry = ArrayType::get(ElementTypes[0],
                                   cast<ArrayType>(Ty)->getNumElements());
  case Type::VectorTyID:
    return *Entry = VectorType::get(ElementTypes[0],
                                    cast<VectorType>(Ty)->getNumElements());
  case Type::PointerTyID:
    return *Entry = PointerType::get(ElementTypes[0],
                                     cast<PointerType>(Ty)->getAddressSpace());
  case Type::FunctionTyID:
    return *Entry = FunctionType::get(ElementTypes[0],
                                      makeArrayRef(ElementTypes).slice(1),
                                      cast<FunctionType>(Ty)->isVarArg());
  case Type::StructTyID: {
    auto *STy = cast<StructType>(Ty);
    bool IsPacked = STy->isPacked();
    if (IsUniqued)
      return *Entry = StructType::get(Ty->getContext(), ElementTypes, IsPacked);

    // If the type is opaque, we can just use it directly.
    if (STy->isOpaque()) {
      DstStructTypesSet.addOpaque(STy);
      return *Entry = Ty;
    }

    if (StructType *OldT =
            DstStructTypesSet.findNonOpaque(ElementTypes, IsPacked)) {
      STy->setName("");
      return *Entry = OldT;
    }

    if (!AnyChange) {
      DstStructTypesSet.addNonOpaque(STy);
      return *Entry = Ty;
    }

    StructType *DTy = StructType::create(Ty->getContext());
    finishType(DTy, STy, ElementTypes);
    return *Entry = DTy;
  }
  }
}

LinkDiagnosticInfo::LinkDiagnosticInfo(DiagnosticSeverity Severity,
                                       const Twine &Msg)
    : DiagnosticInfo(DK_Linker, Severity), Msg(Msg) {}
void LinkDiagnosticInfo::print(DiagnosticPrinter &DP) const { DP << Msg; }

//===----------------------------------------------------------------------===//
// IRLinker implementation.
//===----------------------------------------------------------------------===//

namespace {
class IRLinker;

/// Creates prototypes for functions that are lazily linked on the fly. This
/// speeds up linking for modules with many/ lazily linked functions of which
/// few get used.
class GlobalValueMaterializer final : public ValueMaterializer {
  IRLinker &TheIRLinker;

public:
  GlobalValueMaterializer(IRLinker &TheIRLinker) : TheIRLinker(TheIRLinker) {}
  Value *materialize(Value *V) override;
};

class LocalValueMaterializer final : public ValueMaterializer {
  IRLinker &TheIRLinker;

public:
  LocalValueMaterializer(IRLinker &TheIRLinker) : TheIRLinker(TheIRLinker) {}
  Value *materialize(Value *V) override;
};

/// Type of the Metadata map in \a ValueToValueMapTy.
typedef DenseMap<const Metadata *, TrackingMDRef> MDMapT;

/// This is responsible for keeping track of the state used for moving data
/// from SrcM to DstM.
class IRLinker {
  Module &DstM;
  std::unique_ptr<Module> SrcM;

  /// See IRMover::move().
  std::function<void(GlobalValue &, IRMover::ValueAdder)> AddLazyFor;

  TypeMapTy TypeMap;
  GlobalValueMaterializer GValMaterializer;
  LocalValueMaterializer LValMaterializer;

  /// A metadata map that's shared between IRLinker instances.
  MDMapT &SharedMDs;

  /// Mapping of values from what they used to be in Src, to what they are now
  /// in DstM.  ValueToValueMapTy is a ValueMap, which involves some overhead
  /// due to the use of Value handles which the Linker doesn't actually need,
  /// but this allows us to reuse the ValueMapper code.
  ValueToValueMapTy ValueMap;
  ValueToValueMapTy AliasValueMap;

  DenseSet<GlobalValue *> ValuesToLink;
  std::vector<GlobalValue *> Worklist;

  void maybeAdd(GlobalValue *GV) {
    if (ValuesToLink.insert(GV).second)
      Worklist.push_back(GV);
  }

  /// Flag whether the ModuleInlineAsm string in Src should be linked with
  /// (concatenated into) the ModuleInlineAsm string for the destination
  /// module. It should be true for full LTO, but not when importing for
  /// ThinLTO, otherwise we can have duplicate symbols.
  bool LinkModuleInlineAsm;

  /// Set to true when all global value body linking is complete (including
  /// lazy linking). Used to prevent metadata linking from creating new
  /// references.
  bool DoneLinkingBodies = false;

  /// The Error encountered during materialization. We use an Optional here to
  /// avoid needing to manage an unconsumed success value.
  Optional<Error> FoundError;
  void setError(Error E) {
    if (E)
      FoundError = std::move(E);
  }

  /// Most of the errors produced by this module are inconvertible StringErrors.
  /// This convenience function lets us return one of those more easily.
  Error stringErr(const Twine &T) {
    return make_error<StringError>(T, inconvertibleErrorCode());
  }

  /// Entry point for mapping values and alternate context for mapping aliases.
  ValueMapper Mapper;
  unsigned AliasMCID;

  /// Handles cloning of a global values from the source module into
  /// the destination module, including setting the attributes and visibility.
  GlobalValue *copyGlobalValueProto(const GlobalValue *SGV, bool ForDefinition);

  void emitWarning(const Twine &Message) {
    SrcM->getContext().diagnose(LinkDiagnosticInfo(DS_Warning, Message));
  }

  /// Given a global in the source module, return the global in the
  /// destination module that is being linked to, if any.
  GlobalValue *getLinkedToGlobal(const GlobalValue *SrcGV) {
    // If the source has no name it can't link.  If it has local linkage,
    // there is no name match-up going on.
    if (!SrcGV->hasName() || SrcGV->hasLocalLinkage())
      return nullptr;

    // Otherwise see if we have a match in the destination module's symtab.
    GlobalValue *DGV = DstM.getNamedValue(SrcGV->getName());
    if (!DGV)
      return nullptr;

    // If we found a global with the same name in the dest module, but it has
    // internal linkage, we are really not doing any linkage here.
    if (DGV->hasLocalLinkage())
      return nullptr;

    // Otherwise, we do in fact link to the destination global.
    return DGV;
  }

  void computeTypeMapping();

  Expected<Constant *> linkAppendingVarProto(GlobalVariable *DstGV,
                                             const GlobalVariable *SrcGV);

  /// Given the GlobaValue \p SGV in the source module, and the matching
  /// GlobalValue \p DGV (if any), return true if the linker will pull \p SGV
  /// into the destination module.
  ///
  /// Note this code may call the client-provided \p AddLazyFor.
  bool shouldLink(GlobalValue *DGV, GlobalValue &SGV);
  Expected<Constant *> linkGlobalValueProto(GlobalValue *GV, bool ForAlias);

  Error linkModuleFlagsMetadata();

  void linkGlobalVariable(GlobalVariable &Dst, GlobalVariable &Src);
  Error linkFunctionBody(Function &Dst, Function &Src);
  void linkAliasBody(GlobalAlias &Dst, GlobalAlias &Src);
  Error linkGlobalValueBody(GlobalValue &Dst, GlobalValue &Src);

  /// Functions that take care of cloning a specific global value type
  /// into the destination module.
  GlobalVariable *copyGlobalVariableProto(const GlobalVariable *SGVar);
  Function *copyFunctionProto(const Function *SF);
  GlobalValue *copyGlobalAliasProto(const GlobalAlias *SGA);

  /// When importing for ThinLTO, prevent importing of types listed on
  /// the DICompileUnit that we don't need a copy of in the importing
  /// module.
  void prepareCompileUnitsForImport();
  void linkNamedMDNodes();

public:
  IRLinker(Module &DstM, MDMapT &SharedMDs,
           IRMover::IdentifiedStructTypeSet &Set, std::unique_ptr<Module> SrcM,
           ArrayRef<GlobalValue *> ValuesToLink,
           std::function<void(GlobalValue &, IRMover::ValueAdder)> AddLazyFor,
           bool LinkModuleInlineAsm, bool IsPerformingImport)
      : DstM(DstM), SrcM(std::move(SrcM)), AddLazyFor(std::move(AddLazyFor)),
        TypeMap(Set), GValMaterializer(*this), LValMaterializer(*this),
        SharedMDs(SharedMDs), LinkModuleInlineAsm(LinkModuleInlineAsm),
        Mapper(ValueMap, RF_MoveDistinctMDs | RF_IgnoreMissingLocals, &TypeMap,
               &GValMaterializer),
        AliasMCID(Mapper.registerAlternateMappingContext(AliasValueMap,
                                                         &LValMaterializer)) {
    ValueMap.getMDMap() = std::move(SharedMDs);
    for (GlobalValue *GV : ValuesToLink)
      maybeAdd(GV);
    if (IsPerformingImport)
      prepareCompileUnitsForImport();
  }
  ~IRLinker() { SharedMDs = std::move(*ValueMap.getMDMap()); }

  Error run();
  Value *materialize(Value *V, bool ForAlias);
};
}

/// The LLVM SymbolTable class autorenames globals that conflict in the symbol
/// table. This is good for all clients except for us. Go through the trouble
/// to force this back.
static void forceRenaming(GlobalValue *GV, StringRef Name) {
  // If the global doesn't force its name or if it already has the right name,
  // there is nothing for us to do.
  if (GV->hasLocalLinkage() || GV->getName() == Name)
    return;

  Module *M = GV->getParent();

  // If there is a conflict, rename the conflict.
  if (GlobalValue *ConflictGV = M->getNamedValue(Name)) {
    GV->takeName(ConflictGV);
    ConflictGV->setName(Name); // This will cause ConflictGV to get renamed
    assert(ConflictGV->getName() != Name && "forceRenaming didn't work");
  } else {
    GV->setName(Name); // Force the name back
  }
}

Value *GlobalValueMaterializer::materialize(Value *SGV) {
  return TheIRLinker.materialize(SGV, false);
}

Value *LocalValueMaterializer::materialize(Value *SGV) {
  return TheIRLinker.materialize(SGV, true);
}

Value *IRLinker::materialize(Value *V, bool ForAlias) {
  auto *SGV = dyn_cast<GlobalValue>(V);
  if (!SGV)
    return nullptr;

  Expected<Constant *> NewProto = linkGlobalValueProto(SGV, ForAlias);
  if (!NewProto) {
    setError(NewProto.takeError());
    return nullptr;
  }
  if (!*NewProto)
    return nullptr;

  GlobalValue *New = dyn_cast<GlobalValue>(*NewProto);
  if (!New)
    return *NewProto;

  // If we already created the body, just return.
  if (auto *F = dyn_cast<Function>(New)) {
    if (!F->isDeclaration())
      return New;
  } else if (auto *V = dyn_cast<GlobalVariable>(New)) {
    if (V->hasInitializer() || V->hasAppendingLinkage())
      return New;
  } else {
    auto *A = cast<GlobalAlias>(New);
    if (A->getAliasee())
      return New;
  }

  // When linking a global for an alias, it will always be linked. However we
  // need to check if it was not already scheduled to satisfy a reference from a
  // regular global value initializer. We know if it has been schedule if the
  // "New" GlobalValue that is mapped here for the alias is the same as the one
  // already mapped. If there is an entry in the ValueMap but the value is
  // different, it means that the value already had a definition in the
  // destination module (linkonce for instance), but we need a new definition
  // for the alias ("New" will be different.
  if (ForAlias && ValueMap.lookup(SGV) == New)
    return New;

  if (ForAlias || shouldLink(New, *SGV))
    setError(linkGlobalValueBody(*New, *SGV));

  return New;
}

/// Loop through the global variables in the src module and merge them into the
/// dest module.
GlobalVariable *IRLinker::copyGlobalVariableProto(const GlobalVariable *SGVar) {
  // No linking to be performed or linking from the source: simply create an
  // identical version of the symbol over in the dest module... the
  // initializer will be filled in later by LinkGlobalInits.
  GlobalVariable *NewDGV =
      new GlobalVariable(DstM, TypeMap.get(SGVar->getValueType()),
                         SGVar->isConstant(), GlobalValue::ExternalLinkage,
                         /*init*/ nullptr, SGVar->getName(),
                         /*insertbefore*/ nullptr, SGVar->getThreadLocalMode(),
                         SGVar->getType()->getAddressSpace());
  NewDGV->setAlignment(SGVar->getAlignment());
  return NewDGV;
}

/// Link the function in the source module into the destination module if
/// needed, setting up mapping information.
Function *IRLinker::copyFunctionProto(const Function *SF) {
  // If there is no linkage to be performed or we are linking from the source,
  // bring SF over.
  return Function::Create(TypeMap.get(SF->getFunctionType()),
                          GlobalValue::ExternalLinkage, SF->getName(), &DstM);
}

/// Set up prototypes for any aliases that come over from the source module.
GlobalValue *IRLinker::copyGlobalAliasProto(const GlobalAlias *SGA) {
  // If there is no linkage to be performed or we're linking from the source,
  // bring over SGA.
  auto *Ty = TypeMap.get(SGA->getValueType());
  return GlobalAlias::create(Ty, SGA->getType()->getPointerAddressSpace(),
                             GlobalValue::ExternalLinkage, SGA->getName(),
                             &DstM);
}

GlobalValue *IRLinker::copyGlobalValueProto(const GlobalValue *SGV,
                                            bool ForDefinition) {
  GlobalValue *NewGV;
  if (auto *SGVar = dyn_cast<GlobalVariable>(SGV)) {
    NewGV = copyGlobalVariableProto(SGVar);
  } else if (auto *SF = dyn_cast<Function>(SGV)) {
    NewGV = copyFunctionProto(SF);
  } else {
    if (ForDefinition)
      NewGV = copyGlobalAliasProto(cast<GlobalAlias>(SGV));
    else
      NewGV = new GlobalVariable(
          DstM, TypeMap.get(SGV->getValueType()),
          /*isConstant*/ false, GlobalValue::ExternalLinkage,
          /*init*/ nullptr, SGV->getName(),
          /*insertbefore*/ nullptr, SGV->getThreadLocalMode(),
          SGV->getType()->getAddressSpace());
  }

  if (ForDefinition)
    NewGV->setLinkage(SGV->getLinkage());
  else if (SGV->hasExternalWeakLinkage())
    NewGV->setLinkage(GlobalValue::ExternalWeakLinkage);

  NewGV->copyAttributesFrom(SGV);

  if (auto *NewGO = dyn_cast<GlobalObject>(NewGV)) {
    // Metadata for global variables and function declarations is copied eagerly.
    if (isa<GlobalVariable>(SGV) || SGV->isDeclaration())
      NewGO->copyMetadata(cast<GlobalObject>(SGV), 0);
  }

  // Remove these copied constants in case this stays a declaration, since
  // they point to the source module. If the def is linked the values will
  // be mapped in during linkFunctionBody.
  if (auto *NewF = dyn_cast<Function>(NewGV)) {
    NewF->setPersonalityFn(nullptr);
    NewF->setPrefixData(nullptr);
    NewF->setPrologueData(nullptr);
  }

  return NewGV;
}

/// Loop over all of the linked values to compute type mappings.  For example,
/// if we link "extern Foo *x" and "Foo *x = NULL", then we have two struct
/// types 'Foo' but one got renamed when the module was loaded into the same
/// LLVMContext.
void IRLinker::computeTypeMapping() {
  for (GlobalValue &SGV : SrcM->globals()) {
    GlobalValue *DGV = getLinkedToGlobal(&SGV);
    if (!DGV)
      continue;

    if (!DGV->hasAppendingLinkage() || !SGV.hasAppendingLinkage()) {
      TypeMap.addTypeMapping(DGV->getType(), SGV.getType());
      continue;
    }

    // Unify the element type of appending arrays.
    ArrayType *DAT = cast<ArrayType>(DGV->getValueType());
    ArrayType *SAT = cast<ArrayType>(SGV.getValueType());
    TypeMap.addTypeMapping(DAT->getElementType(), SAT->getElementType());
  }

  for (GlobalValue &SGV : *SrcM)
    if (GlobalValue *DGV = getLinkedToGlobal(&SGV))
      TypeMap.addTypeMapping(DGV->getType(), SGV.getType());

  for (GlobalValue &SGV : SrcM->aliases())
    if (GlobalValue *DGV = getLinkedToGlobal(&SGV))
      TypeMap.addTypeMapping(DGV->getType(), SGV.getType());

  // Incorporate types by name, scanning all the types in the source module.
  // At this point, the destination module may have a type "%foo = { i32 }" for
  // example.  When the source module got loaded into the same LLVMContext, if
  // it had the same type, it would have been renamed to "%foo.42 = { i32 }".
  std::vector<StructType *> Types = SrcM->getIdentifiedStructTypes();
  for (StructType *ST : Types) {
    if (!ST->hasName())
      continue;

    if (TypeMap.DstStructTypesSet.hasType(ST)) {
      // This is actually a type from the destination module.
      // getIdentifiedStructTypes() can have found it by walking debug info
      // metadata nodes, some of which get linked by name when ODR Type Uniquing
      // is enabled on the Context, from the source to the destination module.
      continue;
    }

    // Check to see if there is a dot in the name followed by a digit.
    size_t DotPos = ST->getName().rfind('.');
    if (DotPos == 0 || DotPos == StringRef::npos ||
        ST->getName().back() == '.' ||
        !isdigit(static_cast<unsigned char>(ST->getName()[DotPos + 1])))
      continue;

    // Check to see if the destination module has a struct with the prefix name.
    StructType *DST = DstM.getTypeByName(ST->getName().substr(0, DotPos));
    if (!DST)
      continue;

    // Don't use it if this actually came from the source module. They're in
    // the same LLVMContext after all. Also don't use it unless the type is
    // actually used in the destination module. This can happen in situations
    // like this:
    //
    //      Module A                         Module B
    //      --------                         --------
    //   %Z = type { %A }                %B = type { %C.1 }
    //   %A = type { %B.1, [7 x i8] }    %C.1 = type { i8* }
    //   %B.1 = type { %C }              %A.2 = type { %B.3, [5 x i8] }
    //   %C = type { i8* }               %B.3 = type { %C.1 }
    //
    // When we link Module B with Module A, the '%B' in Module B is
    // used. However, that would then use '%C.1'. But when we process '%C.1',
    // we prefer to take the '%C' version. So we are then left with both
    // '%C.1' and '%C' being used for the same types. This leads to some
    // variables using one type and some using the other.
    if (TypeMap.DstStructTypesSet.hasType(DST))
      TypeMap.addTypeMapping(DST, ST);
  }

  // Now that we have discovered all of the type equivalences, get a body for
  // any 'opaque' types in the dest module that are now resolved.
  TypeMap.linkDefinedTypeBodies();
}

static void getArrayElements(const Constant *C,
                             SmallVectorImpl<Constant *> &Dest) {
  unsigned NumElements = cast<ArrayType>(C->getType())->getNumElements();

  for (unsigned i = 0; i != NumElements; ++i)
    Dest.push_back(C->getAggregateElement(i));
}

/// If there were any appending global variables, link them together now.
Expected<Constant *>
IRLinker::linkAppendingVarProto(GlobalVariable *DstGV,
                                const GlobalVariable *SrcGV) {
  Type *EltTy = cast<ArrayType>(TypeMap.get(SrcGV->getValueType()))
                    ->getElementType();

  // FIXME: This upgrade is done during linking to support the C API.  Once the
  // old form is deprecated, we should move this upgrade to
  // llvm::UpgradeGlobalVariable() and simplify the logic here and in
  // Mapper::mapAppendingVariable() in ValueMapper.cpp.
  StringRef Name = SrcGV->getName();
  bool IsNewStructor = false;
  bool IsOldStructor = false;
  if (Name == "llvm.global_ctors" || Name == "llvm.global_dtors") {
    if (cast<StructType>(EltTy)->getNumElements() == 3)
      IsNewStructor = true;
    else
      IsOldStructor = true;
  }

  PointerType *VoidPtrTy = Type::getInt8Ty(SrcGV->getContext())->getPointerTo();
  if (IsOldStructor) {
    auto &ST = *cast<StructType>(EltTy);
    Type *Tys[3] = {ST.getElementType(0), ST.getElementType(1), VoidPtrTy};
    EltTy = StructType::get(SrcGV->getContext(), Tys, false);
  }

  uint64_t DstNumElements = 0;
  if (DstGV) {
    ArrayType *DstTy = cast<ArrayType>(DstGV->getValueType());
    DstNumElements = DstTy->getNumElements();

    if (!SrcGV->hasAppendingLinkage() || !DstGV->hasAppendingLinkage())
      return stringErr(
          "Linking globals named '" + SrcGV->getName() +
          "': can only link appending global with another appending "
          "global!");

    // Check to see that they two arrays agree on type.
    if (EltTy != DstTy->getElementType())
      return stringErr("Appending variables with different element types!");
    if (DstGV->isConstant() != SrcGV->isConstant())
      return stringErr("Appending variables linked with different const'ness!");

    if (DstGV->getAlignment() != SrcGV->getAlignment())
      return stringErr(
          "Appending variables with different alignment need to be linked!");

    if (DstGV->getVisibility() != SrcGV->getVisibility())
      return stringErr(
          "Appending variables with different visibility need to be linked!");

    if (DstGV->hasGlobalUnnamedAddr() != SrcGV->hasGlobalUnnamedAddr())
      return stringErr(
          "Appending variables with different unnamed_addr need to be linked!");

    if (DstGV->getSection() != SrcGV->getSection())
      return stringErr(
          "Appending variables with different section name need to be linked!");
  }

  SmallVector<Constant *, 16> SrcElements;
  getArrayElements(SrcGV->getInitializer(), SrcElements);

  if (IsNewStructor) {
    auto It = remove_if(SrcElements, [this](Constant *E) {
      auto *Key =
          dyn_cast<GlobalValue>(E->getAggregateElement(2)->stripPointerCasts());
      if (!Key)
        return false;
      GlobalValue *DGV = getLinkedToGlobal(Key);
      return !shouldLink(DGV, *Key);
    });
    SrcElements.erase(It, SrcElements.end());
  }
  uint64_t NewSize = DstNumElements + SrcElements.size();
  ArrayType *NewType = ArrayType::get(EltTy, NewSize);

  // Create the new global variable.
  GlobalVariable *NG = new GlobalVariable(
      DstM, NewType, SrcGV->isConstant(), SrcGV->getLinkage(),
      /*init*/ nullptr, /*name*/ "", DstGV, SrcGV->getThreadLocalMode(),
      SrcGV->getType()->getAddressSpace());

  NG->copyAttributesFrom(SrcGV);
  forceRenaming(NG, SrcGV->getName());

  Constant *Ret = ConstantExpr::getBitCast(NG, TypeMap.get(SrcGV->getType()));

  Mapper.scheduleMapAppendingVariable(*NG,
                                      DstGV ? DstGV->getInitializer() : nullptr,
                                      IsOldStructor, SrcElements);

  // Replace any uses of the two global variables with uses of the new
  // global.
  if (DstGV) {
    DstGV->replaceAllUsesWith(ConstantExpr::getBitCast(NG, DstGV->getType()));
    DstGV->eraseFromParent();
  }

  return Ret;
}

bool IRLinker::shouldLink(GlobalValue *DGV, GlobalValue &SGV) {
  if (ValuesToLink.count(&SGV) || SGV.hasLocalLinkage())
    return true;

  if (DGV && !DGV->isDeclarationForLinker())
    return false;

  if (SGV.isDeclaration() || DoneLinkingBodies)
    return false;

  // Callback to the client to give a chance to lazily add the Global to the
  // list of value to link.
  bool LazilyAdded = false;
  AddLazyFor(SGV, [this, &LazilyAdded](GlobalValue &GV) {
    maybeAdd(&GV);
    LazilyAdded = true;
  });
  return LazilyAdded;
}

Expected<Constant *> IRLinker::linkGlobalValueProto(GlobalValue *SGV,
                                                    bool ForAlias) {
  GlobalValue *DGV = getLinkedToGlobal(SGV);

  bool ShouldLink = shouldLink(DGV, *SGV);

  // just missing from map
  if (ShouldLink) {
    auto I = ValueMap.find(SGV);
    if (I != ValueMap.end())
      return cast<Constant>(I->second);

    I = AliasValueMap.find(SGV);
    if (I != AliasValueMap.end())
      return cast<Constant>(I->second);
  }

  if (!ShouldLink && ForAlias)
    DGV = nullptr;

  // Handle the ultra special appending linkage case first.
  assert(!DGV || SGV->hasAppendingLinkage() == DGV->hasAppendingLinkage());
  if (SGV->hasAppendingLinkage())
    return linkAppendingVarProto(cast_or_null<GlobalVariable>(DGV),
                                 cast<GlobalVariable>(SGV));

  GlobalValue *NewGV;
  if (DGV && !ShouldLink) {
    NewGV = DGV;
  } else {
    // If we are done linking global value bodies (i.e. we are performing
    // metadata linking), don't link in the global value due to this
    // reference, simply map it to null.
    if (DoneLinkingBodies)
      return nullptr;

    NewGV = copyGlobalValueProto(SGV, ShouldLink);
    if (ShouldLink || !ForAlias)
      forceRenaming(NewGV, SGV->getName());
  }

  // Overloaded intrinsics have overloaded types names as part of their
  // names. If we renamed overloaded types we should rename the intrinsic
  // as well.
  if (Function *F = dyn_cast<Function>(NewGV))
    if (auto Remangled = Intrinsic::remangleIntrinsicFunction(F))
      NewGV = Remangled.getValue();

  if (ShouldLink || ForAlias) {
    if (const Comdat *SC = SGV->getComdat()) {
      if (auto *GO = dyn_cast<GlobalObject>(NewGV)) {
        Comdat *DC = DstM.getOrInsertComdat(SC->getName());
        DC->setSelectionKind(SC->getSelectionKind());
        GO->setComdat(DC);
      }
    }
  }

  if (!ShouldLink && ForAlias)
    NewGV->setLinkage(GlobalValue::InternalLinkage);

  Constant *C = NewGV;
  if (DGV)
    C = ConstantExpr::getBitCast(NewGV, TypeMap.get(SGV->getType()));

  if (DGV && NewGV != DGV) {
    DGV->replaceAllUsesWith(ConstantExpr::getBitCast(NewGV, DGV->getType()));
    DGV->eraseFromParent();
  }

  return C;
}

/// Update the initializers in the Dest module now that all globals that may be
/// referenced are in Dest.
void IRLinker::linkGlobalVariable(GlobalVariable &Dst, GlobalVariable &Src) {
  // Figure out what the initializer looks like in the dest module.
  Mapper.scheduleMapGlobalInitializer(Dst, *Src.getInitializer());
}

/// Copy the source function over into the dest function and fix up references
/// to values. At this point we know that Dest is an external function, and
/// that Src is not.
Error IRLinker::linkFunctionBody(Function &Dst, Function &Src) {
  assert(Dst.isDeclaration() && !Src.isDeclaration());

  // Materialize if needed.
  if (Error Err = Src.materialize())
    return Err;

  // Link in the operands without remapping.
  if (Src.hasPrefixData())
    Dst.setPrefixData(Src.getPrefixData());
  if (Src.hasPrologueData())
    Dst.setPrologueData(Src.getPrologueData());
  if (Src.hasPersonalityFn())
    Dst.setPersonalityFn(Src.getPersonalityFn());

  // Copy over the metadata attachments without remapping.
  Dst.copyMetadata(&Src, 0);

  // Steal arguments and splice the body of Src into Dst.
  Dst.stealArgumentListFrom(Src);
  Dst.getBasicBlockList().splice(Dst.end(), Src.getBasicBlockList());

  // Everything has been moved over.  Remap it.
  Mapper.scheduleRemapFunction(Dst);
  return Error::success();
}

void IRLinker::linkAliasBody(GlobalAlias &Dst, GlobalAlias &Src) {
  Mapper.scheduleMapGlobalAliasee(Dst, *Src.getAliasee(), AliasMCID);
}

Error IRLinker::linkGlobalValueBody(GlobalValue &Dst, GlobalValue &Src) {
  if (auto *F = dyn_cast<Function>(&Src))
    return linkFunctionBody(cast<Function>(Dst), *F);
  if (auto *GVar = dyn_cast<GlobalVariable>(&Src)) {
    linkGlobalVariable(cast<GlobalVariable>(Dst), *GVar);
    return Error::success();
  }
  linkAliasBody(cast<GlobalAlias>(Dst), cast<GlobalAlias>(Src));
  return Error::success();
}

void IRLinker::prepareCompileUnitsForImport() {
  NamedMDNode *SrcCompileUnits = SrcM->getNamedMetadata("llvm.dbg.cu");
  if (!SrcCompileUnits)
    return;
  // When importing for ThinLTO, prevent importing of types listed on
  // the DICompileUnit that we don't need a copy of in the importing
  // module. They will be emitted by the originating module.
  for (unsigned I = 0, E = SrcCompileUnits->getNumOperands(); I != E; ++I) {
    auto *CU = cast<DICompileUnit>(SrcCompileUnits->getOperand(I));
    assert(CU && "Expected valid compile unit");
    // Enums, macros, and retained types don't need to be listed on the
    // imported DICompileUnit. This means they will only be imported
    // if reached from the mapped IR. Do this by setting their value map
    // entries to nullptr, which will automatically prevent their importing
    // when reached from the DICompileUnit during metadata mapping.
    ValueMap.MD()[CU->getRawEnumTypes()].reset(nullptr);
    ValueMap.MD()[CU->getRawMacros()].reset(nullptr);
    ValueMap.MD()[CU->getRawRetainedTypes()].reset(nullptr);
    // If we ever start importing global variable defs, we'll need to
    // add their DIGlobalVariable to the globals list on the imported
    // DICompileUnit. Confirm none are imported, and then we can
    // map the list of global variables to nullptr.
    assert(none_of(
               ValuesToLink,
               [](const GlobalValue *GV) { return isa<GlobalVariable>(GV); }) &&
           "Unexpected importing of a GlobalVariable definition");
    ValueMap.MD()[CU->getRawGlobalVariables()].reset(nullptr);

    // Imported entities only need to be mapped in if they have local
    // scope, as those might correspond to an imported entity inside a
    // function being imported (any locally scoped imported entities that
    // don't end up referenced by an imported function will not be emitted
    // into the object). Imported entities not in a local scope
    // (e.g. on the namespace) only need to be emitted by the originating
    // module. Create a list of the locally scoped imported entities, and
    // replace the source CUs imported entity list with the new list, so
    // only those are mapped in.
    // FIXME: Locally-scoped imported entities could be moved to the
    // functions they are local to instead of listing them on the CU, and
    // we would naturally only link in those needed by function importing.
    SmallVector<TrackingMDNodeRef, 4> AllImportedModules;
    bool ReplaceImportedEntities = false;
    for (auto *IE : CU->getImportedEntities()) {
      DIScope *Scope = IE->getScope();
      assert(Scope && "Invalid Scope encoding!");
      if (isa<DILocalScope>(Scope))
        AllImportedModules.emplace_back(IE);
      else
        ReplaceImportedEntities = true;
    }
    if (ReplaceImportedEntities) {
      if (!AllImportedModules.empty())
        CU->replaceImportedEntities(MDTuple::get(
            CU->getContext(),
            SmallVector<Metadata *, 16>(AllImportedModules.begin(),
                                        AllImportedModules.end())));
      else
        // If there were no local scope imported entities, we can map
        // the whole list to nullptr.
        ValueMap.MD()[CU->getRawImportedEntities()].reset(nullptr);
    }
  }
}

/// Insert all of the named MDNodes in Src into the Dest module.
void IRLinker::linkNamedMDNodes() {
  const NamedMDNode *SrcModFlags = SrcM->getModuleFlagsMetadata();
  for (const NamedMDNode &NMD : SrcM->named_metadata()) {
    // Don't link module flags here. Do them separately.
    if (&NMD == SrcModFlags)
      continue;
    NamedMDNode *DestNMD = DstM.getOrInsertNamedMetadata(NMD.getName());
    // Add Src elements into Dest node.
    for (const MDNode *Op : NMD.operands())
      DestNMD->addOperand(Mapper.mapMDNode(*Op));
  }
}

/// Merge the linker flags in Src into the Dest module.
Error IRLinker::linkModuleFlagsMetadata() {
  // If the source module has no module flags, we are done.
  const NamedMDNode *SrcModFlags = SrcM->getModuleFlagsMetadata();
  if (!SrcModFlags)
    return Error::success();

  // If the destination module doesn't have module flags yet, then just copy
  // over the source module's flags.
  NamedMDNode *DstModFlags = DstM.getOrInsertModuleFlagsMetadata();
  if (DstModFlags->getNumOperands() == 0) {
    for (unsigned I = 0, E = SrcModFlags->getNumOperands(); I != E; ++I)
      DstModFlags->addOperand(SrcModFlags->getOperand(I));

    return Error::success();
  }

  // First build a map of the existing module flags and requirements.
  DenseMap<MDString *, std::pair<MDNode *, unsigned>> Flags;
  SmallSetVector<MDNode *, 16> Requirements;
  for (unsigned I = 0, E = DstModFlags->getNumOperands(); I != E; ++I) {
    MDNode *Op = DstModFlags->getOperand(I);
    ConstantInt *Behavior = mdconst::extract<ConstantInt>(Op->getOperand(0));
    MDString *ID = cast<MDString>(Op->getOperand(1));

    if (Behavior->getZExtValue() == Module::Require) {
      Requirements.insert(cast<MDNode>(Op->getOperand(2)));
    } else {
      Flags[ID] = std::make_pair(Op, I);
    }
  }

  // Merge in the flags from the source module, and also collect its set of
  // requirements.
  for (unsigned I = 0, E = SrcModFlags->getNumOperands(); I != E; ++I) {
    MDNode *SrcOp = SrcModFlags->getOperand(I);
    ConstantInt *SrcBehavior =
        mdconst::extract<ConstantInt>(SrcOp->getOperand(0));
    MDString *ID = cast<MDString>(SrcOp->getOperand(1));
    MDNode *DstOp;
    unsigned DstIndex;
    std::tie(DstOp, DstIndex) = Flags.lookup(ID);
    unsigned SrcBehaviorValue = SrcBehavior->getZExtValue();

    // If this is a requirement, add it and continue.
    if (SrcBehaviorValue == Module::Require) {
      // If the destination module does not already have this requirement, add
      // it.
      if (Requirements.insert(cast<MDNode>(SrcOp->getOperand(2)))) {
        DstModFlags->addOperand(SrcOp);
      }
      continue;
    }

    // If there is no existing flag with this ID, just add it.
    if (!DstOp) {
      Flags[ID] = std::make_pair(SrcOp, DstModFlags->getNumOperands());
      DstModFlags->addOperand(SrcOp);
      continue;
    }

    // Otherwise, perform a merge.
    ConstantInt *DstBehavior =
        mdconst::extract<ConstantInt>(DstOp->getOperand(0));
    unsigned DstBehaviorValue = DstBehavior->getZExtValue();

    // If either flag has override behavior, handle it first.
    if (DstBehaviorValue == Module::Override) {
      // Diagnose inconsistent flags which both have override behavior.
      if (SrcBehaviorValue == Module::Override &&
          SrcOp->getOperand(2) != DstOp->getOperand(2))
        return stringErr("linking module flags '" + ID->getString() +
                         "': IDs have conflicting override values");
      continue;
    } else if (SrcBehaviorValue == Module::Override) {
      // Update the destination flag to that of the source.
      DstModFlags->setOperand(DstIndex, SrcOp);
      Flags[ID].first = SrcOp;
      continue;
    }

    // Diagnose inconsistent merge behavior types.
    if (SrcBehaviorValue != DstBehaviorValue)
      return stringErr("linking module flags '" + ID->getString() +
                       "': IDs have conflicting behaviors");

    auto replaceDstValue = [&](MDNode *New) {
      Metadata *FlagOps[] = {DstOp->getOperand(0), ID, New};
      MDNode *Flag = MDNode::get(DstM.getContext(), FlagOps);
      DstModFlags->setOperand(DstIndex, Flag);
      Flags[ID].first = Flag;
    };

    // Perform the merge for standard behavior types.
    switch (SrcBehaviorValue) {
    case Module::Require:
    case Module::Override:
      llvm_unreachable("not possible");
    case Module::Error: {
      // Emit an error if the values differ.
      if (SrcOp->getOperand(2) != DstOp->getOperand(2))
        return stringErr("linking module flags '" + ID->getString() +
                         "': IDs have conflicting values");
      continue;
    }
    case Module::Warning: {
      // Emit a warning if the values differ.
      if (SrcOp->getOperand(2) != DstOp->getOperand(2)) {
        emitWarning("linking module flags '" + ID->getString() +
                    "': IDs have conflicting values");
      }
      continue;
    }
    case Module::Append: {
      MDNode *DstValue = cast<MDNode>(DstOp->getOperand(2));
      MDNode *SrcValue = cast<MDNode>(SrcOp->getOperand(2));
      SmallVector<Metadata *, 8> MDs;
      MDs.reserve(DstValue->getNumOperands() + SrcValue->getNumOperands());
      MDs.append(DstValue->op_begin(), DstValue->op_end());
      MDs.append(SrcValue->op_begin(), SrcValue->op_end());

      replaceDstValue(MDNode::get(DstM.getContext(), MDs));
      break;
    }
    case Module::AppendUnique: {
      SmallSetVector<Metadata *, 16> Elts;
      MDNode *DstValue = cast<MDNode>(DstOp->getOperand(2));
      MDNode *SrcValue = cast<MDNode>(SrcOp->getOperand(2));
      Elts.insert(DstValue->op_begin(), DstValue->op_end());
      Elts.insert(SrcValue->op_begin(), SrcValue->op_end());

      replaceDstValue(MDNode::get(DstM.getContext(),
                                  makeArrayRef(Elts.begin(), Elts.end())));
      break;
    }
    }
  }

  // Check all of the requirements.
  for (unsigned I = 0, E = Requirements.size(); I != E; ++I) {
    MDNode *Requirement = Requirements[I];
    MDString *Flag = cast<MDString>(Requirement->getOperand(0));
    Metadata *ReqValue = Requirement->getOperand(1);

    MDNode *Op = Flags[Flag].first;
    if (!Op || Op->getOperand(2) != ReqValue)
      return stringErr("linking module flags '" + Flag->getString() +
                       "': does not have the required value");
  }
  return Error::success();
}

// This function returns true if the triples match.
static bool triplesMatch(const Triple &T0, const Triple &T1) {
  // If vendor is apple, ignore the version number.
  if (T0.getVendor() == Triple::Apple)
    return T0.getArch() == T1.getArch() && T0.getSubArch() == T1.getSubArch() &&
           T0.getVendor() == T1.getVendor() && T0.getOS() == T1.getOS();

  return T0 == T1;
}

// This function returns the merged triple.
static std::string mergeTriples(const Triple &SrcTriple,
                                const Triple &DstTriple) {
  // If vendor is apple, pick the triple with the larger version number.
  if (SrcTriple.getVendor() == Triple::Apple)
    if (DstTriple.isOSVersionLT(SrcTriple))
      return SrcTriple.str();

  return DstTriple.str();
}

Error IRLinker::run() {
  // Ensure metadata materialized before value mapping.
  if (SrcM->getMaterializer())
    if (Error Err = SrcM->getMaterializer()->materializeMetadata())
      return Err;

  // Inherit the target data from the source module if the destination module
  // doesn't have one already.
  if (DstM.getDataLayout().isDefault())
    DstM.setDataLayout(SrcM->getDataLayout());

  if (SrcM->getDataLayout() != DstM.getDataLayout()) {
    emitWarning("Linking two modules of different data layouts: '" +
                SrcM->getModuleIdentifier() + "' is '" +
                SrcM->getDataLayoutStr() + "' whereas '" +
                DstM.getModuleIdentifier() + "' is '" +
                DstM.getDataLayoutStr() + "'\n");
  }

  // Copy the target triple from the source to dest if the dest's is empty.
  if (DstM.getTargetTriple().empty() && !SrcM->getTargetTriple().empty())
    DstM.setTargetTriple(SrcM->getTargetTriple());

  Triple SrcTriple(SrcM->getTargetTriple()), DstTriple(DstM.getTargetTriple());

  if (!SrcM->getTargetTriple().empty() && !triplesMatch(SrcTriple, DstTriple))
    emitWarning("Linking two modules of different target triples: " +
                SrcM->getModuleIdentifier() + "' is '" +
                SrcM->getTargetTriple() + "' whereas '" +
                DstM.getModuleIdentifier() + "' is '" + DstM.getTargetTriple() +
                "'\n");

  DstM.setTargetTriple(mergeTriples(SrcTriple, DstTriple));

  // Append the module inline asm string.
  if (LinkModuleInlineAsm && !SrcM->getModuleInlineAsm().empty()) {
    if (DstM.getModuleInlineAsm().empty())
      DstM.setModuleInlineAsm(SrcM->getModuleInlineAsm());
    else
      DstM.setModuleInlineAsm(DstM.getModuleInlineAsm() + "\n" +
                              SrcM->getModuleInlineAsm());
  }

  // Loop over all of the linked values to compute type mappings.
  computeTypeMapping();

  std::reverse(Worklist.begin(), Worklist.end());
  while (!Worklist.empty()) {
    GlobalValue *GV = Worklist.back();
    Worklist.pop_back();

    // Already mapped.
    if (ValueMap.find(GV) != ValueMap.end() ||
        AliasValueMap.find(GV) != AliasValueMap.end())
      continue;

    assert(!GV->isDeclaration());
    Mapper.mapValue(*GV);
    if (FoundError)
      return std::move(*FoundError);
  }

  // Note that we are done linking global value bodies. This prevents
  // metadata linking from creating new references.
  DoneLinkingBodies = true;
  Mapper.addFlags(RF_NullMapMissingGlobalValues);

  // Remap all of the named MDNodes in Src into the DstM module. We do this
  // after linking GlobalValues so that MDNodes that reference GlobalValues
  // are properly remapped.
  linkNamedMDNodes();

  // Merge the module flags into the DstM module.
  return linkModuleFlagsMetadata();
}

IRMover::StructTypeKeyInfo::KeyTy::KeyTy(ArrayRef<Type *> E, bool P)
    : ETypes(E), IsPacked(P) {}

IRMover::StructTypeKeyInfo::KeyTy::KeyTy(const StructType *ST)
    : ETypes(ST->elements()), IsPacked(ST->isPacked()) {}

bool IRMover::StructTypeKeyInfo::KeyTy::operator==(const KeyTy &That) const {
  return IsPacked == That.IsPacked && ETypes == That.ETypes;
}

bool IRMover::StructTypeKeyInfo::KeyTy::operator!=(const KeyTy &That) const {
  return !this->operator==(That);
}

StructType *IRMover::StructTypeKeyInfo::getEmptyKey() {
  return DenseMapInfo<StructType *>::getEmptyKey();
}

StructType *IRMover::StructTypeKeyInfo::getTombstoneKey() {
  return DenseMapInfo<StructType *>::getTombstoneKey();
}

unsigned IRMover::StructTypeKeyInfo::getHashValue(const KeyTy &Key) {
  return hash_combine(hash_combine_range(Key.ETypes.begin(), Key.ETypes.end()),
                      Key.IsPacked);
}

unsigned IRMover::StructTypeKeyInfo::getHashValue(const StructType *ST) {
  return getHashValue(KeyTy(ST));
}

bool IRMover::StructTypeKeyInfo::isEqual(const KeyTy &LHS,
                                         const StructType *RHS) {
  if (RHS == getEmptyKey() || RHS == getTombstoneKey())
    return false;
  return LHS == KeyTy(RHS);
}

bool IRMover::StructTypeKeyInfo::isEqual(const StructType *LHS,
                                         const StructType *RHS) {
  if (RHS == getEmptyKey() || RHS == getTombstoneKey())
    return LHS == RHS;
  return KeyTy(LHS) == KeyTy(RHS);
}

void IRMover::IdentifiedStructTypeSet::addNonOpaque(StructType *Ty) {
  assert(!Ty->isOpaque());
  NonOpaqueStructTypes.insert(Ty);
}

void IRMover::IdentifiedStructTypeSet::switchToNonOpaque(StructType *Ty) {
  assert(!Ty->isOpaque());
  NonOpaqueStructTypes.insert(Ty);
  bool Removed = OpaqueStructTypes.erase(Ty);
  (void)Removed;
  assert(Removed);
}

void IRMover::IdentifiedStructTypeSet::addOpaque(StructType *Ty) {
  assert(Ty->isOpaque());
  OpaqueStructTypes.insert(Ty);
}

StructType *
IRMover::IdentifiedStructTypeSet::findNonOpaque(ArrayRef<Type *> ETypes,
                                                bool IsPacked) {
  IRMover::StructTypeKeyInfo::KeyTy Key(ETypes, IsPacked);
  auto I = NonOpaqueStructTypes.find_as(Key);
  return I == NonOpaqueStructTypes.end() ? nullptr : *I;
}

bool IRMover::IdentifiedStructTypeSet::hasType(StructType *Ty) {
  if (Ty->isOpaque())
    return OpaqueStructTypes.count(Ty);
  auto I = NonOpaqueStructTypes.find(Ty);
  return I == NonOpaqueStructTypes.end() ? false : *I == Ty;
}

IRMover::IRMover(Module &M) : Composite(M) {
  TypeFinder StructTypes;
  StructTypes.run(M, /* OnlyNamed */ false);
  for (StructType *Ty : StructTypes) {
    if (Ty->isOpaque())
      IdentifiedStructTypes.addOpaque(Ty);
    else
      IdentifiedStructTypes.addNonOpaque(Ty);
  }
  // Self-map metadatas in the destination module. This is needed when
  // DebugTypeODRUniquing is enabled on the LLVMContext, since metadata in the
  // destination module may be reached from the source module.
  for (auto *MD : StructTypes.getVisitedMetadata()) {
    SharedMDs[MD].reset(const_cast<MDNode *>(MD));
  }
}

Error IRMover::move(
    std::unique_ptr<Module> Src, ArrayRef<GlobalValue *> ValuesToLink,
    std::function<void(GlobalValue &, ValueAdder Add)> AddLazyFor,
    bool LinkModuleInlineAsm, bool IsPerformingImport) {
  IRLinker TheIRLinker(Composite, SharedMDs, IdentifiedStructTypes,
                       std::move(Src), ValuesToLink, std::move(AddLazyFor),
                       LinkModuleInlineAsm, IsPerformingImport);
  Error E = TheIRLinker.run();
  Composite.dropTriviallyDeadConstantArrays();
  return E;
}