llvm.org GIT mirror llvm / e3e43d9 lib / CodeGen / StackColoring.cpp
e3e43d9

Tree @e3e43d9 (Download .tar.gz)

StackColoring.cpp @e3e43d9raw · history · blame

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
//===-- StackColoring.cpp -------------------------------------------------===//
//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This pass implements the stack-coloring optimization that looks for
// lifetime markers machine instructions (LIFESTART_BEGIN and LIFESTART_END),
// which represent the possible lifetime of stack slots. It attempts to
// merge disjoint stack slots and reduce the used stack space.
// NOTE: This pass is not StackSlotColoring, which optimizes spill slots.
//
// TODO: In the future we plan to improve stack coloring in the following ways:
// 1. Allow merging multiple small slots into a single larger slot at different
//    offsets.
// 2. Merge this pass with StackSlotColoring and allow merging of allocas with
//    spill slots.
//
//===----------------------------------------------------------------------===//

#include "llvm/ADT/BitVector.h"
#include "llvm/ADT/DepthFirstIterator.h"
#include "llvm/ADT/SetVector.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/Analysis/ValueTracking.h"
#include "llvm/CodeGen/LiveInterval.h"
#include "llvm/CodeGen/MachineBasicBlock.h"
#include "llvm/CodeGen/MachineFrameInfo.h"
#include "llvm/CodeGen/MachineFunctionPass.h"
#include "llvm/CodeGen/MachineLoopInfo.h"
#include "llvm/CodeGen/MachineMemOperand.h"
#include "llvm/CodeGen/MachineModuleInfo.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/CodeGen/Passes.h"
#include "llvm/CodeGen/PseudoSourceValue.h"
#include "llvm/CodeGen/SlotIndexes.h"
#include "llvm/CodeGen/StackProtector.h"
#include "llvm/CodeGen/WinEHFuncInfo.h"
#include "llvm/IR/DebugInfo.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/IntrinsicInst.h"
#include "llvm/IR/Module.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Target/TargetInstrInfo.h"
#include "llvm/Target/TargetRegisterInfo.h"

using namespace llvm;

#define DEBUG_TYPE "stack-coloring"

static cl::opt<bool>
DisableColoring("no-stack-coloring",
        cl::init(false), cl::Hidden,
        cl::desc("Disable stack coloring"));

/// The user may write code that uses allocas outside of the declared lifetime
/// zone. This can happen when the user returns a reference to a local
/// data-structure. We can detect these cases and decide not to optimize the
/// code. If this flag is enabled, we try to save the user. This option
/// is treated as overriding LifetimeStartOnFirstUse below.
static cl::opt<bool>
ProtectFromEscapedAllocas("protect-from-escaped-allocas",
                          cl::init(false), cl::Hidden,
                          cl::desc("Do not optimize lifetime zones that "
                                   "are broken"));

/// Enable enhanced dataflow scheme for lifetime analysis (treat first
/// use of stack slot as start of slot lifetime, as opposed to looking
/// for LIFETIME_START marker). See "Implementation notes" below for
/// more info.
static cl::opt<bool>
LifetimeStartOnFirstUse("stackcoloring-lifetime-start-on-first-use",
        cl::init(true), cl::Hidden,
        cl::desc("Treat stack lifetimes as starting on first use, not on START marker."));


STATISTIC(NumMarkerSeen,  "Number of lifetime markers found.");
STATISTIC(StackSpaceSaved, "Number of bytes saved due to merging slots.");
STATISTIC(StackSlotMerged, "Number of stack slot merged.");
STATISTIC(EscapedAllocas, "Number of allocas that escaped the lifetime region");

//
// Implementation Notes:
// ---------------------
//
// Consider the following motivating example:
//
//     int foo() {
//       char b1[1024], b2[1024];
//       if (...) {
//         char b3[1024];
//         <uses of b1, b3>;
//         return x;
//       } else {
//         char b4[1024], b5[1024];
//         <uses of b2, b4, b5>;
//         return y;
//       }
//     }
//
// In the code above, "b3" and "b4" are declared in distinct lexical
// scopes, meaning that it is easy to prove that they can share the
// same stack slot. Variables "b1" and "b2" are declared in the same
// scope, meaning that from a lexical point of view, their lifetimes
// overlap. From a control flow pointer of view, however, the two
// variables are accessed in disjoint regions of the CFG, thus it
// should be possible for them to share the same stack slot. An ideal
// stack allocation for the function above would look like:
//
//     slot 0: b1, b2
//     slot 1: b3, b4
//     slot 2: b5
//
// Achieving this allocation is tricky, however, due to the way
// lifetime markers are inserted. Here is a simplified view of the
// control flow graph for the code above:
//
//                +------  block 0 -------+
//               0| LIFETIME_START b1, b2 |
//               1| <test 'if' condition> |
//                +-----------------------+
//                   ./              \.
//   +------  block 1 -------+   +------  block 2 -------+
//  2| LIFETIME_START b3     |  5| LIFETIME_START b4, b5 |
//  3| <uses of b1, b3>      |  6| <uses of b2, b4, b5>  |
//  4| LIFETIME_END b3       |  7| LIFETIME_END b4, b5   |
//   +-----------------------+   +-----------------------+
//                   \.              /.
//                +------  block 3 -------+
//               8| <cleanupcode>         |
//               9| LIFETIME_END b1, b2   |
//              10| return                |
//                +-----------------------+
//
// If we create live intervals for the variables above strictly based
// on the lifetime markers, we'll get the set of intervals on the
// left. If we ignore the lifetime start markers and instead treat a
// variable's lifetime as beginning with the first reference to the
// var, then we get the intervals on the right.
//
//            LIFETIME_START      First Use
//     b1:    [0,9]               [3,4] [8,9]
//     b2:    [0,9]               [6,9]
//     b3:    [2,4]               [3,4]
//     b4:    [5,7]               [6,7]
//     b5:    [5,7]               [6,7]
//
// For the intervals on the left, the best we can do is overlap two
// variables (b3 and b4, for example); this gives us a stack size of
// 4*1024 bytes, not ideal. When treating first-use as the start of a
// lifetime, we can additionally overlap b1 and b5, giving us a 3*1024
// byte stack (better).
//
// Relying entirely on first-use of stack slots is problematic,
// however, due to the fact that optimizations can sometimes migrate
// uses of a variable outside of its lifetime start/end region. Here
// is an example:
//
//     int bar() {
//       char b1[1024], b2[1024];
//       if (...) {
//         <uses of b2>
//         return y;
//       } else {
//         <uses of b1>
//         while (...) {
//           char b3[1024];
//           <uses of b3>
//         }
//       }
//     }
//
// Before optimization, the control flow graph for the code above
// might look like the following:
//
//                +------  block 0 -------+
//               0| LIFETIME_START b1, b2 |
//               1| <test 'if' condition> |
//                +-----------------------+
//                   ./              \.
//   +------  block 1 -------+    +------- block 2 -------+
//  2| <uses of b2>          |   3| <uses of b1>          |
//   +-----------------------+    +-----------------------+
//              |                            |
//              |                 +------- block 3 -------+ <-\.
//              |                4| <while condition>     |    |
//              |                 +-----------------------+    |
//              |               /          |                   |
//              |              /  +------- block 4 -------+
//              \             /  5| LIFETIME_START b3     |    |
//               \           /   6| <uses of b3>          |    |
//                \         /    7| LIFETIME_END b3       |    |
//                 \        |    +------------------------+    |
//                  \       |                 \                /
//                +------  block 5 -----+      \---------------
//               8| <cleanupcode>       |
//               9| LIFETIME_END b1, b2 |
//              10| return              |
//                +---------------------+
//
// During optimization, however, it can happen that an instruction
// computing an address in "b3" (for example, a loop-invariant GEP) is
// hoisted up out of the loop from block 4 to block 2.  [Note that
// this is not an actual load from the stack, only an instruction that
// computes the address to be loaded]. If this happens, there is now a
// path leading from the first use of b3 to the return instruction
// that does not encounter the b3 LIFETIME_END, hence b3's lifetime is
// now larger than if we were computing live intervals strictly based
// on lifetime markers. In the example above, this lengthened lifetime
// would mean that it would appear illegal to overlap b3 with b2.
//
// To deal with this such cases, the code in ::collectMarkers() below
// tries to identify "degenerate" slots -- those slots where on a single
// forward pass through the CFG we encounter a first reference to slot
// K before we hit the slot K lifetime start marker. For such slots,
// we fall back on using the lifetime start marker as the beginning of
// the variable's lifetime.  NB: with this implementation, slots can
// appear degenerate in cases where there is unstructured control flow:
//
//    if (q) goto mid;
//    if (x > 9) {
//         int b[100];
//         memcpy(&b[0], ...);
//    mid: b[k] = ...;
//         abc(&b);
//    }
//
// If in RPO ordering chosen to walk the CFG  we happen to visit the b[k]
// before visiting the memcpy block (which will contain the lifetime start
// for "b" then it will appear that 'b' has a degenerate lifetime.
//

//===----------------------------------------------------------------------===//
//                           StackColoring Pass
//===----------------------------------------------------------------------===//

namespace {
/// StackColoring - A machine pass for merging disjoint stack allocations,
/// marked by the LIFETIME_START and LIFETIME_END pseudo instructions.
class StackColoring : public MachineFunctionPass {
  MachineFrameInfo *MFI;
  MachineFunction *MF;

  /// A class representing liveness information for a single basic block.
  /// Each bit in the BitVector represents the liveness property
  /// for a different stack slot.
  struct BlockLifetimeInfo {
    /// Which slots BEGINs in each basic block.
    BitVector Begin;
    /// Which slots ENDs in each basic block.
    BitVector End;
    /// Which slots are marked as LIVE_IN, coming into each basic block.
    BitVector LiveIn;
    /// Which slots are marked as LIVE_OUT, coming out of each basic block.
    BitVector LiveOut;
  };

  /// Maps active slots (per bit) for each basic block.
  typedef DenseMap<const MachineBasicBlock*, BlockLifetimeInfo> LivenessMap;
  LivenessMap BlockLiveness;

  /// Maps serial numbers to basic blocks.
  DenseMap<const MachineBasicBlock*, int> BasicBlocks;
  /// Maps basic blocks to a serial number.
  SmallVector<const MachineBasicBlock*, 8> BasicBlockNumbering;

  /// Maps liveness intervals for each slot.
  SmallVector<std::unique_ptr<LiveInterval>, 16> Intervals;
  /// VNInfo is used for the construction of LiveIntervals.
  VNInfo::Allocator VNInfoAllocator;
  /// SlotIndex analysis object.
  SlotIndexes *Indexes;
  /// The stack protector object.
  StackProtector *SP;

  /// The list of lifetime markers found. These markers are to be removed
  /// once the coloring is done.
  SmallVector<MachineInstr*, 8> Markers;

  /// Record the FI slots for which we have seen some sort of
  /// lifetime marker (either start or end).
  BitVector InterestingSlots;

  /// FI slots that need to be handled conservatively (for these
  /// slots lifetime-start-on-first-use is disabled).
  BitVector ConservativeSlots;

  /// Number of iterations taken during data flow analysis.
  unsigned NumIterations;

public:
  static char ID;
  StackColoring() : MachineFunctionPass(ID) {
    initializeStackColoringPass(*PassRegistry::getPassRegistry());
  }
  void getAnalysisUsage(AnalysisUsage &AU) const override;
  bool runOnMachineFunction(MachineFunction &MF) override;

private:
  /// Debug.
  void dump() const;
  void dumpIntervals() const;
  void dumpBB(MachineBasicBlock *MBB) const;
  void dumpBV(const char *tag, const BitVector &BV) const;

  /// Removes all of the lifetime marker instructions from the function.
  /// \returns true if any markers were removed.
  bool removeAllMarkers();

  /// Scan the machine function and find all of the lifetime markers.
  /// Record the findings in the BEGIN and END vectors.
  /// \returns the number of markers found.
  unsigned collectMarkers(unsigned NumSlot);

  /// Perform the dataflow calculation and calculate the lifetime for each of
  /// the slots, based on the BEGIN/END vectors. Set the LifetimeLIVE_IN and
  /// LifetimeLIVE_OUT maps that represent which stack slots are live coming
  /// in and out blocks.
  void calculateLocalLiveness();

  /// Returns TRUE if we're using the first-use-begins-lifetime method for
  /// this slot (if FALSE, then the start marker is treated as start of lifetime).
  bool applyFirstUse(int Slot) {
    if (!LifetimeStartOnFirstUse || ProtectFromEscapedAllocas)
      return false;
    if (ConservativeSlots.test(Slot))
      return false;
    return true;
  }

  /// Examines the specified instruction and returns TRUE if the instruction
  /// represents the start or end of an interesting lifetime. The slot or slots
  /// starting or ending are added to the vector "slots" and "isStart" is set
  /// accordingly.
  /// \returns True if inst contains a lifetime start or end
  bool isLifetimeStartOrEnd(const MachineInstr &MI,
                            SmallVector<int, 4> &slots,
                            bool &isStart);

  /// Construct the LiveIntervals for the slots.
  void calculateLiveIntervals(unsigned NumSlots);

  /// Go over the machine function and change instructions which use stack
  /// slots to use the joint slots.
  void remapInstructions(DenseMap<int, int> &SlotRemap);

  /// The input program may contain instructions which are not inside lifetime
  /// markers. This can happen due to a bug in the compiler or due to a bug in
  /// user code (for example, returning a reference to a local variable).
  /// This procedure checks all of the instructions in the function and
  /// invalidates lifetime ranges which do not contain all of the instructions
  /// which access that frame slot.
  void removeInvalidSlotRanges();

  /// Map entries which point to other entries to their destination.
  ///   A->B->C becomes A->C.
  void expungeSlotMap(DenseMap<int, int> &SlotRemap, unsigned NumSlots);

  /// Used in collectMarkers
  typedef DenseMap<const MachineBasicBlock*, BitVector> BlockBitVecMap;
};
} // end anonymous namespace

char StackColoring::ID = 0;
char &llvm::StackColoringID = StackColoring::ID;

INITIALIZE_PASS_BEGIN(StackColoring, DEBUG_TYPE,
                      "Merge disjoint stack slots", false, false)
INITIALIZE_PASS_DEPENDENCY(SlotIndexes)
INITIALIZE_PASS_DEPENDENCY(StackProtector)
INITIALIZE_PASS_END(StackColoring, DEBUG_TYPE,
                    "Merge disjoint stack slots", false, false)

void StackColoring::getAnalysisUsage(AnalysisUsage &AU) const {
  AU.addRequired<SlotIndexes>();
  AU.addRequired<StackProtector>();
  MachineFunctionPass::getAnalysisUsage(AU);
}

#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
LLVM_DUMP_METHOD void StackColoring::dumpBV(const char *tag,
                                            const BitVector &BV) const {
  dbgs() << tag << " : { ";
  for (unsigned I = 0, E = BV.size(); I != E; ++I)
    dbgs() << BV.test(I) << " ";
  dbgs() << "}\n";
}

LLVM_DUMP_METHOD void StackColoring::dumpBB(MachineBasicBlock *MBB) const {
  LivenessMap::const_iterator BI = BlockLiveness.find(MBB);
  assert(BI != BlockLiveness.end() && "Block not found");
  const BlockLifetimeInfo &BlockInfo = BI->second;

  dumpBV("BEGIN", BlockInfo.Begin);
  dumpBV("END", BlockInfo.End);
  dumpBV("LIVE_IN", BlockInfo.LiveIn);
  dumpBV("LIVE_OUT", BlockInfo.LiveOut);
}

LLVM_DUMP_METHOD void StackColoring::dump() const {
  for (MachineBasicBlock *MBB : depth_first(MF)) {
    dbgs() << "Inspecting block #" << MBB->getNumber() << " ["
           << MBB->getName() << "]\n";
    dumpBB(MBB);
  }
}

LLVM_DUMP_METHOD void StackColoring::dumpIntervals() const {
  for (unsigned I = 0, E = Intervals.size(); I != E; ++I) {
    dbgs() << "Interval[" << I << "]:\n";
    Intervals[I]->dump();
  }
}
#endif

static inline int getStartOrEndSlot(const MachineInstr &MI)
{
  assert((MI.getOpcode() == TargetOpcode::LIFETIME_START ||
          MI.getOpcode() == TargetOpcode::LIFETIME_END) &&
         "Expected LIFETIME_START or LIFETIME_END op");
  const MachineOperand &MO = MI.getOperand(0);
  int Slot = MO.getIndex();
  if (Slot >= 0)
    return Slot;
  return -1;
}

//
// At the moment the only way to end a variable lifetime is with
// a VARIABLE_LIFETIME op (which can't contain a start). If things
// change and the IR allows for a single inst that both begins
// and ends lifetime(s), this interface will need to be reworked.
//
bool StackColoring::isLifetimeStartOrEnd(const MachineInstr &MI,
                                         SmallVector<int, 4> &slots,
                                         bool &isStart)
{
  if (MI.getOpcode() == TargetOpcode::LIFETIME_START ||
      MI.getOpcode() == TargetOpcode::LIFETIME_END) {
    int Slot = getStartOrEndSlot(MI);
    if (Slot < 0)
      return false;
    if (!InterestingSlots.test(Slot))
      return false;
    slots.push_back(Slot);
    if (MI.getOpcode() == TargetOpcode::LIFETIME_END) {
      isStart = false;
      return true;
    }
    if (! applyFirstUse(Slot)) {
      isStart = true;
      return true;
    }
  } else if (LifetimeStartOnFirstUse && !ProtectFromEscapedAllocas) {
    if (! MI.isDebugValue()) {
      bool found = false;
      for (const MachineOperand &MO : MI.operands()) {
        if (!MO.isFI())
          continue;
        int Slot = MO.getIndex();
        if (Slot<0)
          continue;
        if (InterestingSlots.test(Slot) && applyFirstUse(Slot)) {
          slots.push_back(Slot);
          found = true;
        }
      }
      if (found) {
        isStart = true;
        return true;
      }
    }
  }
  return false;
}

unsigned StackColoring::collectMarkers(unsigned NumSlot)
{
  unsigned MarkersFound = 0;
  BlockBitVecMap SeenStartMap;
  InterestingSlots.clear();
  InterestingSlots.resize(NumSlot);
  ConservativeSlots.clear();
  ConservativeSlots.resize(NumSlot);

  // number of start and end lifetime ops for each slot
  SmallVector<int, 8> NumStartLifetimes(NumSlot, 0);
  SmallVector<int, 8> NumEndLifetimes(NumSlot, 0);

  // Step 1: collect markers and populate the "InterestingSlots"
  // and "ConservativeSlots" sets.
  for (MachineBasicBlock *MBB : depth_first(MF)) {

    // Compute the set of slots for which we've seen a START marker but have
    // not yet seen an END marker at this point in the walk (e.g. on entry
    // to this bb).
    BitVector BetweenStartEnd;
    BetweenStartEnd.resize(NumSlot);
    for (MachineBasicBlock::const_pred_iterator PI = MBB->pred_begin(),
             PE = MBB->pred_end(); PI != PE; ++PI) {
      BlockBitVecMap::const_iterator I = SeenStartMap.find(*PI);
      if (I != SeenStartMap.end()) {
        BetweenStartEnd |= I->second;
      }
    }

    // Walk the instructions in the block to look for start/end ops.
    for (MachineInstr &MI : *MBB) {
      if (MI.getOpcode() == TargetOpcode::LIFETIME_START ||
          MI.getOpcode() == TargetOpcode::LIFETIME_END) {
        int Slot = getStartOrEndSlot(MI);
        if (Slot < 0)
          continue;
        InterestingSlots.set(Slot);
        if (MI.getOpcode() == TargetOpcode::LIFETIME_START) {
          BetweenStartEnd.set(Slot);
          NumStartLifetimes[Slot] += 1;
        } else {
          BetweenStartEnd.reset(Slot);
          NumEndLifetimes[Slot] += 1;
        }
        const AllocaInst *Allocation = MFI->getObjectAllocation(Slot);
        if (Allocation) {
          DEBUG(dbgs() << "Found a lifetime ");
          DEBUG(dbgs() << (MI.getOpcode() == TargetOpcode::LIFETIME_START
                               ? "start"
                               : "end"));
          DEBUG(dbgs() << " marker for slot #" << Slot);
          DEBUG(dbgs() << " with allocation: " << Allocation->getName()
                       << "\n");
        }
        Markers.push_back(&MI);
        MarkersFound += 1;
      } else {
        for (const MachineOperand &MO : MI.operands()) {
          if (!MO.isFI())
            continue;
          int Slot = MO.getIndex();
          if (Slot < 0)
            continue;
          if (! BetweenStartEnd.test(Slot)) {
            ConservativeSlots.set(Slot);
          }
        }
      }
    }
    BitVector &SeenStart = SeenStartMap[MBB];
    SeenStart |= BetweenStartEnd;
  }
  if (!MarkersFound) {
    return 0;
  }

  // PR27903: slots with multiple start or end lifetime ops are not
  // safe to enable for "lifetime-start-on-first-use".
  for (unsigned slot = 0; slot < NumSlot; ++slot)
    if (NumStartLifetimes[slot] > 1 || NumEndLifetimes[slot] > 1)
      ConservativeSlots.set(slot);
  DEBUG(dumpBV("Conservative slots", ConservativeSlots));

  // Step 2: compute begin/end sets for each block

  // NOTE: We use a depth-first iteration to ensure that we obtain a
  // deterministic numbering.
  for (MachineBasicBlock *MBB : depth_first(MF)) {

    // Assign a serial number to this basic block.
    BasicBlocks[MBB] = BasicBlockNumbering.size();
    BasicBlockNumbering.push_back(MBB);

    // Keep a reference to avoid repeated lookups.
    BlockLifetimeInfo &BlockInfo = BlockLiveness[MBB];

    BlockInfo.Begin.resize(NumSlot);
    BlockInfo.End.resize(NumSlot);

    SmallVector<int, 4> slots;
    for (MachineInstr &MI : *MBB) {
      bool isStart = false;
      slots.clear();
      if (isLifetimeStartOrEnd(MI, slots, isStart)) {
        if (!isStart) {
          assert(slots.size() == 1 && "unexpected: MI ends multiple slots");
          int Slot = slots[0];
          if (BlockInfo.Begin.test(Slot)) {
            BlockInfo.Begin.reset(Slot);
          }
          BlockInfo.End.set(Slot);
        } else {
          for (auto Slot : slots) {
            DEBUG(dbgs() << "Found a use of slot #" << Slot);
            DEBUG(dbgs() << " at BB#" << MBB->getNumber() << " index ");
            DEBUG(Indexes->getInstructionIndex(MI).print(dbgs()));
            const AllocaInst *Allocation = MFI->getObjectAllocation(Slot);
            if (Allocation) {
              DEBUG(dbgs() << " with allocation: "<< Allocation->getName());
            }
            DEBUG(dbgs() << "\n");
            if (BlockInfo.End.test(Slot)) {
              BlockInfo.End.reset(Slot);
            }
            BlockInfo.Begin.set(Slot);
          }
        }
      }
    }
  }

  // Update statistics.
  NumMarkerSeen += MarkersFound;
  return MarkersFound;
}

void StackColoring::calculateLocalLiveness()
{
  unsigned NumIters = 0;
  bool changed = true;
  while (changed) {
    changed = false;
    ++NumIters;

    for (const MachineBasicBlock *BB : BasicBlockNumbering) {

      // Use an iterator to avoid repeated lookups.
      LivenessMap::iterator BI = BlockLiveness.find(BB);
      assert(BI != BlockLiveness.end() && "Block not found");
      BlockLifetimeInfo &BlockInfo = BI->second;

      // Compute LiveIn by unioning together the LiveOut sets of all preds.
      BitVector LocalLiveIn;
      for (MachineBasicBlock::const_pred_iterator PI = BB->pred_begin(),
           PE = BB->pred_end(); PI != PE; ++PI) {
        LivenessMap::const_iterator I = BlockLiveness.find(*PI);
        assert(I != BlockLiveness.end() && "Predecessor not found");
        LocalLiveIn |= I->second.LiveOut;
      }

      // Compute LiveOut by subtracting out lifetimes that end in this
      // block, then adding in lifetimes that begin in this block.  If
      // we have both BEGIN and END markers in the same basic block
      // then we know that the BEGIN marker comes after the END,
      // because we already handle the case where the BEGIN comes
      // before the END when collecting the markers (and building the
      // BEGIN/END vectors).
      BitVector LocalLiveOut = LocalLiveIn;
      LocalLiveOut.reset(BlockInfo.End);
      LocalLiveOut |= BlockInfo.Begin;

      // Update block LiveIn set, noting whether it has changed.
      if (LocalLiveIn.test(BlockInfo.LiveIn)) {
        changed = true;
        BlockInfo.LiveIn |= LocalLiveIn;
      }

      // Update block LiveOut set, noting whether it has changed.
      if (LocalLiveOut.test(BlockInfo.LiveOut)) {
        changed = true;
        BlockInfo.LiveOut |= LocalLiveOut;
      }
    }
  }// while changed.

  NumIterations = NumIters;
}

void StackColoring::calculateLiveIntervals(unsigned NumSlots) {
  SmallVector<SlotIndex, 16> Starts;
  SmallVector<SlotIndex, 16> Finishes;

  // For each block, find which slots are active within this block
  // and update the live intervals.
  for (const MachineBasicBlock &MBB : *MF) {
    Starts.clear();
    Starts.resize(NumSlots);
    Finishes.clear();
    Finishes.resize(NumSlots);

    // Create the interval for the basic blocks containing lifetime begin/end.
    for (const MachineInstr &MI : MBB) {

      SmallVector<int, 4> slots;
      bool IsStart = false;
      if (!isLifetimeStartOrEnd(MI, slots, IsStart))
        continue;
      SlotIndex ThisIndex = Indexes->getInstructionIndex(MI);
      for (auto Slot : slots) {
        if (IsStart) {
          if (!Starts[Slot].isValid() || Starts[Slot] > ThisIndex)
            Starts[Slot] = ThisIndex;
        } else {
          if (!Finishes[Slot].isValid() || Finishes[Slot] < ThisIndex)
            Finishes[Slot] = ThisIndex;
        }
      }
    }

    // Create the interval of the blocks that we previously found to be 'alive'.
    BlockLifetimeInfo &MBBLiveness = BlockLiveness[&MBB];
    for (unsigned pos : MBBLiveness.LiveIn.set_bits()) {
      Starts[pos] = Indexes->getMBBStartIdx(&MBB);
    }
    for (unsigned pos : MBBLiveness.LiveOut.set_bits()) {
      Finishes[pos] = Indexes->getMBBEndIdx(&MBB);
    }

    for (unsigned i = 0; i < NumSlots; ++i) {
      //
      // When LifetimeStartOnFirstUse is turned on, data flow analysis
      // is forward (from starts to ends), not bidirectional. A
      // consequence of this is that we can wind up in situations
      // where Starts[i] is invalid but Finishes[i] is valid and vice
      // versa. Example:
      //
      //     LIFETIME_START x
      //     if (...) {
      //       <use of x>
      //       throw ...;
      //     }
      //     LIFETIME_END x
      //     return 2;
      //
      //
      // Here the slot for "x" will not be live into the block
      // containing the "return 2" (since lifetimes start with first
      // use, not at the dominating LIFETIME_START marker).
      //
      if (Starts[i].isValid() && !Finishes[i].isValid()) {
        Finishes[i] = Indexes->getMBBEndIdx(&MBB);
      }
      if (!Starts[i].isValid())
        continue;

      assert(Starts[i] && Finishes[i] && "Invalid interval");
      VNInfo *ValNum = Intervals[i]->getValNumInfo(0);
      SlotIndex S = Starts[i];
      SlotIndex F = Finishes[i];
      if (S < F) {
        // We have a single consecutive region.
        Intervals[i]->addSegment(LiveInterval::Segment(S, F, ValNum));
      } else {
        // We have two non-consecutive regions. This happens when
        // LIFETIME_START appears after the LIFETIME_END marker.
        SlotIndex NewStart = Indexes->getMBBStartIdx(&MBB);
        SlotIndex NewFin = Indexes->getMBBEndIdx(&MBB);
        Intervals[i]->addSegment(LiveInterval::Segment(NewStart, F, ValNum));
        Intervals[i]->addSegment(LiveInterval::Segment(S, NewFin, ValNum));
      }
    }
  }
}

bool StackColoring::removeAllMarkers() {
  unsigned Count = 0;
  for (MachineInstr *MI : Markers) {
    MI->eraseFromParent();
    Count++;
  }
  Markers.clear();

  DEBUG(dbgs()<<"Removed "<<Count<<" markers.\n");
  return Count;
}

void StackColoring::remapInstructions(DenseMap<int, int> &SlotRemap) {
  unsigned FixedInstr = 0;
  unsigned FixedMemOp = 0;
  unsigned FixedDbg = 0;

  // Remap debug information that refers to stack slots.
  for (auto &VI : MF->getVariableDbgInfo()) {
    if (!VI.Var)
      continue;
    if (SlotRemap.count(VI.Slot)) {
      DEBUG(dbgs() << "Remapping debug info for ["
                   << cast<DILocalVariable>(VI.Var)->getName() << "].\n");
      VI.Slot = SlotRemap[VI.Slot];
      FixedDbg++;
    }
  }

  // Keep a list of *allocas* which need to be remapped.
  DenseMap<const AllocaInst*, const AllocaInst*> Allocas;
  for (const std::pair<int, int> &SI : SlotRemap) {
    const AllocaInst *From = MFI->getObjectAllocation(SI.first);
    const AllocaInst *To = MFI->getObjectAllocation(SI.second);
    assert(To && From && "Invalid allocation object");
    Allocas[From] = To;

    // AA might be used later for instruction scheduling, and we need it to be
    // able to deduce the correct aliasing releationships between pointers
    // derived from the alloca being remapped and the target of that remapping.
    // The only safe way, without directly informing AA about the remapping
    // somehow, is to directly update the IR to reflect the change being made
    // here.
    Instruction *Inst = const_cast<AllocaInst *>(To);
    if (From->getType() != To->getType()) {
      BitCastInst *Cast = new BitCastInst(Inst, From->getType());
      Cast->insertAfter(Inst);
      Inst = Cast;
    }

    // Allow the stack protector to adjust its value map to account for the
    // upcoming replacement.
    SP->adjustForColoring(From, To);

    // The new alloca might not be valid in a llvm.dbg.declare for this
    // variable, so undef out the use to make the verifier happy.
    AllocaInst *FromAI = const_cast<AllocaInst *>(From);
    if (FromAI->isUsedByMetadata())
      ValueAsMetadata::handleRAUW(FromAI, UndefValue::get(FromAI->getType()));
    for (auto &Use : FromAI->uses()) {
      if (BitCastInst *BCI = dyn_cast<BitCastInst>(Use.get()))
        if (BCI->isUsedByMetadata())
          ValueAsMetadata::handleRAUW(BCI, UndefValue::get(BCI->getType()));
    }

    // Note that this will not replace uses in MMOs (which we'll update below),
    // or anywhere else (which is why we won't delete the original
    // instruction).
    FromAI->replaceAllUsesWith(Inst);
  }

  // Remap all instructions to the new stack slots.
  for (MachineBasicBlock &BB : *MF)
    for (MachineInstr &I : BB) {
      // Skip lifetime markers. We'll remove them soon.
      if (I.getOpcode() == TargetOpcode::LIFETIME_START ||
          I.getOpcode() == TargetOpcode::LIFETIME_END)
        continue;

      // Update the MachineMemOperand to use the new alloca.
      for (MachineMemOperand *MMO : I.memoperands()) {
        // FIXME: In order to enable the use of TBAA when using AA in CodeGen,
        // we'll also need to update the TBAA nodes in MMOs with values
        // derived from the merged allocas. When doing this, we'll need to use
        // the same variant of GetUnderlyingObjects that is used by the
        // instruction scheduler (that can look through ptrtoint/inttoptr
        // pairs).

        // We've replaced IR-level uses of the remapped allocas, so we only
        // need to replace direct uses here.
        const AllocaInst *AI = dyn_cast_or_null<AllocaInst>(MMO->getValue());
        if (!AI)
          continue;

        if (!Allocas.count(AI))
          continue;

        MMO->setValue(Allocas[AI]);
        FixedMemOp++;
      }

      // Update all of the machine instruction operands.
      for (MachineOperand &MO : I.operands()) {
        if (!MO.isFI())
          continue;
        int FromSlot = MO.getIndex();

        // Don't touch arguments.
        if (FromSlot<0)
          continue;

        // Only look at mapped slots.
        if (!SlotRemap.count(FromSlot))
          continue;

        // In a debug build, check that the instruction that we are modifying is
        // inside the expected live range. If the instruction is not inside
        // the calculated range then it means that the alloca usage moved
        // outside of the lifetime markers, or that the user has a bug.
        // NOTE: Alloca address calculations which happen outside the lifetime
        // zone are are okay, despite the fact that we don't have a good way
        // for validating all of the usages of the calculation.
#ifndef NDEBUG
        bool TouchesMemory = I.mayLoad() || I.mayStore();
        // If we *don't* protect the user from escaped allocas, don't bother
        // validating the instructions.
        if (!I.isDebugValue() && TouchesMemory && ProtectFromEscapedAllocas) {
          SlotIndex Index = Indexes->getInstructionIndex(I);
          const LiveInterval *Interval = &*Intervals[FromSlot];
          assert(Interval->find(Index) != Interval->end() &&
                 "Found instruction usage outside of live range.");
        }
#endif

        // Fix the machine instructions.
        int ToSlot = SlotRemap[FromSlot];
        MO.setIndex(ToSlot);
        FixedInstr++;
      }
    }

  // Update the location of C++ catch objects for the MSVC personality routine.
  if (WinEHFuncInfo *EHInfo = MF->getWinEHFuncInfo())
    for (WinEHTryBlockMapEntry &TBME : EHInfo->TryBlockMap)
      for (WinEHHandlerType &H : TBME.HandlerArray)
        if (H.CatchObj.FrameIndex != INT_MAX &&
            SlotRemap.count(H.CatchObj.FrameIndex))
          H.CatchObj.FrameIndex = SlotRemap[H.CatchObj.FrameIndex];

  DEBUG(dbgs()<<"Fixed "<<FixedMemOp<<" machine memory operands.\n");
  DEBUG(dbgs()<<"Fixed "<<FixedDbg<<" debug locations.\n");
  DEBUG(dbgs()<<"Fixed "<<FixedInstr<<" machine instructions.\n");
}

void StackColoring::removeInvalidSlotRanges() {
  for (MachineBasicBlock &BB : *MF)
    for (MachineInstr &I : BB) {
      if (I.getOpcode() == TargetOpcode::LIFETIME_START ||
          I.getOpcode() == TargetOpcode::LIFETIME_END || I.isDebugValue())
        continue;

      // Some intervals are suspicious! In some cases we find address
      // calculations outside of the lifetime zone, but not actual memory
      // read or write. Memory accesses outside of the lifetime zone are a clear
      // violation, but address calculations are okay. This can happen when
      // GEPs are hoisted outside of the lifetime zone.
      // So, in here we only check instructions which can read or write memory.
      if (!I.mayLoad() && !I.mayStore())
        continue;

      // Check all of the machine operands.
      for (const MachineOperand &MO : I.operands()) {
        if (!MO.isFI())
          continue;

        int Slot = MO.getIndex();

        if (Slot<0)
          continue;

        if (Intervals[Slot]->empty())
          continue;

        // Check that the used slot is inside the calculated lifetime range.
        // If it is not, warn about it and invalidate the range.
        LiveInterval *Interval = &*Intervals[Slot];
        SlotIndex Index = Indexes->getInstructionIndex(I);
        if (Interval->find(Index) == Interval->end()) {
          Interval->clear();
          DEBUG(dbgs()<<"Invalidating range #"<<Slot<<"\n");
          EscapedAllocas++;
        }
      }
    }
}

void StackColoring::expungeSlotMap(DenseMap<int, int> &SlotRemap,
                                   unsigned NumSlots) {
  // Expunge slot remap map.
  for (unsigned i=0; i < NumSlots; ++i) {
    // If we are remapping i
    if (SlotRemap.count(i)) {
      int Target = SlotRemap[i];
      // As long as our target is mapped to something else, follow it.
      while (SlotRemap.count(Target)) {
        Target = SlotRemap[Target];
        SlotRemap[i] = Target;
      }
    }
  }
}

bool StackColoring::runOnMachineFunction(MachineFunction &Func) {
  DEBUG(dbgs() << "********** Stack Coloring **********\n"
               << "********** Function: "
               << ((const Value*)Func.getFunction())->getName() << '\n');
  MF = &Func;
  MFI = &MF->getFrameInfo();
  Indexes = &getAnalysis<SlotIndexes>();
  SP = &getAnalysis<StackProtector>();
  BlockLiveness.clear();
  BasicBlocks.clear();
  BasicBlockNumbering.clear();
  Markers.clear();
  Intervals.clear();
  VNInfoAllocator.Reset();

  unsigned NumSlots = MFI->getObjectIndexEnd();

  // If there are no stack slots then there are no markers to remove.
  if (!NumSlots)
    return false;

  SmallVector<int, 8> SortedSlots;
  SortedSlots.reserve(NumSlots);
  Intervals.reserve(NumSlots);

  unsigned NumMarkers = collectMarkers(NumSlots);

  unsigned TotalSize = 0;
  DEBUG(dbgs()<<"Found "<<NumMarkers<<" markers and "<<NumSlots<<" slots\n");
  DEBUG(dbgs()<<"Slot structure:\n");

  for (int i=0; i < MFI->getObjectIndexEnd(); ++i) {
    DEBUG(dbgs()<<"Slot #"<<i<<" - "<<MFI->getObjectSize(i)<<" bytes.\n");
    TotalSize += MFI->getObjectSize(i);
  }

  DEBUG(dbgs()<<"Total Stack size: "<<TotalSize<<" bytes\n\n");

  // Don't continue because there are not enough lifetime markers, or the
  // stack is too small, or we are told not to optimize the slots.
  if (NumMarkers < 2 || TotalSize < 16 || DisableColoring ||
      skipFunction(*Func.getFunction())) {
    DEBUG(dbgs()<<"Will not try to merge slots.\n");
    return removeAllMarkers();
  }

  for (unsigned i=0; i < NumSlots; ++i) {
    std::unique_ptr<LiveInterval> LI(new LiveInterval(i, 0));
    LI->getNextValue(Indexes->getZeroIndex(), VNInfoAllocator);
    Intervals.push_back(std::move(LI));
    SortedSlots.push_back(i);
  }

  // Calculate the liveness of each block.
  calculateLocalLiveness();
  DEBUG(dbgs() << "Dataflow iterations: " << NumIterations << "\n");
  DEBUG(dump());

  // Propagate the liveness information.
  calculateLiveIntervals(NumSlots);
  DEBUG(dumpIntervals());

  // Search for allocas which are used outside of the declared lifetime
  // markers.
  if (ProtectFromEscapedAllocas)
    removeInvalidSlotRanges();

  // Maps old slots to new slots.
  DenseMap<int, int> SlotRemap;
  unsigned RemovedSlots = 0;
  unsigned ReducedSize = 0;

  // Do not bother looking at empty intervals.
  for (unsigned I = 0; I < NumSlots; ++I) {
    if (Intervals[SortedSlots[I]]->empty())
      SortedSlots[I] = -1;
  }

  // This is a simple greedy algorithm for merging allocas. First, sort the
  // slots, placing the largest slots first. Next, perform an n^2 scan and look
  // for disjoint slots. When you find disjoint slots, merge the samller one
  // into the bigger one and update the live interval. Remove the small alloca
  // and continue.

  // Sort the slots according to their size. Place unused slots at the end.
  // Use stable sort to guarantee deterministic code generation.
  std::stable_sort(SortedSlots.begin(), SortedSlots.end(),
                   [this](int LHS, int RHS) {
    // We use -1 to denote a uninteresting slot. Place these slots at the end.
    if (LHS == -1) return false;
    if (RHS == -1) return true;
    // Sort according to size.
    return MFI->getObjectSize(LHS) > MFI->getObjectSize(RHS);
  });

  bool Changed = true;
  while (Changed) {
    Changed = false;
    for (unsigned I = 0; I < NumSlots; ++I) {
      if (SortedSlots[I] == -1)
        continue;

      for (unsigned J=I+1; J < NumSlots; ++J) {
        if (SortedSlots[J] == -1)
          continue;

        int FirstSlot = SortedSlots[I];
        int SecondSlot = SortedSlots[J];
        LiveInterval *First = &*Intervals[FirstSlot];
        LiveInterval *Second = &*Intervals[SecondSlot];
        assert (!First->empty() && !Second->empty() && "Found an empty range");

        // Merge disjoint slots.
        if (!First->overlaps(*Second)) {
          Changed = true;
          First->MergeSegmentsInAsValue(*Second, First->getValNumInfo(0));
          SlotRemap[SecondSlot] = FirstSlot;
          SortedSlots[J] = -1;
          DEBUG(dbgs()<<"Merging #"<<FirstSlot<<" and slots #"<<
                SecondSlot<<" together.\n");
          unsigned MaxAlignment = std::max(MFI->getObjectAlignment(FirstSlot),
                                           MFI->getObjectAlignment(SecondSlot));

          assert(MFI->getObjectSize(FirstSlot) >=
                 MFI->getObjectSize(SecondSlot) &&
                 "Merging a small object into a larger one");

          RemovedSlots+=1;
          ReducedSize += MFI->getObjectSize(SecondSlot);
          MFI->setObjectAlignment(FirstSlot, MaxAlignment);
          MFI->RemoveStackObject(SecondSlot);
        }
      }
    }
  }// While changed.

  // Record statistics.
  StackSpaceSaved += ReducedSize;
  StackSlotMerged += RemovedSlots;
  DEBUG(dbgs()<<"Merge "<<RemovedSlots<<" slots. Saved "<<
        ReducedSize<<" bytes\n");

  // Scan the entire function and update all machine operands that use frame
  // indices to use the remapped frame index.
  expungeSlotMap(SlotRemap, NumSlots);
  remapInstructions(SlotRemap);

  return removeAllMarkers();
}