llvm.org GIT mirror llvm / e3e43d9 lib / CodeGen / GlobalMerge.cpp
e3e43d9

Tree @e3e43d9 (Download .tar.gz)

GlobalMerge.cpp @e3e43d9raw · history · blame

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
//===-- GlobalMerge.cpp - Internal globals merging  -----------------------===//
//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
// This pass merges globals with internal linkage into one. This way all the
// globals which were merged into a biggest one can be addressed using offsets
// from the same base pointer (no need for separate base pointer for each of the
// global). Such a transformation can significantly reduce the register pressure
// when many globals are involved.
//
// For example, consider the code which touches several global variables at
// once:
//
// static int foo[N], bar[N], baz[N];
//
// for (i = 0; i < N; ++i) {
//    foo[i] = bar[i] * baz[i];
// }
//
//  On ARM the addresses of 3 arrays should be kept in the registers, thus
//  this code has quite large register pressure (loop body):
//
//  ldr     r1, [r5], #4
//  ldr     r2, [r6], #4
//  mul     r1, r2, r1
//  str     r1, [r0], #4
//
//  Pass converts the code to something like:
//
//  static struct {
//    int foo[N];
//    int bar[N];
//    int baz[N];
//  } merged;
//
//  for (i = 0; i < N; ++i) {
//    merged.foo[i] = merged.bar[i] * merged.baz[i];
//  }
//
//  and in ARM code this becomes:
//
//  ldr     r0, [r5, #40]
//  ldr     r1, [r5, #80]
//  mul     r0, r1, r0
//  str     r0, [r5], #4
//
//  note that we saved 2 registers here almostly "for free".
//
// However, merging globals can have tradeoffs:
// - it confuses debuggers, tools, and users
// - it makes linker optimizations less useful (order files, LOHs, ...)
// - it forces usage of indexed addressing (which isn't necessarily "free")
// - it can increase register pressure when the uses are disparate enough.
// 
// We use heuristics to discover the best global grouping we can (cf cl::opts).
// ===---------------------------------------------------------------------===//

#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/SmallBitVector.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/CodeGen/Passes.h"
#include "llvm/IR/Attributes.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/DataLayout.h"
#include "llvm/IR/DerivedTypes.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/GlobalVariable.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/Intrinsics.h"
#include "llvm/IR/Module.h"
#include "llvm/Pass.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Target/TargetLowering.h"
#include "llvm/Target/TargetLoweringObjectFile.h"
#include "llvm/Target/TargetSubtargetInfo.h"
#include <algorithm>
using namespace llvm;

#define DEBUG_TYPE "global-merge"

// FIXME: This is only useful as a last-resort way to disable the pass.
static cl::opt<bool>
EnableGlobalMerge("enable-global-merge", cl::Hidden,
                  cl::desc("Enable the global merge pass"),
                  cl::init(true));

static cl::opt<unsigned>
GlobalMergeMaxOffset("global-merge-max-offset", cl::Hidden,
                     cl::desc("Set maximum offset for global merge pass"),
                     cl::init(0));

static cl::opt<bool> GlobalMergeGroupByUse(
    "global-merge-group-by-use", cl::Hidden,
    cl::desc("Improve global merge pass to look at uses"), cl::init(true));

static cl::opt<bool> GlobalMergeIgnoreSingleUse(
    "global-merge-ignore-single-use", cl::Hidden,
    cl::desc("Improve global merge pass to ignore globals only used alone"),
    cl::init(true));

static cl::opt<bool>
EnableGlobalMergeOnConst("global-merge-on-const", cl::Hidden,
                         cl::desc("Enable global merge pass on constants"),
                         cl::init(false));

// FIXME: this could be a transitional option, and we probably need to remove
// it if only we are sure this optimization could always benefit all targets.
static cl::opt<cl::boolOrDefault>
EnableGlobalMergeOnExternal("global-merge-on-external", cl::Hidden,
     cl::desc("Enable global merge pass on external linkage"));

STATISTIC(NumMerged, "Number of globals merged");
namespace {
  class GlobalMerge : public FunctionPass {
    const TargetMachine *TM;
    // FIXME: Infer the maximum possible offset depending on the actual users
    // (these max offsets are different for the users inside Thumb or ARM
    // functions), see the code that passes in the offset in the ARM backend
    // for more information.
    unsigned MaxOffset;

    /// Whether we should try to optimize for size only.
    /// Currently, this applies a dead simple heuristic: only consider globals
    /// used in minsize functions for merging.
    /// FIXME: This could learn about optsize, and be used in the cost model.
    bool OnlyOptimizeForSize;

    /// Whether we should merge global variables that have external linkage.
    bool MergeExternalGlobals;

    bool IsMachO;

    bool doMerge(SmallVectorImpl<GlobalVariable*> &Globals,
                 Module &M, bool isConst, unsigned AddrSpace) const;
    /// \brief Merge everything in \p Globals for which the corresponding bit
    /// in \p GlobalSet is set.
    bool doMerge(const SmallVectorImpl<GlobalVariable *> &Globals,
                 const BitVector &GlobalSet, Module &M, bool isConst,
                 unsigned AddrSpace) const;

    /// \brief Check if the given variable has been identified as must keep
    /// \pre setMustKeepGlobalVariables must have been called on the Module that
    ///      contains GV
    bool isMustKeepGlobalVariable(const GlobalVariable *GV) const {
      return MustKeepGlobalVariables.count(GV);
    }

    /// Collect every variables marked as "used" or used in a landing pad
    /// instruction for this Module.
    void setMustKeepGlobalVariables(Module &M);

    /// Collect every variables marked as "used"
    void collectUsedGlobalVariables(Module &M);

    /// Keep track of the GlobalVariable that must not be merged away
    SmallPtrSet<const GlobalVariable *, 16> MustKeepGlobalVariables;

  public:
    static char ID;             // Pass identification, replacement for typeid.
    explicit GlobalMerge()
        : FunctionPass(ID), TM(nullptr), MaxOffset(GlobalMergeMaxOffset),
          OnlyOptimizeForSize(false), MergeExternalGlobals(false) {
      initializeGlobalMergePass(*PassRegistry::getPassRegistry());
    }

    explicit GlobalMerge(const TargetMachine *TM, unsigned MaximalOffset,
                         bool OnlyOptimizeForSize, bool MergeExternalGlobals)
        : FunctionPass(ID), TM(TM), MaxOffset(MaximalOffset),
          OnlyOptimizeForSize(OnlyOptimizeForSize),
          MergeExternalGlobals(MergeExternalGlobals) {
      initializeGlobalMergePass(*PassRegistry::getPassRegistry());
    }

    bool doInitialization(Module &M) override;
    bool runOnFunction(Function &F) override;
    bool doFinalization(Module &M) override;

    StringRef getPassName() const override { return "Merge internal globals"; }

    void getAnalysisUsage(AnalysisUsage &AU) const override {
      AU.setPreservesCFG();
      FunctionPass::getAnalysisUsage(AU);
    }
  };
} // end anonymous namespace

char GlobalMerge::ID = 0;
INITIALIZE_PASS(GlobalMerge, DEBUG_TYPE, "Merge global variables", false, false)

bool GlobalMerge::doMerge(SmallVectorImpl<GlobalVariable*> &Globals,
                          Module &M, bool isConst, unsigned AddrSpace) const {
  auto &DL = M.getDataLayout();
  // FIXME: Find better heuristics
  std::stable_sort(Globals.begin(), Globals.end(),
                   [&DL](const GlobalVariable *GV1, const GlobalVariable *GV2) {
                     return DL.getTypeAllocSize(GV1->getValueType()) <
                            DL.getTypeAllocSize(GV2->getValueType());
                   });

  // If we want to just blindly group all globals together, do so.
  if (!GlobalMergeGroupByUse) {
    BitVector AllGlobals(Globals.size());
    AllGlobals.set();
    return doMerge(Globals, AllGlobals, M, isConst, AddrSpace);
  }

  // If we want to be smarter, look at all uses of each global, to try to
  // discover all sets of globals used together, and how many times each of
  // these sets occurred.
  //
  // Keep this reasonably efficient, by having an append-only list of all sets
  // discovered so far (UsedGlobalSet), and mapping each "together-ness" unit of
  // code (currently, a Function) to the set of globals seen so far that are
  // used together in that unit (GlobalUsesByFunction).
  //
  // When we look at the Nth global, we now that any new set is either:
  // - the singleton set {N}, containing this global only, or
  // - the union of {N} and a previously-discovered set, containing some
  //   combination of the previous N-1 globals.
  // Using that knowledge, when looking at the Nth global, we can keep:
  // - a reference to the singleton set {N} (CurGVOnlySetIdx)
  // - a list mapping each previous set to its union with {N} (EncounteredUGS),
  //   if it actually occurs.

  // We keep track of the sets of globals used together "close enough".
  struct UsedGlobalSet {
    UsedGlobalSet(size_t Size) : Globals(Size), UsageCount(1) {}
    BitVector Globals;
    unsigned UsageCount;
  };

  // Each set is unique in UsedGlobalSets.
  std::vector<UsedGlobalSet> UsedGlobalSets;

  // Avoid repeating the create-global-set pattern.
  auto CreateGlobalSet = [&]() -> UsedGlobalSet & {
    UsedGlobalSets.emplace_back(Globals.size());
    return UsedGlobalSets.back();
  };

  // The first set is the empty set.
  CreateGlobalSet().UsageCount = 0;

  // We define "close enough" to be "in the same function".
  // FIXME: Grouping uses by function is way too aggressive, so we should have
  // a better metric for distance between uses.
  // The obvious alternative would be to group by BasicBlock, but that's in
  // turn too conservative..
  // Anything in between wouldn't be trivial to compute, so just stick with
  // per-function grouping.

  // The value type is an index into UsedGlobalSets.
  // The default (0) conveniently points to the empty set.
  DenseMap<Function *, size_t /*UsedGlobalSetIdx*/> GlobalUsesByFunction;

  // Now, look at each merge-eligible global in turn.

  // Keep track of the sets we already encountered to which we added the
  // current global.
  // Each element matches the same-index element in UsedGlobalSets.
  // This lets us efficiently tell whether a set has already been expanded to
  // include the current global.
  std::vector<size_t> EncounteredUGS;

  for (size_t GI = 0, GE = Globals.size(); GI != GE; ++GI) {
    GlobalVariable *GV = Globals[GI];

    // Reset the encountered sets for this global...
    std::fill(EncounteredUGS.begin(), EncounteredUGS.end(), 0);
    // ...and grow it in case we created new sets for the previous global.
    EncounteredUGS.resize(UsedGlobalSets.size());

    // We might need to create a set that only consists of the current global.
    // Keep track of its index into UsedGlobalSets.
    size_t CurGVOnlySetIdx = 0;

    // For each global, look at all its Uses.
    for (auto &U : GV->uses()) {
      // This Use might be a ConstantExpr.  We're interested in Instruction
      // users, so look through ConstantExpr...
      Use *UI, *UE;
      if (ConstantExpr *CE = dyn_cast<ConstantExpr>(U.getUser())) {
        if (CE->use_empty())
          continue;
        UI = &*CE->use_begin();
        UE = nullptr;
      } else if (isa<Instruction>(U.getUser())) {
        UI = &U;
        UE = UI->getNext();
      } else {
        continue;
      }

      // ...to iterate on all the instruction users of the global.
      // Note that we iterate on Uses and not on Users to be able to getNext().
      for (; UI != UE; UI = UI->getNext()) {
        Instruction *I = dyn_cast<Instruction>(UI->getUser());
        if (!I)
          continue;

        Function *ParentFn = I->getParent()->getParent();

        // If we're only optimizing for size, ignore non-minsize functions.
        if (OnlyOptimizeForSize && !ParentFn->optForMinSize())
          continue;

        size_t UGSIdx = GlobalUsesByFunction[ParentFn];

        // If this is the first global the basic block uses, map it to the set
        // consisting of this global only.
        if (!UGSIdx) {
          // If that set doesn't exist yet, create it.
          if (!CurGVOnlySetIdx) {
            CurGVOnlySetIdx = UsedGlobalSets.size();
            CreateGlobalSet().Globals.set(GI);
          } else {
            ++UsedGlobalSets[CurGVOnlySetIdx].UsageCount;
          }

          GlobalUsesByFunction[ParentFn] = CurGVOnlySetIdx;
          continue;
        }

        // If we already encountered this BB, just increment the counter.
        if (UsedGlobalSets[UGSIdx].Globals.test(GI)) {
          ++UsedGlobalSets[UGSIdx].UsageCount;
          continue;
        }

        // If not, the previous set wasn't actually used in this function.
        --UsedGlobalSets[UGSIdx].UsageCount;

        // If we already expanded the previous set to include this global, just
        // reuse that expanded set.
        if (size_t ExpandedIdx = EncounteredUGS[UGSIdx]) {
          ++UsedGlobalSets[ExpandedIdx].UsageCount;
          GlobalUsesByFunction[ParentFn] = ExpandedIdx;
          continue;
        }

        // If not, create a new set consisting of the union of the previous set
        // and this global.  Mark it as encountered, so we can reuse it later.
        GlobalUsesByFunction[ParentFn] = EncounteredUGS[UGSIdx] =
            UsedGlobalSets.size();

        UsedGlobalSet &NewUGS = CreateGlobalSet();
        NewUGS.Globals.set(GI);
        NewUGS.Globals |= UsedGlobalSets[UGSIdx].Globals;
      }
    }
  }

  // Now we found a bunch of sets of globals used together.  We accumulated
  // the number of times we encountered the sets (i.e., the number of blocks
  // that use that exact set of globals).
  //
  // Multiply that by the size of the set to give us a crude profitability
  // metric.
  std::sort(UsedGlobalSets.begin(), UsedGlobalSets.end(),
            [](const UsedGlobalSet &UGS1, const UsedGlobalSet &UGS2) {
              return UGS1.Globals.count() * UGS1.UsageCount <
                     UGS2.Globals.count() * UGS2.UsageCount;
            });

  // We can choose to merge all globals together, but ignore globals never used
  // with another global.  This catches the obviously non-profitable cases of
  // having a single global, but is aggressive enough for any other case.
  if (GlobalMergeIgnoreSingleUse) {
    BitVector AllGlobals(Globals.size());
    for (size_t i = 0, e = UsedGlobalSets.size(); i != e; ++i) {
      const UsedGlobalSet &UGS = UsedGlobalSets[e - i - 1];
      if (UGS.UsageCount == 0)
        continue;
      if (UGS.Globals.count() > 1)
        AllGlobals |= UGS.Globals;
    }
    return doMerge(Globals, AllGlobals, M, isConst, AddrSpace);
  }

  // Starting from the sets with the best (=biggest) profitability, find a
  // good combination.
  // The ideal (and expensive) solution can only be found by trying all
  // combinations, looking for the one with the best profitability.
  // Don't be smart about it, and just pick the first compatible combination,
  // starting with the sets with the best profitability.
  BitVector PickedGlobals(Globals.size());
  bool Changed = false;

  for (size_t i = 0, e = UsedGlobalSets.size(); i != e; ++i) {
    const UsedGlobalSet &UGS = UsedGlobalSets[e - i - 1];
    if (UGS.UsageCount == 0)
      continue;
    if (PickedGlobals.anyCommon(UGS.Globals))
      continue;
    PickedGlobals |= UGS.Globals;
    // If the set only contains one global, there's no point in merging.
    // Ignore the global for inclusion in other sets though, so keep it in
    // PickedGlobals.
    if (UGS.Globals.count() < 2)
      continue;
    Changed |= doMerge(Globals, UGS.Globals, M, isConst, AddrSpace);
  }

  return Changed;
}

bool GlobalMerge::doMerge(const SmallVectorImpl<GlobalVariable *> &Globals,
                          const BitVector &GlobalSet, Module &M, bool isConst,
                          unsigned AddrSpace) const {
  assert(Globals.size() > 1);

  Type *Int32Ty = Type::getInt32Ty(M.getContext());
  auto &DL = M.getDataLayout();

  DEBUG(dbgs() << " Trying to merge set, starts with #"
               << GlobalSet.find_first() << "\n");

  ssize_t i = GlobalSet.find_first();
  while (i != -1) {
    ssize_t j = 0;
    uint64_t MergedSize = 0;
    std::vector<Type*> Tys;
    std::vector<Constant*> Inits;

    bool HasExternal = false;
    StringRef FirstExternalName;
    for (j = i; j != -1; j = GlobalSet.find_next(j)) {
      Type *Ty = Globals[j]->getValueType();
      MergedSize += DL.getTypeAllocSize(Ty);
      if (MergedSize > MaxOffset) {
        break;
      }
      Tys.push_back(Ty);
      Inits.push_back(Globals[j]->getInitializer());

      if (Globals[j]->hasExternalLinkage() && !HasExternal) {
        HasExternal = true;
        FirstExternalName = Globals[j]->getName();
      }
    }

    // If merged variables doesn't have external linkage, we needn't to expose
    // the symbol after merging.
    GlobalValue::LinkageTypes Linkage = HasExternal
                                            ? GlobalValue::ExternalLinkage
                                            : GlobalValue::InternalLinkage;
    StructType *MergedTy = StructType::get(M.getContext(), Tys);
    Constant *MergedInit = ConstantStruct::get(MergedTy, Inits);

    // On Darwin external linkage needs to be preserved, otherwise
    // dsymutil cannot preserve the debug info for the merged
    // variables.  If they have external linkage, use the symbol name
    // of the first variable merged as the suffix of global symbol
    // name.  This avoids a link-time naming conflict for the
    // _MergedGlobals symbols.
    Twine MergedName =
        (IsMachO && HasExternal)
            ? "_MergedGlobals_" + FirstExternalName
            : "_MergedGlobals";
    auto MergedLinkage = IsMachO ? Linkage : GlobalValue::PrivateLinkage;
    auto *MergedGV = new GlobalVariable(
        M, MergedTy, isConst, MergedLinkage, MergedInit, MergedName, nullptr,
        GlobalVariable::NotThreadLocal, AddrSpace);

    const StructLayout *MergedLayout = DL.getStructLayout(MergedTy);

    for (ssize_t k = i, idx = 0; k != j; k = GlobalSet.find_next(k), ++idx) {
      GlobalValue::LinkageTypes Linkage = Globals[k]->getLinkage();
      std::string Name = Globals[k]->getName();

      // Copy metadata while adjusting any debug info metadata by the original
      // global's offset within the merged global.
      MergedGV->copyMetadata(Globals[k], MergedLayout->getElementOffset(idx));

      Constant *Idx[2] = {
        ConstantInt::get(Int32Ty, 0),
        ConstantInt::get(Int32Ty, idx),
      };
      Constant *GEP =
          ConstantExpr::getInBoundsGetElementPtr(MergedTy, MergedGV, Idx);
      Globals[k]->replaceAllUsesWith(GEP);
      Globals[k]->eraseFromParent();

      // When the linkage is not internal we must emit an alias for the original
      // variable name as it may be accessed from another object. On non-Mach-O
      // we can also emit an alias for internal linkage as it's safe to do so.
      // It's not safe on Mach-O as the alias (and thus the portion of the
      // MergedGlobals variable) may be dead stripped at link time.
      if (Linkage != GlobalValue::InternalLinkage || !IsMachO) {
        GlobalAlias::create(Tys[idx], AddrSpace, Linkage, Name, GEP, &M);
      }

      NumMerged++;
    }
    i = j;
  }

  return true;
}

void GlobalMerge::collectUsedGlobalVariables(Module &M) {
  // Extract global variables from llvm.used array
  const GlobalVariable *GV = M.getGlobalVariable("llvm.used");
  if (!GV || !GV->hasInitializer()) return;

  // Should be an array of 'i8*'.
  const ConstantArray *InitList = cast<ConstantArray>(GV->getInitializer());

  for (unsigned i = 0, e = InitList->getNumOperands(); i != e; ++i)
    if (const GlobalVariable *G =
        dyn_cast<GlobalVariable>(InitList->getOperand(i)->stripPointerCasts()))
      MustKeepGlobalVariables.insert(G);
}

void GlobalMerge::setMustKeepGlobalVariables(Module &M) {
  collectUsedGlobalVariables(M);

  for (Function &F : M) {
    for (BasicBlock &BB : F) {
      Instruction *Pad = BB.getFirstNonPHI();
      if (!Pad->isEHPad())
        continue;

      // Keep globals used by landingpads and catchpads.
      for (const Use &U : Pad->operands()) {
        if (const GlobalVariable *GV =
                dyn_cast<GlobalVariable>(U->stripPointerCasts()))
          MustKeepGlobalVariables.insert(GV);
      }
    }
  }
}

bool GlobalMerge::doInitialization(Module &M) {
  if (!EnableGlobalMerge)
    return false;

  IsMachO = Triple(M.getTargetTriple()).isOSBinFormatMachO();

  auto &DL = M.getDataLayout();
  DenseMap<unsigned, SmallVector<GlobalVariable*, 16> > Globals, ConstGlobals,
                                                        BSSGlobals;
  bool Changed = false;
  setMustKeepGlobalVariables(M);

  // Grab all non-const globals.
  for (auto &GV : M.globals()) {
    // Merge is safe for "normal" internal or external globals only
    if (GV.isDeclaration() || GV.isThreadLocal() ||
        GV.hasSection() || GV.hasImplicitSection())
      continue;

    // It's not safe to merge globals that may be preempted
    if (TM && !TM->shouldAssumeDSOLocal(M, &GV))
      continue;

    if (!(MergeExternalGlobals && GV.hasExternalLinkage()) &&
        !GV.hasInternalLinkage())
      continue;

    PointerType *PT = dyn_cast<PointerType>(GV.getType());
    assert(PT && "Global variable is not a pointer!");

    unsigned AddressSpace = PT->getAddressSpace();

    // Ignore fancy-aligned globals for now.
    unsigned Alignment = DL.getPreferredAlignment(&GV);
    Type *Ty = GV.getValueType();
    if (Alignment > DL.getABITypeAlignment(Ty))
      continue;

    // Ignore all 'special' globals.
    if (GV.getName().startswith("llvm.") ||
        GV.getName().startswith(".llvm."))
      continue;

    // Ignore all "required" globals:
    if (isMustKeepGlobalVariable(&GV))
      continue;

    if (DL.getTypeAllocSize(Ty) < MaxOffset) {
      if (TM &&
          TargetLoweringObjectFile::getKindForGlobal(&GV, *TM).isBSSLocal())
        BSSGlobals[AddressSpace].push_back(&GV);
      else if (GV.isConstant())
        ConstGlobals[AddressSpace].push_back(&GV);
      else
        Globals[AddressSpace].push_back(&GV);
    }
  }

  for (auto &P : Globals)
    if (P.second.size() > 1)
      Changed |= doMerge(P.second, M, false, P.first);

  for (auto &P : BSSGlobals)
    if (P.second.size() > 1)
      Changed |= doMerge(P.second, M, false, P.first);

  if (EnableGlobalMergeOnConst)
    for (auto &P : ConstGlobals)
      if (P.second.size() > 1)
        Changed |= doMerge(P.second, M, true, P.first);

  return Changed;
}

bool GlobalMerge::runOnFunction(Function &F) {
  return false;
}

bool GlobalMerge::doFinalization(Module &M) {
  MustKeepGlobalVariables.clear();
  return false;
}

Pass *llvm::createGlobalMergePass(const TargetMachine *TM, unsigned Offset,
                                  bool OnlyOptimizeForSize,
                                  bool MergeExternalByDefault) {
  bool MergeExternal = (EnableGlobalMergeOnExternal == cl::BOU_UNSET) ?
    MergeExternalByDefault : (EnableGlobalMergeOnExternal == cl::BOU_TRUE);
  return new GlobalMerge(TM, Offset, OnlyOptimizeForSize, MergeExternal);
}