llvm.org GIT mirror llvm / e3e43d9 lib / Analysis / AliasAnalysis.cpp
e3e43d9

Tree @e3e43d9 (Download .tar.gz)

AliasAnalysis.cpp @e3e43d9raw · history · blame

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
//===- AliasAnalysis.cpp - Generic Alias Analysis Interface Implementation -==//
//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements the generic AliasAnalysis interface which is used as the
// common interface used by all clients and implementations of alias analysis.
//
// This file also implements the default version of the AliasAnalysis interface
// that is to be used when no other implementation is specified.  This does some
// simple tests that detect obvious cases: two different global pointers cannot
// alias, a global cannot alias a malloc, two different mallocs cannot alias,
// etc.
//
// This alias analysis implementation really isn't very good for anything, but
// it is very fast, and makes a nice clean default implementation.  Because it
// handles lots of little corner cases, other, more complex, alias analysis
// implementations may choose to rely on this pass to resolve these simple and
// easy cases.
//
//===----------------------------------------------------------------------===//

#include "llvm/Analysis/AliasAnalysis.h"
#include "llvm/Analysis/BasicAliasAnalysis.h"
#include "llvm/Analysis/CFG.h"
#include "llvm/Analysis/CFLAndersAliasAnalysis.h"
#include "llvm/Analysis/CFLSteensAliasAnalysis.h"
#include "llvm/Analysis/CaptureTracking.h"
#include "llvm/Analysis/GlobalsModRef.h"
#include "llvm/Analysis/ObjCARCAliasAnalysis.h"
#include "llvm/Analysis/ScalarEvolutionAliasAnalysis.h"
#include "llvm/Analysis/ScopedNoAliasAA.h"
#include "llvm/Analysis/TargetLibraryInfo.h"
#include "llvm/Analysis/TypeBasedAliasAnalysis.h"
#include "llvm/Analysis/ValueTracking.h"
#include "llvm/IR/BasicBlock.h"
#include "llvm/IR/DataLayout.h"
#include "llvm/IR/Dominators.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/IntrinsicInst.h"
#include "llvm/IR/LLVMContext.h"
#include "llvm/IR/Type.h"
#include "llvm/Pass.h"
using namespace llvm;

/// Allow disabling BasicAA from the AA results. This is particularly useful
/// when testing to isolate a single AA implementation.
static cl::opt<bool> DisableBasicAA("disable-basicaa", cl::Hidden,
                                    cl::init(false));

AAResults::AAResults(AAResults &&Arg)
    : TLI(Arg.TLI), AAs(std::move(Arg.AAs)), AADeps(std::move(Arg.AADeps)) {
  for (auto &AA : AAs)
    AA->setAAResults(this);
}

AAResults::~AAResults() {
// FIXME; It would be nice to at least clear out the pointers back to this
// aggregation here, but we end up with non-nesting lifetimes in the legacy
// pass manager that prevent this from working. In the legacy pass manager
// we'll end up with dangling references here in some cases.
#if 0
  for (auto &AA : AAs)
    AA->setAAResults(nullptr);
#endif
}

bool AAResults::invalidate(Function &F, const PreservedAnalyses &PA,
                           FunctionAnalysisManager::Invalidator &Inv) {
  // Check if the AA manager itself has been invalidated.
  auto PAC = PA.getChecker<AAManager>();
  if (!PAC.preserved() && !PAC.preservedSet<AllAnalysesOn<Function>>())
    return true; // The manager needs to be blown away, clear everything.

  // Check all of the dependencies registered.
  for (AnalysisKey *ID : AADeps)
    if (Inv.invalidate(ID, F, PA))
      return true;

  // Everything we depend on is still fine, so are we. Nothing to invalidate.
  return false;
}

//===----------------------------------------------------------------------===//
// Default chaining methods
//===----------------------------------------------------------------------===//

AliasResult AAResults::alias(const MemoryLocation &LocA,
                             const MemoryLocation &LocB) {
  for (const auto &AA : AAs) {
    auto Result = AA->alias(LocA, LocB);
    if (Result != MayAlias)
      return Result;
  }
  return MayAlias;
}

bool AAResults::pointsToConstantMemory(const MemoryLocation &Loc,
                                       bool OrLocal) {
  for (const auto &AA : AAs)
    if (AA->pointsToConstantMemory(Loc, OrLocal))
      return true;

  return false;
}

ModRefInfo AAResults::getArgModRefInfo(ImmutableCallSite CS, unsigned ArgIdx) {
  ModRefInfo Result = MRI_ModRef;

  for (const auto &AA : AAs) {
    Result = ModRefInfo(Result & AA->getArgModRefInfo(CS, ArgIdx));

    // Early-exit the moment we reach the bottom of the lattice.
    if (Result == MRI_NoModRef)
      return Result;
  }

  return Result;
}

ModRefInfo AAResults::getModRefInfo(Instruction *I, ImmutableCallSite Call) {
  // We may have two calls
  if (auto CS = ImmutableCallSite(I)) {
    // Check if the two calls modify the same memory
    return getModRefInfo(CS, Call);
  } else if (I->isFenceLike()) {
    // If this is a fence, just return MRI_ModRef.
    return MRI_ModRef;
  } else {
    // Otherwise, check if the call modifies or references the
    // location this memory access defines.  The best we can say
    // is that if the call references what this instruction
    // defines, it must be clobbered by this location.
    const MemoryLocation DefLoc = MemoryLocation::get(I);
    if (getModRefInfo(Call, DefLoc) != MRI_NoModRef)
      return MRI_ModRef;
  }
  return MRI_NoModRef;
}

ModRefInfo AAResults::getModRefInfo(ImmutableCallSite CS,
                                    const MemoryLocation &Loc) {
  ModRefInfo Result = MRI_ModRef;

  for (const auto &AA : AAs) {
    Result = ModRefInfo(Result & AA->getModRefInfo(CS, Loc));

    // Early-exit the moment we reach the bottom of the lattice.
    if (Result == MRI_NoModRef)
      return Result;
  }

  // Try to refine the mod-ref info further using other API entry points to the
  // aggregate set of AA results.
  auto MRB = getModRefBehavior(CS);
  if (MRB == FMRB_DoesNotAccessMemory ||
      MRB == FMRB_OnlyAccessesInaccessibleMem)
    return MRI_NoModRef;

  if (onlyReadsMemory(MRB))
    Result = ModRefInfo(Result & MRI_Ref);
  else if (doesNotReadMemory(MRB))
    Result = ModRefInfo(Result & MRI_Mod);

  if (onlyAccessesArgPointees(MRB) || onlyAccessesInaccessibleOrArgMem(MRB)) {
    bool DoesAlias = false;
    ModRefInfo AllArgsMask = MRI_NoModRef;
    if (doesAccessArgPointees(MRB)) {
      for (auto AI = CS.arg_begin(), AE = CS.arg_end(); AI != AE; ++AI) {
        const Value *Arg = *AI;
        if (!Arg->getType()->isPointerTy())
          continue;
        unsigned ArgIdx = std::distance(CS.arg_begin(), AI);
        MemoryLocation ArgLoc = MemoryLocation::getForArgument(CS, ArgIdx, TLI);
        AliasResult ArgAlias = alias(ArgLoc, Loc);
        if (ArgAlias != NoAlias) {
          ModRefInfo ArgMask = getArgModRefInfo(CS, ArgIdx);
          DoesAlias = true;
          AllArgsMask = ModRefInfo(AllArgsMask | ArgMask);
        }
      }
    }
    if (!DoesAlias)
      return MRI_NoModRef;
    Result = ModRefInfo(Result & AllArgsMask);
  }

  // If Loc is a constant memory location, the call definitely could not
  // modify the memory location.
  if ((Result & MRI_Mod) &&
      pointsToConstantMemory(Loc, /*OrLocal*/ false))
    Result = ModRefInfo(Result & ~MRI_Mod);

  return Result;
}

ModRefInfo AAResults::getModRefInfo(ImmutableCallSite CS1,
                                    ImmutableCallSite CS2) {
  ModRefInfo Result = MRI_ModRef;

  for (const auto &AA : AAs) {
    Result = ModRefInfo(Result & AA->getModRefInfo(CS1, CS2));

    // Early-exit the moment we reach the bottom of the lattice.
    if (Result == MRI_NoModRef)
      return Result;
  }

  // Try to refine the mod-ref info further using other API entry points to the
  // aggregate set of AA results.

  // If CS1 or CS2 are readnone, they don't interact.
  auto CS1B = getModRefBehavior(CS1);
  if (CS1B == FMRB_DoesNotAccessMemory)
    return MRI_NoModRef;

  auto CS2B = getModRefBehavior(CS2);
  if (CS2B == FMRB_DoesNotAccessMemory)
    return MRI_NoModRef;

  // If they both only read from memory, there is no dependence.
  if (onlyReadsMemory(CS1B) && onlyReadsMemory(CS2B))
    return MRI_NoModRef;

  // If CS1 only reads memory, the only dependence on CS2 can be
  // from CS1 reading memory written by CS2.
  if (onlyReadsMemory(CS1B))
    Result = ModRefInfo(Result & MRI_Ref);
  else if (doesNotReadMemory(CS1B))
    Result = ModRefInfo(Result & MRI_Mod);

  // If CS2 only access memory through arguments, accumulate the mod/ref
  // information from CS1's references to the memory referenced by
  // CS2's arguments.
  if (onlyAccessesArgPointees(CS2B)) {
    ModRefInfo R = MRI_NoModRef;
    if (doesAccessArgPointees(CS2B)) {
      for (auto I = CS2.arg_begin(), E = CS2.arg_end(); I != E; ++I) {
        const Value *Arg = *I;
        if (!Arg->getType()->isPointerTy())
          continue;
        unsigned CS2ArgIdx = std::distance(CS2.arg_begin(), I);
        auto CS2ArgLoc = MemoryLocation::getForArgument(CS2, CS2ArgIdx, TLI);

        // ArgMask indicates what CS2 might do to CS2ArgLoc, and the dependence
        // of CS1 on that location is the inverse.
        ModRefInfo ArgMask = getArgModRefInfo(CS2, CS2ArgIdx);
        if (ArgMask == MRI_Mod)
          ArgMask = MRI_ModRef;
        else if (ArgMask == MRI_Ref)
          ArgMask = MRI_Mod;

        ArgMask = ModRefInfo(ArgMask & getModRefInfo(CS1, CS2ArgLoc));

        R = ModRefInfo((R | ArgMask) & Result);
        if (R == Result)
          break;
      }
    }
    return R;
  }

  // If CS1 only accesses memory through arguments, check if CS2 references
  // any of the memory referenced by CS1's arguments. If not, return NoModRef.
  if (onlyAccessesArgPointees(CS1B)) {
    ModRefInfo R = MRI_NoModRef;
    if (doesAccessArgPointees(CS1B)) {
      for (auto I = CS1.arg_begin(), E = CS1.arg_end(); I != E; ++I) {
        const Value *Arg = *I;
        if (!Arg->getType()->isPointerTy())
          continue;
        unsigned CS1ArgIdx = std::distance(CS1.arg_begin(), I);
        auto CS1ArgLoc = MemoryLocation::getForArgument(CS1, CS1ArgIdx, TLI);

        // ArgMask indicates what CS1 might do to CS1ArgLoc; if CS1 might Mod
        // CS1ArgLoc, then we care about either a Mod or a Ref by CS2. If CS1
        // might Ref, then we care only about a Mod by CS2.
        ModRefInfo ArgMask = getArgModRefInfo(CS1, CS1ArgIdx);
        ModRefInfo ArgR = getModRefInfo(CS2, CS1ArgLoc);
        if (((ArgMask & MRI_Mod) != MRI_NoModRef &&
             (ArgR & MRI_ModRef) != MRI_NoModRef) ||
            ((ArgMask & MRI_Ref) != MRI_NoModRef &&
             (ArgR & MRI_Mod) != MRI_NoModRef))
          R = ModRefInfo((R | ArgMask) & Result);

        if (R == Result)
          break;
      }
    }
    return R;
  }

  return Result;
}

FunctionModRefBehavior AAResults::getModRefBehavior(ImmutableCallSite CS) {
  FunctionModRefBehavior Result = FMRB_UnknownModRefBehavior;

  for (const auto &AA : AAs) {
    Result = FunctionModRefBehavior(Result & AA->getModRefBehavior(CS));

    // Early-exit the moment we reach the bottom of the lattice.
    if (Result == FMRB_DoesNotAccessMemory)
      return Result;
  }

  return Result;
}

FunctionModRefBehavior AAResults::getModRefBehavior(const Function *F) {
  FunctionModRefBehavior Result = FMRB_UnknownModRefBehavior;

  for (const auto &AA : AAs) {
    Result = FunctionModRefBehavior(Result & AA->getModRefBehavior(F));

    // Early-exit the moment we reach the bottom of the lattice.
    if (Result == FMRB_DoesNotAccessMemory)
      return Result;
  }

  return Result;
}

//===----------------------------------------------------------------------===//
// Helper method implementation
//===----------------------------------------------------------------------===//

ModRefInfo AAResults::getModRefInfo(const LoadInst *L,
                                    const MemoryLocation &Loc) {
  // Be conservative in the face of atomic.
  if (isStrongerThan(L->getOrdering(), AtomicOrdering::Unordered))
    return MRI_ModRef;

  // If the load address doesn't alias the given address, it doesn't read
  // or write the specified memory.
  if (Loc.Ptr && !alias(MemoryLocation::get(L), Loc))
    return MRI_NoModRef;

  // Otherwise, a load just reads.
  return MRI_Ref;
}

ModRefInfo AAResults::getModRefInfo(const StoreInst *S,
                                    const MemoryLocation &Loc) {
  // Be conservative in the face of atomic.
  if (isStrongerThan(S->getOrdering(), AtomicOrdering::Unordered))
    return MRI_ModRef;

  if (Loc.Ptr) {
    // If the store address cannot alias the pointer in question, then the
    // specified memory cannot be modified by the store.
    if (!alias(MemoryLocation::get(S), Loc))
      return MRI_NoModRef;

    // If the pointer is a pointer to constant memory, then it could not have
    // been modified by this store.
    if (pointsToConstantMemory(Loc))
      return MRI_NoModRef;
  }

  // Otherwise, a store just writes.
  return MRI_Mod;
}

ModRefInfo AAResults::getModRefInfo(const FenceInst *S, const MemoryLocation &Loc) {
  // If we know that the location is a constant memory location, the fence
  // cannot modify this location.
  if (Loc.Ptr && pointsToConstantMemory(Loc))
    return MRI_Ref;
  return MRI_ModRef;
}

ModRefInfo AAResults::getModRefInfo(const VAArgInst *V,
                                    const MemoryLocation &Loc) {

  if (Loc.Ptr) {
    // If the va_arg address cannot alias the pointer in question, then the
    // specified memory cannot be accessed by the va_arg.
    if (!alias(MemoryLocation::get(V), Loc))
      return MRI_NoModRef;

    // If the pointer is a pointer to constant memory, then it could not have
    // been modified by this va_arg.
    if (pointsToConstantMemory(Loc))
      return MRI_NoModRef;
  }

  // Otherwise, a va_arg reads and writes.
  return MRI_ModRef;
}

ModRefInfo AAResults::getModRefInfo(const CatchPadInst *CatchPad,
                                    const MemoryLocation &Loc) {
  if (Loc.Ptr) {
    // If the pointer is a pointer to constant memory,
    // then it could not have been modified by this catchpad.
    if (pointsToConstantMemory(Loc))
      return MRI_NoModRef;
  }

  // Otherwise, a catchpad reads and writes.
  return MRI_ModRef;
}

ModRefInfo AAResults::getModRefInfo(const CatchReturnInst *CatchRet,
                                    const MemoryLocation &Loc) {
  if (Loc.Ptr) {
    // If the pointer is a pointer to constant memory,
    // then it could not have been modified by this catchpad.
    if (pointsToConstantMemory(Loc))
      return MRI_NoModRef;
  }

  // Otherwise, a catchret reads and writes.
  return MRI_ModRef;
}

ModRefInfo AAResults::getModRefInfo(const AtomicCmpXchgInst *CX,
                                    const MemoryLocation &Loc) {
  // Acquire/Release cmpxchg has properties that matter for arbitrary addresses.
  if (isStrongerThanMonotonic(CX->getSuccessOrdering()))
    return MRI_ModRef;

  // If the cmpxchg address does not alias the location, it does not access it.
  if (Loc.Ptr && !alias(MemoryLocation::get(CX), Loc))
    return MRI_NoModRef;

  return MRI_ModRef;
}

ModRefInfo AAResults::getModRefInfo(const AtomicRMWInst *RMW,
                                    const MemoryLocation &Loc) {
  // Acquire/Release atomicrmw has properties that matter for arbitrary addresses.
  if (isStrongerThanMonotonic(RMW->getOrdering()))
    return MRI_ModRef;

  // If the atomicrmw address does not alias the location, it does not access it.
  if (Loc.Ptr && !alias(MemoryLocation::get(RMW), Loc))
    return MRI_NoModRef;

  return MRI_ModRef;
}

/// \brief Return information about whether a particular call site modifies
/// or reads the specified memory location \p MemLoc before instruction \p I
/// in a BasicBlock. A ordered basic block \p OBB can be used to speed up
/// instruction-ordering queries inside the BasicBlock containing \p I.
/// FIXME: this is really just shoring-up a deficiency in alias analysis.
/// BasicAA isn't willing to spend linear time determining whether an alloca
/// was captured before or after this particular call, while we are. However,
/// with a smarter AA in place, this test is just wasting compile time.
ModRefInfo AAResults::callCapturesBefore(const Instruction *I,
                                         const MemoryLocation &MemLoc,
                                         DominatorTree *DT,
                                         OrderedBasicBlock *OBB) {
  if (!DT)
    return MRI_ModRef;

  const Value *Object =
      GetUnderlyingObject(MemLoc.Ptr, I->getModule()->getDataLayout());
  if (!isIdentifiedObject(Object) || isa<GlobalValue>(Object) ||
      isa<Constant>(Object))
    return MRI_ModRef;

  ImmutableCallSite CS(I);
  if (!CS.getInstruction() || CS.getInstruction() == Object)
    return MRI_ModRef;

  if (llvm::PointerMayBeCapturedBefore(Object, /* ReturnCaptures */ true,
                                       /* StoreCaptures */ true, I, DT,
                                       /* include Object */ true,
                                       /* OrderedBasicBlock */ OBB))
    return MRI_ModRef;

  unsigned ArgNo = 0;
  ModRefInfo R = MRI_NoModRef;
  for (auto CI = CS.data_operands_begin(), CE = CS.data_operands_end();
       CI != CE; ++CI, ++ArgNo) {
    // Only look at the no-capture or byval pointer arguments.  If this
    // pointer were passed to arguments that were neither of these, then it
    // couldn't be no-capture.
    if (!(*CI)->getType()->isPointerTy() ||
        (!CS.doesNotCapture(ArgNo) &&
         ArgNo < CS.getNumArgOperands() && !CS.isByValArgument(ArgNo)))
      continue;

    // If this is a no-capture pointer argument, see if we can tell that it
    // is impossible to alias the pointer we're checking.  If not, we have to
    // assume that the call could touch the pointer, even though it doesn't
    // escape.
    if (isNoAlias(MemoryLocation(*CI), MemoryLocation(Object)))
      continue;
    if (CS.doesNotAccessMemory(ArgNo))
      continue;
    if (CS.onlyReadsMemory(ArgNo)) {
      R = MRI_Ref;
      continue;
    }
    return MRI_ModRef;
  }
  return R;
}

/// canBasicBlockModify - Return true if it is possible for execution of the
/// specified basic block to modify the location Loc.
///
bool AAResults::canBasicBlockModify(const BasicBlock &BB,
                                    const MemoryLocation &Loc) {
  return canInstructionRangeModRef(BB.front(), BB.back(), Loc, MRI_Mod);
}

/// canInstructionRangeModRef - Return true if it is possible for the
/// execution of the specified instructions to mod\ref (according to the
/// mode) the location Loc. The instructions to consider are all
/// of the instructions in the range of [I1,I2] INCLUSIVE.
/// I1 and I2 must be in the same basic block.
bool AAResults::canInstructionRangeModRef(const Instruction &I1,
                                          const Instruction &I2,
                                          const MemoryLocation &Loc,
                                          const ModRefInfo Mode) {
  assert(I1.getParent() == I2.getParent() &&
         "Instructions not in same basic block!");
  BasicBlock::const_iterator I = I1.getIterator();
  BasicBlock::const_iterator E = I2.getIterator();
  ++E;  // Convert from inclusive to exclusive range.

  for (; I != E; ++I) // Check every instruction in range
    if (getModRefInfo(&*I, Loc) & Mode)
      return true;
  return false;
}

// Provide a definition for the root virtual destructor.
AAResults::Concept::~Concept() {}

// Provide a definition for the static object used to identify passes.
AnalysisKey AAManager::Key;

namespace {
/// A wrapper pass for external alias analyses. This just squirrels away the
/// callback used to run any analyses and register their results.
struct ExternalAAWrapperPass : ImmutablePass {
  typedef std::function<void(Pass &, Function &, AAResults &)> CallbackT;

  CallbackT CB;

  static char ID;

  ExternalAAWrapperPass() : ImmutablePass(ID) {
    initializeExternalAAWrapperPassPass(*PassRegistry::getPassRegistry());
  }
  explicit ExternalAAWrapperPass(CallbackT CB)
      : ImmutablePass(ID), CB(std::move(CB)) {
    initializeExternalAAWrapperPassPass(*PassRegistry::getPassRegistry());
  }

  void getAnalysisUsage(AnalysisUsage &AU) const override {
    AU.setPreservesAll();
  }
};
}

char ExternalAAWrapperPass::ID = 0;
INITIALIZE_PASS(ExternalAAWrapperPass, "external-aa", "External Alias Analysis",
                false, true)

ImmutablePass *
llvm::createExternalAAWrapperPass(ExternalAAWrapperPass::CallbackT Callback) {
  return new ExternalAAWrapperPass(std::move(Callback));
}

AAResultsWrapperPass::AAResultsWrapperPass() : FunctionPass(ID) {
  initializeAAResultsWrapperPassPass(*PassRegistry::getPassRegistry());
}

char AAResultsWrapperPass::ID = 0;

INITIALIZE_PASS_BEGIN(AAResultsWrapperPass, "aa",
                      "Function Alias Analysis Results", false, true)
INITIALIZE_PASS_DEPENDENCY(BasicAAWrapperPass)
INITIALIZE_PASS_DEPENDENCY(CFLAndersAAWrapperPass)
INITIALIZE_PASS_DEPENDENCY(CFLSteensAAWrapperPass)
INITIALIZE_PASS_DEPENDENCY(ExternalAAWrapperPass)
INITIALIZE_PASS_DEPENDENCY(GlobalsAAWrapperPass)
INITIALIZE_PASS_DEPENDENCY(ObjCARCAAWrapperPass)
INITIALIZE_PASS_DEPENDENCY(SCEVAAWrapperPass)
INITIALIZE_PASS_DEPENDENCY(ScopedNoAliasAAWrapperPass)
INITIALIZE_PASS_DEPENDENCY(TypeBasedAAWrapperPass)
INITIALIZE_PASS_END(AAResultsWrapperPass, "aa",
                    "Function Alias Analysis Results", false, true)

FunctionPass *llvm::createAAResultsWrapperPass() {
  return new AAResultsWrapperPass();
}

/// Run the wrapper pass to rebuild an aggregation over known AA passes.
///
/// This is the legacy pass manager's interface to the new-style AA results
/// aggregation object. Because this is somewhat shoe-horned into the legacy
/// pass manager, we hard code all the specific alias analyses available into
/// it. While the particular set enabled is configured via commandline flags,
/// adding a new alias analysis to LLVM will require adding support for it to
/// this list.
bool AAResultsWrapperPass::runOnFunction(Function &F) {
  // NB! This *must* be reset before adding new AA results to the new
  // AAResults object because in the legacy pass manager, each instance
  // of these will refer to the *same* immutable analyses, registering and
  // unregistering themselves with them. We need to carefully tear down the
  // previous object first, in this case replacing it with an empty one, before
  // registering new results.
  AAR.reset(
      new AAResults(getAnalysis<TargetLibraryInfoWrapperPass>().getTLI()));

  // BasicAA is always available for function analyses. Also, we add it first
  // so that it can trump TBAA results when it proves MustAlias.
  // FIXME: TBAA should have an explicit mode to support this and then we
  // should reconsider the ordering here.
  if (!DisableBasicAA)
    AAR->addAAResult(getAnalysis<BasicAAWrapperPass>().getResult());

  // Populate the results with the currently available AAs.
  if (auto *WrapperPass = getAnalysisIfAvailable<ScopedNoAliasAAWrapperPass>())
    AAR->addAAResult(WrapperPass->getResult());
  if (auto *WrapperPass = getAnalysisIfAvailable<TypeBasedAAWrapperPass>())
    AAR->addAAResult(WrapperPass->getResult());
  if (auto *WrapperPass =
          getAnalysisIfAvailable<objcarc::ObjCARCAAWrapperPass>())
    AAR->addAAResult(WrapperPass->getResult());
  if (auto *WrapperPass = getAnalysisIfAvailable<GlobalsAAWrapperPass>())
    AAR->addAAResult(WrapperPass->getResult());
  if (auto *WrapperPass = getAnalysisIfAvailable<SCEVAAWrapperPass>())
    AAR->addAAResult(WrapperPass->getResult());
  if (auto *WrapperPass = getAnalysisIfAvailable<CFLAndersAAWrapperPass>())
    AAR->addAAResult(WrapperPass->getResult());
  if (auto *WrapperPass = getAnalysisIfAvailable<CFLSteensAAWrapperPass>())
    AAR->addAAResult(WrapperPass->getResult());

  // If available, run an external AA providing callback over the results as
  // well.
  if (auto *WrapperPass = getAnalysisIfAvailable<ExternalAAWrapperPass>())
    if (WrapperPass->CB)
      WrapperPass->CB(*this, F, *AAR);

  // Analyses don't mutate the IR, so return false.
  return false;
}

void AAResultsWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const {
  AU.setPreservesAll();
  AU.addRequired<BasicAAWrapperPass>();
  AU.addRequired<TargetLibraryInfoWrapperPass>();

  // We also need to mark all the alias analysis passes we will potentially
  // probe in runOnFunction as used here to ensure the legacy pass manager
  // preserves them. This hard coding of lists of alias analyses is specific to
  // the legacy pass manager.
  AU.addUsedIfAvailable<ScopedNoAliasAAWrapperPass>();
  AU.addUsedIfAvailable<TypeBasedAAWrapperPass>();
  AU.addUsedIfAvailable<objcarc::ObjCARCAAWrapperPass>();
  AU.addUsedIfAvailable<GlobalsAAWrapperPass>();
  AU.addUsedIfAvailable<SCEVAAWrapperPass>();
  AU.addUsedIfAvailable<CFLAndersAAWrapperPass>();
  AU.addUsedIfAvailable<CFLSteensAAWrapperPass>();
}

AAResults llvm::createLegacyPMAAResults(Pass &P, Function &F,
                                        BasicAAResult &BAR) {
  AAResults AAR(P.getAnalysis<TargetLibraryInfoWrapperPass>().getTLI());

  // Add in our explicitly constructed BasicAA results.
  if (!DisableBasicAA)
    AAR.addAAResult(BAR);

  // Populate the results with the other currently available AAs.
  if (auto *WrapperPass =
          P.getAnalysisIfAvailable<ScopedNoAliasAAWrapperPass>())
    AAR.addAAResult(WrapperPass->getResult());
  if (auto *WrapperPass = P.getAnalysisIfAvailable<TypeBasedAAWrapperPass>())
    AAR.addAAResult(WrapperPass->getResult());
  if (auto *WrapperPass =
          P.getAnalysisIfAvailable<objcarc::ObjCARCAAWrapperPass>())
    AAR.addAAResult(WrapperPass->getResult());
  if (auto *WrapperPass = P.getAnalysisIfAvailable<GlobalsAAWrapperPass>())
    AAR.addAAResult(WrapperPass->getResult());
  if (auto *WrapperPass = P.getAnalysisIfAvailable<CFLAndersAAWrapperPass>())
    AAR.addAAResult(WrapperPass->getResult());
  if (auto *WrapperPass = P.getAnalysisIfAvailable<CFLSteensAAWrapperPass>())
    AAR.addAAResult(WrapperPass->getResult());

  return AAR;
}

bool llvm::isNoAliasCall(const Value *V) {
  if (auto CS = ImmutableCallSite(V))
    return CS.hasRetAttr(Attribute::NoAlias);
  return false;
}

bool llvm::isNoAliasArgument(const Value *V) {
  if (const Argument *A = dyn_cast<Argument>(V))
    return A->hasNoAliasAttr();
  return false;
}

bool llvm::isIdentifiedObject(const Value *V) {
  if (isa<AllocaInst>(V))
    return true;
  if (isa<GlobalValue>(V) && !isa<GlobalAlias>(V))
    return true;
  if (isNoAliasCall(V))
    return true;
  if (const Argument *A = dyn_cast<Argument>(V))
    return A->hasNoAliasAttr() || A->hasByValAttr();
  return false;
}

bool llvm::isIdentifiedFunctionLocal(const Value *V) {
  return isa<AllocaInst>(V) || isNoAliasCall(V) || isNoAliasArgument(V);
}

void llvm::getAAResultsAnalysisUsage(AnalysisUsage &AU) {
  // This function needs to be in sync with llvm::createLegacyPMAAResults -- if
  // more alias analyses are added to llvm::createLegacyPMAAResults, they need
  // to be added here also.
  AU.addRequired<TargetLibraryInfoWrapperPass>();
  AU.addUsedIfAvailable<ScopedNoAliasAAWrapperPass>();
  AU.addUsedIfAvailable<TypeBasedAAWrapperPass>();
  AU.addUsedIfAvailable<objcarc::ObjCARCAAWrapperPass>();
  AU.addUsedIfAvailable<GlobalsAAWrapperPass>();
  AU.addUsedIfAvailable<CFLAndersAAWrapperPass>();
  AU.addUsedIfAvailable<CFLSteensAAWrapperPass>();
}