llvm.org GIT mirror llvm / e3e43d9 include / llvm / IR / Metadata.h
e3e43d9

Tree @e3e43d9 (Download .tar.gz)

Metadata.h @e3e43d9raw · history · blame

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
//===- llvm/IR/Metadata.h - Metadata definitions ----------------*- C++ -*-===//
//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
/// @file
/// This file contains the declarations for metadata subclasses.
/// They represent the different flavors of metadata that live in LLVM.
//
//===----------------------------------------------------------------------===//

#ifndef LLVM_IR_METADATA_H
#define LLVM_IR_METADATA_H

#include "llvm/ADT/ArrayRef.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/DenseMapInfo.h"
#include "llvm/ADT/None.h"
#include "llvm/ADT/PointerUnion.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/StringRef.h"
#include "llvm/ADT/ilist_node.h"
#include "llvm/ADT/iterator_range.h"
#include "llvm/IR/Constant.h"
#include "llvm/IR/LLVMContext.h"
#include "llvm/IR/Value.h"
#include "llvm/Support/CBindingWrapping.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/ErrorHandling.h"
#include <cassert>
#include <cstddef>
#include <cstdint>
#include <iterator>
#include <memory>
#include <string>
#include <type_traits>
#include <utility>

namespace llvm {

class Module;
class ModuleSlotTracker;

enum LLVMConstants : uint32_t {
  DEBUG_METADATA_VERSION = 3 // Current debug info version number.
};

/// \brief Root of the metadata hierarchy.
///
/// This is a root class for typeless data in the IR.
class Metadata {
  friend class ReplaceableMetadataImpl;

  /// \brief RTTI.
  const unsigned char SubclassID;

protected:
  /// \brief Active type of storage.
  enum StorageType { Uniqued, Distinct, Temporary };

  /// \brief Storage flag for non-uniqued, otherwise unowned, metadata.
  unsigned char Storage;
  // TODO: expose remaining bits to subclasses.

  unsigned short SubclassData16;
  unsigned SubclassData32;

public:
  enum MetadataKind {
#define HANDLE_METADATA_LEAF(CLASS) CLASS##Kind,
#include "llvm/IR/Metadata.def"
  };

protected:
  Metadata(unsigned ID, StorageType Storage)
      : SubclassID(ID), Storage(Storage), SubclassData16(0), SubclassData32(0) {
    static_assert(sizeof(*this) == 8, "Metadata fields poorly packed");
  }

  ~Metadata() = default;

  /// \brief Default handling of a changed operand, which asserts.
  ///
  /// If subclasses pass themselves in as owners to a tracking node reference,
  /// they must provide an implementation of this method.
  void handleChangedOperand(void *, Metadata *) {
    llvm_unreachable("Unimplemented in Metadata subclass");
  }

public:
  unsigned getMetadataID() const { return SubclassID; }

  /// \brief User-friendly dump.
  ///
  /// If \c M is provided, metadata nodes will be numbered canonically;
  /// otherwise, pointer addresses are substituted.
  ///
  /// Note: this uses an explicit overload instead of default arguments so that
  /// the nullptr version is easy to call from a debugger.
  ///
  /// @{
  void dump() const;
  void dump(const Module *M) const;
  /// @}

  /// \brief Print.
  ///
  /// Prints definition of \c this.
  ///
  /// If \c M is provided, metadata nodes will be numbered canonically;
  /// otherwise, pointer addresses are substituted.
  /// @{
  void print(raw_ostream &OS, const Module *M = nullptr,
             bool IsForDebug = false) const;
  void print(raw_ostream &OS, ModuleSlotTracker &MST, const Module *M = nullptr,
             bool IsForDebug = false) const;
  /// @}

  /// \brief Print as operand.
  ///
  /// Prints reference of \c this.
  ///
  /// If \c M is provided, metadata nodes will be numbered canonically;
  /// otherwise, pointer addresses are substituted.
  /// @{
  void printAsOperand(raw_ostream &OS, const Module *M = nullptr) const;
  void printAsOperand(raw_ostream &OS, ModuleSlotTracker &MST,
                      const Module *M = nullptr) const;
  /// @}
};

// Create wrappers for C Binding types (see CBindingWrapping.h).
DEFINE_ISA_CONVERSION_FUNCTIONS(Metadata, LLVMMetadataRef)

// Specialized opaque metadata conversions.
inline Metadata **unwrap(LLVMMetadataRef *MDs) {
  return reinterpret_cast<Metadata**>(MDs);
}

#define HANDLE_METADATA(CLASS) class CLASS;
#include "llvm/IR/Metadata.def"

// Provide specializations of isa so that we don't need definitions of
// subclasses to see if the metadata is a subclass.
#define HANDLE_METADATA_LEAF(CLASS)                                            \
  template <> struct isa_impl<CLASS, Metadata> {                               \
    static inline bool doit(const Metadata &MD) {                              \
      return MD.getMetadataID() == Metadata::CLASS##Kind;                      \
    }                                                                          \
  };
#include "llvm/IR/Metadata.def"

inline raw_ostream &operator<<(raw_ostream &OS, const Metadata &MD) {
  MD.print(OS);
  return OS;
}

/// \brief Metadata wrapper in the Value hierarchy.
///
/// A member of the \a Value hierarchy to represent a reference to metadata.
/// This allows, e.g., instrinsics to have metadata as operands.
///
/// Notably, this is the only thing in either hierarchy that is allowed to
/// reference \a LocalAsMetadata.
class MetadataAsValue : public Value {
  friend class ReplaceableMetadataImpl;
  friend class LLVMContextImpl;

  Metadata *MD;

  MetadataAsValue(Type *Ty, Metadata *MD);

  /// \brief Drop use of metadata (during teardown).
  void dropUse() { MD = nullptr; }

public:
  ~MetadataAsValue();

  static MetadataAsValue *get(LLVMContext &Context, Metadata *MD);
  static MetadataAsValue *getIfExists(LLVMContext &Context, Metadata *MD);
  Metadata *getMetadata() const { return MD; }

  static bool classof(const Value *V) {
    return V->getValueID() == MetadataAsValueVal;
  }

private:
  void handleChangedMetadata(Metadata *MD);
  void track();
  void untrack();
};

/// \brief API for tracking metadata references through RAUW and deletion.
///
/// Shared API for updating \a Metadata pointers in subclasses that support
/// RAUW.
///
/// This API is not meant to be used directly.  See \a TrackingMDRef for a
/// user-friendly tracking reference.
class MetadataTracking {
public:
  /// \brief Track the reference to metadata.
  ///
  /// Register \c MD with \c *MD, if the subclass supports tracking.  If \c *MD
  /// gets RAUW'ed, \c MD will be updated to the new address.  If \c *MD gets
  /// deleted, \c MD will be set to \c nullptr.
  ///
  /// If tracking isn't supported, \c *MD will not change.
  ///
  /// \return true iff tracking is supported by \c MD.
  static bool track(Metadata *&MD) {
    return track(&MD, *MD, static_cast<Metadata *>(nullptr));
  }

  /// \brief Track the reference to metadata for \a Metadata.
  ///
  /// As \a track(Metadata*&), but with support for calling back to \c Owner to
  /// tell it that its operand changed.  This could trigger \c Owner being
  /// re-uniqued.
  static bool track(void *Ref, Metadata &MD, Metadata &Owner) {
    return track(Ref, MD, &Owner);
  }

  /// \brief Track the reference to metadata for \a MetadataAsValue.
  ///
  /// As \a track(Metadata*&), but with support for calling back to \c Owner to
  /// tell it that its operand changed.  This could trigger \c Owner being
  /// re-uniqued.
  static bool track(void *Ref, Metadata &MD, MetadataAsValue &Owner) {
    return track(Ref, MD, &Owner);
  }

  /// \brief Stop tracking a reference to metadata.
  ///
  /// Stops \c *MD from tracking \c MD.
  static void untrack(Metadata *&MD) { untrack(&MD, *MD); }
  static void untrack(void *Ref, Metadata &MD);

  /// \brief Move tracking from one reference to another.
  ///
  /// Semantically equivalent to \c untrack(MD) followed by \c track(New),
  /// except that ownership callbacks are maintained.
  ///
  /// Note: it is an error if \c *MD does not equal \c New.
  ///
  /// \return true iff tracking is supported by \c MD.
  static bool retrack(Metadata *&MD, Metadata *&New) {
    return retrack(&MD, *MD, &New);
  }
  static bool retrack(void *Ref, Metadata &MD, void *New);

  /// \brief Check whether metadata is replaceable.
  static bool isReplaceable(const Metadata &MD);

  typedef PointerUnion<MetadataAsValue *, Metadata *> OwnerTy;

private:
  /// \brief Track a reference to metadata for an owner.
  ///
  /// Generalized version of tracking.
  static bool track(void *Ref, Metadata &MD, OwnerTy Owner);
};

/// \brief Shared implementation of use-lists for replaceable metadata.
///
/// Most metadata cannot be RAUW'ed.  This is a shared implementation of
/// use-lists and associated API for the two that support it (\a ValueAsMetadata
/// and \a TempMDNode).
class ReplaceableMetadataImpl {
  friend class MetadataTracking;

public:
  typedef MetadataTracking::OwnerTy OwnerTy;

private:
  LLVMContext &Context;
  uint64_t NextIndex = 0;
  SmallDenseMap<void *, std::pair<OwnerTy, uint64_t>, 4> UseMap;

public:
  ReplaceableMetadataImpl(LLVMContext &Context) : Context(Context) {}

  ~ReplaceableMetadataImpl() {
    assert(UseMap.empty() && "Cannot destroy in-use replaceable metadata");
  }

  LLVMContext &getContext() const { return Context; }

  /// \brief Replace all uses of this with MD.
  ///
  /// Replace all uses of this with \c MD, which is allowed to be null.
  void replaceAllUsesWith(Metadata *MD);

  /// \brief Resolve all uses of this.
  ///
  /// Resolve all uses of this, turning off RAUW permanently.  If \c
  /// ResolveUsers, call \a MDNode::resolve() on any users whose last operand
  /// is resolved.
  void resolveAllUses(bool ResolveUsers = true);

private:
  void addRef(void *Ref, OwnerTy Owner);
  void dropRef(void *Ref);
  void moveRef(void *Ref, void *New, const Metadata &MD);

  /// Lazily construct RAUW support on MD.
  ///
  /// If this is an unresolved MDNode, RAUW support will be created on-demand.
  /// ValueAsMetadata always has RAUW support.
  static ReplaceableMetadataImpl *getOrCreate(Metadata &MD);

  /// Get RAUW support on MD, if it exists.
  static ReplaceableMetadataImpl *getIfExists(Metadata &MD);

  /// Check whether this node will support RAUW.
  ///
  /// Returns \c true unless getOrCreate() would return null.
  static bool isReplaceable(const Metadata &MD);
};

/// \brief Value wrapper in the Metadata hierarchy.
///
/// This is a custom value handle that allows other metadata to refer to
/// classes in the Value hierarchy.
///
/// Because of full uniquing support, each value is only wrapped by a single \a
/// ValueAsMetadata object, so the lookup maps are far more efficient than
/// those using ValueHandleBase.
class ValueAsMetadata : public Metadata, ReplaceableMetadataImpl {
  friend class ReplaceableMetadataImpl;
  friend class LLVMContextImpl;

  Value *V;

  /// \brief Drop users without RAUW (during teardown).
  void dropUsers() {
    ReplaceableMetadataImpl::resolveAllUses(/* ResolveUsers */ false);
  }

protected:
  ValueAsMetadata(unsigned ID, Value *V)
      : Metadata(ID, Uniqued), ReplaceableMetadataImpl(V->getContext()), V(V) {
    assert(V && "Expected valid value");
  }

  ~ValueAsMetadata() = default;

public:
  static ValueAsMetadata *get(Value *V);
  static ConstantAsMetadata *getConstant(Value *C) {
    return cast<ConstantAsMetadata>(get(C));
  }
  static LocalAsMetadata *getLocal(Value *Local) {
    return cast<LocalAsMetadata>(get(Local));
  }

  static ValueAsMetadata *getIfExists(Value *V);
  static ConstantAsMetadata *getConstantIfExists(Value *C) {
    return cast_or_null<ConstantAsMetadata>(getIfExists(C));
  }
  static LocalAsMetadata *getLocalIfExists(Value *Local) {
    return cast_or_null<LocalAsMetadata>(getIfExists(Local));
  }

  Value *getValue() const { return V; }
  Type *getType() const { return V->getType(); }
  LLVMContext &getContext() const { return V->getContext(); }

  static void handleDeletion(Value *V);
  static void handleRAUW(Value *From, Value *To);

protected:
  /// \brief Handle collisions after \a Value::replaceAllUsesWith().
  ///
  /// RAUW isn't supported directly for \a ValueAsMetadata, but if the wrapped
  /// \a Value gets RAUW'ed and the target already exists, this is used to
  /// merge the two metadata nodes.
  void replaceAllUsesWith(Metadata *MD) {
    ReplaceableMetadataImpl::replaceAllUsesWith(MD);
  }

public:
  static bool classof(const Metadata *MD) {
    return MD->getMetadataID() == LocalAsMetadataKind ||
           MD->getMetadataID() == ConstantAsMetadataKind;
  }
};

class ConstantAsMetadata : public ValueAsMetadata {
  friend class ValueAsMetadata;

  ConstantAsMetadata(Constant *C)
      : ValueAsMetadata(ConstantAsMetadataKind, C) {}

public:
  static ConstantAsMetadata *get(Constant *C) {
    return ValueAsMetadata::getConstant(C);
  }

  static ConstantAsMetadata *getIfExists(Constant *C) {
    return ValueAsMetadata::getConstantIfExists(C);
  }

  Constant *getValue() const {
    return cast<Constant>(ValueAsMetadata::getValue());
  }

  static bool classof(const Metadata *MD) {
    return MD->getMetadataID() == ConstantAsMetadataKind;
  }
};

class LocalAsMetadata : public ValueAsMetadata {
  friend class ValueAsMetadata;

  LocalAsMetadata(Value *Local)
      : ValueAsMetadata(LocalAsMetadataKind, Local) {
    assert(!isa<Constant>(Local) && "Expected local value");
  }

public:
  static LocalAsMetadata *get(Value *Local) {
    return ValueAsMetadata::getLocal(Local);
  }

  static LocalAsMetadata *getIfExists(Value *Local) {
    return ValueAsMetadata::getLocalIfExists(Local);
  }

  static bool classof(const Metadata *MD) {
    return MD->getMetadataID() == LocalAsMetadataKind;
  }
};

/// \brief Transitional API for extracting constants from Metadata.
///
/// This namespace contains transitional functions for metadata that points to
/// \a Constants.
///
/// In prehistory -- when metadata was a subclass of \a Value -- \a MDNode
/// operands could refer to any \a Value.  There's was a lot of code like this:
///
/// \code
///     MDNode *N = ...;
///     auto *CI = dyn_cast<ConstantInt>(N->getOperand(2));
/// \endcode
///
/// Now that \a Value and \a Metadata are in separate hierarchies, maintaining
/// the semantics for \a isa(), \a cast(), \a dyn_cast() (etc.) requires three
/// steps: cast in the \a Metadata hierarchy, extraction of the \a Value, and
/// cast in the \a Value hierarchy.  Besides creating boiler-plate, this
/// requires subtle control flow changes.
///
/// The end-goal is to create a new type of metadata, called (e.g.) \a MDInt,
/// so that metadata can refer to numbers without traversing a bridge to the \a
/// Value hierarchy.  In this final state, the code above would look like this:
///
/// \code
///     MDNode *N = ...;
///     auto *MI = dyn_cast<MDInt>(N->getOperand(2));
/// \endcode
///
/// The API in this namespace supports the transition.  \a MDInt doesn't exist
/// yet, and even once it does, changing each metadata schema to use it is its
/// own mini-project.  In the meantime this API prevents us from introducing
/// complex and bug-prone control flow that will disappear in the end.  In
/// particular, the above code looks like this:
///
/// \code
///     MDNode *N = ...;
///     auto *CI = mdconst::dyn_extract<ConstantInt>(N->getOperand(2));
/// \endcode
///
/// The full set of provided functions includes:
///
///   mdconst::hasa                <=> isa
///   mdconst::extract             <=> cast
///   mdconst::extract_or_null     <=> cast_or_null
///   mdconst::dyn_extract         <=> dyn_cast
///   mdconst::dyn_extract_or_null <=> dyn_cast_or_null
///
/// The target of the cast must be a subclass of \a Constant.
namespace mdconst {

namespace detail {

template <class T> T &make();
template <class T, class Result> struct HasDereference {
  typedef char Yes[1];
  typedef char No[2];
  template <size_t N> struct SFINAE {};

  template <class U, class V>
  static Yes &hasDereference(SFINAE<sizeof(static_cast<V>(*make<U>()))> * = 0);
  template <class U, class V> static No &hasDereference(...);

  static const bool value =
      sizeof(hasDereference<T, Result>(nullptr)) == sizeof(Yes);
};
template <class V, class M> struct IsValidPointer {
  static const bool value = std::is_base_of<Constant, V>::value &&
                            HasDereference<M, const Metadata &>::value;
};
template <class V, class M> struct IsValidReference {
  static const bool value = std::is_base_of<Constant, V>::value &&
                            std::is_convertible<M, const Metadata &>::value;
};

} // end namespace detail

/// \brief Check whether Metadata has a Value.
///
/// As an analogue to \a isa(), check whether \c MD has an \a Value inside of
/// type \c X.
template <class X, class Y>
inline typename std::enable_if<detail::IsValidPointer<X, Y>::value, bool>::type
hasa(Y &&MD) {
  assert(MD && "Null pointer sent into hasa");
  if (auto *V = dyn_cast<ConstantAsMetadata>(MD))
    return isa<X>(V->getValue());
  return false;
}
template <class X, class Y>
inline
    typename std::enable_if<detail::IsValidReference<X, Y &>::value, bool>::type
    hasa(Y &MD) {
  return hasa(&MD);
}

/// \brief Extract a Value from Metadata.
///
/// As an analogue to \a cast(), extract the \a Value subclass \c X from \c MD.
template <class X, class Y>
inline typename std::enable_if<detail::IsValidPointer<X, Y>::value, X *>::type
extract(Y &&MD) {
  return cast<X>(cast<ConstantAsMetadata>(MD)->getValue());
}
template <class X, class Y>
inline
    typename std::enable_if<detail::IsValidReference<X, Y &>::value, X *>::type
    extract(Y &MD) {
  return extract(&MD);
}

/// \brief Extract a Value from Metadata, allowing null.
///
/// As an analogue to \a cast_or_null(), extract the \a Value subclass \c X
/// from \c MD, allowing \c MD to be null.
template <class X, class Y>
inline typename std::enable_if<detail::IsValidPointer<X, Y>::value, X *>::type
extract_or_null(Y &&MD) {
  if (auto *V = cast_or_null<ConstantAsMetadata>(MD))
    return cast<X>(V->getValue());
  return nullptr;
}

/// \brief Extract a Value from Metadata, if any.
///
/// As an analogue to \a dyn_cast_or_null(), extract the \a Value subclass \c X
/// from \c MD, return null if \c MD doesn't contain a \a Value or if the \a
/// Value it does contain is of the wrong subclass.
template <class X, class Y>
inline typename std::enable_if<detail::IsValidPointer<X, Y>::value, X *>::type
dyn_extract(Y &&MD) {
  if (auto *V = dyn_cast<ConstantAsMetadata>(MD))
    return dyn_cast<X>(V->getValue());
  return nullptr;
}

/// \brief Extract a Value from Metadata, if any, allowing null.
///
/// As an analogue to \a dyn_cast_or_null(), extract the \a Value subclass \c X
/// from \c MD, return null if \c MD doesn't contain a \a Value or if the \a
/// Value it does contain is of the wrong subclass, allowing \c MD to be null.
template <class X, class Y>
inline typename std::enable_if<detail::IsValidPointer<X, Y>::value, X *>::type
dyn_extract_or_null(Y &&MD) {
  if (auto *V = dyn_cast_or_null<ConstantAsMetadata>(MD))
    return dyn_cast<X>(V->getValue());
  return nullptr;
}

} // end namespace mdconst

//===----------------------------------------------------------------------===//
/// \brief A single uniqued string.
///
/// These are used to efficiently contain a byte sequence for metadata.
/// MDString is always unnamed.
class MDString : public Metadata {
  friend class StringMapEntry<MDString>;

  StringMapEntry<MDString> *Entry = nullptr;

  MDString() : Metadata(MDStringKind, Uniqued) {}

public:
  MDString(const MDString &) = delete;
  MDString &operator=(MDString &&) = delete;
  MDString &operator=(const MDString &) = delete;

  static MDString *get(LLVMContext &Context, StringRef Str);
  static MDString *get(LLVMContext &Context, const char *Str) {
    return get(Context, Str ? StringRef(Str) : StringRef());
  }

  StringRef getString() const;

  unsigned getLength() const { return (unsigned)getString().size(); }

  typedef StringRef::iterator iterator;

  /// \brief Pointer to the first byte of the string.
  iterator begin() const { return getString().begin(); }

  /// \brief Pointer to one byte past the end of the string.
  iterator end() const { return getString().end(); }

  const unsigned char *bytes_begin() const { return getString().bytes_begin(); }
  const unsigned char *bytes_end() const { return getString().bytes_end(); }

  /// \brief Methods for support type inquiry through isa, cast, and dyn_cast.
  static bool classof(const Metadata *MD) {
    return MD->getMetadataID() == MDStringKind;
  }
};

/// \brief A collection of metadata nodes that might be associated with a
/// memory access used by the alias-analysis infrastructure.
struct AAMDNodes {
  explicit AAMDNodes(MDNode *T = nullptr, MDNode *S = nullptr,
                     MDNode *N = nullptr)
      : TBAA(T), Scope(S), NoAlias(N) {}

  bool operator==(const AAMDNodes &A) const {
    return TBAA == A.TBAA && Scope == A.Scope && NoAlias == A.NoAlias;
  }

  bool operator!=(const AAMDNodes &A) const { return !(*this == A); }

  explicit operator bool() const { return TBAA || Scope || NoAlias; }

  /// \brief The tag for type-based alias analysis.
  MDNode *TBAA;

  /// \brief The tag for alias scope specification (used with noalias).
  MDNode *Scope;

  /// \brief The tag specifying the noalias scope.
  MDNode *NoAlias;
};

// Specialize DenseMapInfo for AAMDNodes.
template<>
struct DenseMapInfo<AAMDNodes> {
  static inline AAMDNodes getEmptyKey() {
    return AAMDNodes(DenseMapInfo<MDNode *>::getEmptyKey(),
                     nullptr, nullptr);
  }

  static inline AAMDNodes getTombstoneKey() {
    return AAMDNodes(DenseMapInfo<MDNode *>::getTombstoneKey(),
                     nullptr, nullptr);
  }

  static unsigned getHashValue(const AAMDNodes &Val) {
    return DenseMapInfo<MDNode *>::getHashValue(Val.TBAA) ^
           DenseMapInfo<MDNode *>::getHashValue(Val.Scope) ^
           DenseMapInfo<MDNode *>::getHashValue(Val.NoAlias);
  }

  static bool isEqual(const AAMDNodes &LHS, const AAMDNodes &RHS) {
    return LHS == RHS;
  }
};

/// \brief Tracking metadata reference owned by Metadata.
///
/// Similar to \a TrackingMDRef, but it's expected to be owned by an instance
/// of \a Metadata, which has the option of registering itself for callbacks to
/// re-unique itself.
///
/// In particular, this is used by \a MDNode.
class MDOperand {
  Metadata *MD = nullptr;

public:
  MDOperand() = default;
  MDOperand(MDOperand &&) = delete;
  MDOperand(const MDOperand &) = delete;
  MDOperand &operator=(MDOperand &&) = delete;
  MDOperand &operator=(const MDOperand &) = delete;
  ~MDOperand() { untrack(); }

  Metadata *get() const { return MD; }
  operator Metadata *() const { return get(); }
  Metadata *operator->() const { return get(); }
  Metadata &operator*() const { return *get(); }

  void reset() {
    untrack();
    MD = nullptr;
  }
  void reset(Metadata *MD, Metadata *Owner) {
    untrack();
    this->MD = MD;
    track(Owner);
  }

private:
  void track(Metadata *Owner) {
    if (MD) {
      if (Owner)
        MetadataTracking::track(this, *MD, *Owner);
      else
        MetadataTracking::track(MD);
    }
  }

  void untrack() {
    assert(static_cast<void *>(this) == &MD && "Expected same address");
    if (MD)
      MetadataTracking::untrack(MD);
  }
};

template <> struct simplify_type<MDOperand> {
  typedef Metadata *SimpleType;
  static SimpleType getSimplifiedValue(MDOperand &MD) { return MD.get(); }
};

template <> struct simplify_type<const MDOperand> {
  typedef Metadata *SimpleType;
  static SimpleType getSimplifiedValue(const MDOperand &MD) { return MD.get(); }
};

/// \brief Pointer to the context, with optional RAUW support.
///
/// Either a raw (non-null) pointer to the \a LLVMContext, or an owned pointer
/// to \a ReplaceableMetadataImpl (which has a reference to \a LLVMContext).
class ContextAndReplaceableUses {
  PointerUnion<LLVMContext *, ReplaceableMetadataImpl *> Ptr;

public:
  ContextAndReplaceableUses(LLVMContext &Context) : Ptr(&Context) {}
  ContextAndReplaceableUses(
      std::unique_ptr<ReplaceableMetadataImpl> ReplaceableUses)
      : Ptr(ReplaceableUses.release()) {
    assert(getReplaceableUses() && "Expected non-null replaceable uses");
  }
  ContextAndReplaceableUses() = delete;
  ContextAndReplaceableUses(ContextAndReplaceableUses &&) = delete;
  ContextAndReplaceableUses(const ContextAndReplaceableUses &) = delete;
  ContextAndReplaceableUses &operator=(ContextAndReplaceableUses &&) = delete;
  ContextAndReplaceableUses &
  operator=(const ContextAndReplaceableUses &) = delete;
  ~ContextAndReplaceableUses() { delete getReplaceableUses(); }

  operator LLVMContext &() { return getContext(); }

  /// \brief Whether this contains RAUW support.
  bool hasReplaceableUses() const {
    return Ptr.is<ReplaceableMetadataImpl *>();
  }

  LLVMContext &getContext() const {
    if (hasReplaceableUses())
      return getReplaceableUses()->getContext();
    return *Ptr.get<LLVMContext *>();
  }

  ReplaceableMetadataImpl *getReplaceableUses() const {
    if (hasReplaceableUses())
      return Ptr.get<ReplaceableMetadataImpl *>();
    return nullptr;
  }

  /// Ensure that this has RAUW support, and then return it.
  ReplaceableMetadataImpl *getOrCreateReplaceableUses() {
    if (!hasReplaceableUses())
      makeReplaceable(llvm::make_unique<ReplaceableMetadataImpl>(getContext()));
    return getReplaceableUses();
  }

  /// \brief Assign RAUW support to this.
  ///
  /// Make this replaceable, taking ownership of \c ReplaceableUses (which must
  /// not be null).
  void
  makeReplaceable(std::unique_ptr<ReplaceableMetadataImpl> ReplaceableUses) {
    assert(ReplaceableUses && "Expected non-null replaceable uses");
    assert(&ReplaceableUses->getContext() == &getContext() &&
           "Expected same context");
    delete getReplaceableUses();
    Ptr = ReplaceableUses.release();
  }

  /// \brief Drop RAUW support.
  ///
  /// Cede ownership of RAUW support, returning it.
  std::unique_ptr<ReplaceableMetadataImpl> takeReplaceableUses() {
    assert(hasReplaceableUses() && "Expected to own replaceable uses");
    std::unique_ptr<ReplaceableMetadataImpl> ReplaceableUses(
        getReplaceableUses());
    Ptr = &ReplaceableUses->getContext();
    return ReplaceableUses;
  }
};

struct TempMDNodeDeleter {
  inline void operator()(MDNode *Node) const;
};

#define HANDLE_MDNODE_LEAF(CLASS)                                              \
  typedef std::unique_ptr<CLASS, TempMDNodeDeleter> Temp##CLASS;
#define HANDLE_MDNODE_BRANCH(CLASS) HANDLE_MDNODE_LEAF(CLASS)
#include "llvm/IR/Metadata.def"

/// \brief Metadata node.
///
/// Metadata nodes can be uniqued, like constants, or distinct.  Temporary
/// metadata nodes (with full support for RAUW) can be used to delay uniquing
/// until forward references are known.  The basic metadata node is an \a
/// MDTuple.
///
/// There is limited support for RAUW at construction time.  At construction
/// time, if any operand is a temporary node (or an unresolved uniqued node,
/// which indicates a transitive temporary operand), the node itself will be
/// unresolved.  As soon as all operands become resolved, it will drop RAUW
/// support permanently.
///
/// If an unresolved node is part of a cycle, \a resolveCycles() needs
/// to be called on some member of the cycle once all temporary nodes have been
/// replaced.
class MDNode : public Metadata {
  friend class ReplaceableMetadataImpl;
  friend class LLVMContextImpl;

  unsigned NumOperands;
  unsigned NumUnresolved;

  ContextAndReplaceableUses Context;

protected:
  void *operator new(size_t Size, unsigned NumOps);
  void operator delete(void *Mem);

  /// \brief Required by std, but never called.
  void operator delete(void *, unsigned) {
    llvm_unreachable("Constructor throws?");
  }

  /// \brief Required by std, but never called.
  void operator delete(void *, unsigned, bool) {
    llvm_unreachable("Constructor throws?");
  }

  MDNode(LLVMContext &Context, unsigned ID, StorageType Storage,
         ArrayRef<Metadata *> Ops1, ArrayRef<Metadata *> Ops2 = None);
  ~MDNode() = default;

  void dropAllReferences();

  MDOperand *mutable_begin() { return mutable_end() - NumOperands; }
  MDOperand *mutable_end() { return reinterpret_cast<MDOperand *>(this); }

  typedef iterator_range<MDOperand *> mutable_op_range;
  mutable_op_range mutable_operands() {
    return mutable_op_range(mutable_begin(), mutable_end());
  }

public:
  MDNode(const MDNode &) = delete;
  void operator=(const MDNode &) = delete;
  void *operator new(size_t) = delete;

  static inline MDTuple *get(LLVMContext &Context, ArrayRef<Metadata *> MDs);
  static inline MDTuple *getIfExists(LLVMContext &Context,
                                     ArrayRef<Metadata *> MDs);
  static inline MDTuple *getDistinct(LLVMContext &Context,
                                     ArrayRef<Metadata *> MDs);
  static inline TempMDTuple getTemporary(LLVMContext &Context,
                                         ArrayRef<Metadata *> MDs);

  /// \brief Create a (temporary) clone of this.
  TempMDNode clone() const;

  /// \brief Deallocate a node created by getTemporary.
  ///
  /// Calls \c replaceAllUsesWith(nullptr) before deleting, so any remaining
  /// references will be reset.
  static void deleteTemporary(MDNode *N);

  LLVMContext &getContext() const { return Context.getContext(); }

  /// \brief Replace a specific operand.
  void replaceOperandWith(unsigned I, Metadata *New);

  /// \brief Check if node is fully resolved.
  ///
  /// If \a isTemporary(), this always returns \c false; if \a isDistinct(),
  /// this always returns \c true.
  ///
  /// If \a isUniqued(), returns \c true if this has already dropped RAUW
  /// support (because all operands are resolved).
  ///
  /// As forward declarations are resolved, their containers should get
  /// resolved automatically.  However, if this (or one of its operands) is
  /// involved in a cycle, \a resolveCycles() needs to be called explicitly.
  bool isResolved() const { return !isTemporary() && !NumUnresolved; }

  bool isUniqued() const { return Storage == Uniqued; }
  bool isDistinct() const { return Storage == Distinct; }
  bool isTemporary() const { return Storage == Temporary; }

  /// \brief RAUW a temporary.
  ///
  /// \pre \a isTemporary() must be \c true.
  void replaceAllUsesWith(Metadata *MD) {
    assert(isTemporary() && "Expected temporary node");
    if (Context.hasReplaceableUses())
      Context.getReplaceableUses()->replaceAllUsesWith(MD);
  }

  /// \brief Resolve cycles.
  ///
  /// Once all forward declarations have been resolved, force cycles to be
  /// resolved.
  ///
  /// \pre No operands (or operands' operands, etc.) have \a isTemporary().
  void resolveCycles();

  /// \brief Replace a temporary node with a permanent one.
  ///
  /// Try to create a uniqued version of \c N -- in place, if possible -- and
  /// return it.  If \c N cannot be uniqued, return a distinct node instead.
  template <class T>
  static typename std::enable_if<std::is_base_of<MDNode, T>::value, T *>::type
  replaceWithPermanent(std::unique_ptr<T, TempMDNodeDeleter> N) {
    return cast<T>(N.release()->replaceWithPermanentImpl());
  }

  /// \brief Replace a temporary node with a uniqued one.
  ///
  /// Create a uniqued version of \c N -- in place, if possible -- and return
  /// it.  Takes ownership of the temporary node.
  ///
  /// \pre N does not self-reference.
  template <class T>
  static typename std::enable_if<std::is_base_of<MDNode, T>::value, T *>::type
  replaceWithUniqued(std::unique_ptr<T, TempMDNodeDeleter> N) {
    return cast<T>(N.release()->replaceWithUniquedImpl());
  }

  /// \brief Replace a temporary node with a distinct one.
  ///
  /// Create a distinct version of \c N -- in place, if possible -- and return
  /// it.  Takes ownership of the temporary node.
  template <class T>
  static typename std::enable_if<std::is_base_of<MDNode, T>::value, T *>::type
  replaceWithDistinct(std::unique_ptr<T, TempMDNodeDeleter> N) {
    return cast<T>(N.release()->replaceWithDistinctImpl());
  }

private:
  MDNode *replaceWithPermanentImpl();
  MDNode *replaceWithUniquedImpl();
  MDNode *replaceWithDistinctImpl();

protected:
  /// \brief Set an operand.
  ///
  /// Sets the operand directly, without worrying about uniquing.
  void setOperand(unsigned I, Metadata *New);

  void storeDistinctInContext();
  template <class T, class StoreT>
  static T *storeImpl(T *N, StorageType Storage, StoreT &Store);
  template <class T> static T *storeImpl(T *N, StorageType Storage);

private:
  void handleChangedOperand(void *Ref, Metadata *New);

  /// Resolve a unique, unresolved node.
  void resolve();

  /// Drop RAUW support, if any.
  void dropReplaceableUses();

  void resolveAfterOperandChange(Metadata *Old, Metadata *New);
  void decrementUnresolvedOperandCount();
  void countUnresolvedOperands();

  /// \brief Mutate this to be "uniqued".
  ///
  /// Mutate this so that \a isUniqued().
  /// \pre \a isTemporary().
  /// \pre already added to uniquing set.
  void makeUniqued();

  /// \brief Mutate this to be "distinct".
  ///
  /// Mutate this so that \a isDistinct().
  /// \pre \a isTemporary().
  void makeDistinct();

  void deleteAsSubclass();
  MDNode *uniquify();
  void eraseFromStore();

  template <class NodeTy> struct HasCachedHash;
  template <class NodeTy>
  static void dispatchRecalculateHash(NodeTy *N, std::true_type) {
    N->recalculateHash();
  }
  template <class NodeTy>
  static void dispatchRecalculateHash(NodeTy *, std::false_type) {}
  template <class NodeTy>
  static void dispatchResetHash(NodeTy *N, std::true_type) {
    N->setHash(0);
  }
  template <class NodeTy>
  static void dispatchResetHash(NodeTy *, std::false_type) {}

public:
  typedef const MDOperand *op_iterator;
  typedef iterator_range<op_iterator> op_range;

  op_iterator op_begin() const {
    return const_cast<MDNode *>(this)->mutable_begin();
  }

  op_iterator op_end() const {
    return const_cast<MDNode *>(this)->mutable_end();
  }

  op_range operands() const { return op_range(op_begin(), op_end()); }

  const MDOperand &getOperand(unsigned I) const {
    assert(I < NumOperands && "Out of range");
    return op_begin()[I];
  }

  /// \brief Return number of MDNode operands.
  unsigned getNumOperands() const { return NumOperands; }

  /// \brief Methods for support type inquiry through isa, cast, and dyn_cast:
  static bool classof(const Metadata *MD) {
    switch (MD->getMetadataID()) {
    default:
      return false;
#define HANDLE_MDNODE_LEAF(CLASS)                                              \
  case CLASS##Kind:                                                            \
    return true;
#include "llvm/IR/Metadata.def"
    }
  }

  /// \brief Check whether MDNode is a vtable access.
  bool isTBAAVtableAccess() const;

  /// \brief Methods for metadata merging.
  static MDNode *concatenate(MDNode *A, MDNode *B);
  static MDNode *intersect(MDNode *A, MDNode *B);
  static MDNode *getMostGenericTBAA(MDNode *A, MDNode *B);
  static MDNode *getMostGenericFPMath(MDNode *A, MDNode *B);
  static MDNode *getMostGenericRange(MDNode *A, MDNode *B);
  static MDNode *getMostGenericAliasScope(MDNode *A, MDNode *B);
  static MDNode *getMostGenericAlignmentOrDereferenceable(MDNode *A, MDNode *B);
};

/// \brief Tuple of metadata.
///
/// This is the simple \a MDNode arbitrary tuple.  Nodes are uniqued by
/// default based on their operands.
class MDTuple : public MDNode {
  friend class LLVMContextImpl;
  friend class MDNode;

  MDTuple(LLVMContext &C, StorageType Storage, unsigned Hash,
          ArrayRef<Metadata *> Vals)
      : MDNode(C, MDTupleKind, Storage, Vals) {
    setHash(Hash);
  }

  ~MDTuple() { dropAllReferences(); }

  void setHash(unsigned Hash) { SubclassData32 = Hash; }
  void recalculateHash();

  static MDTuple *getImpl(LLVMContext &Context, ArrayRef<Metadata *> MDs,
                          StorageType Storage, bool ShouldCreate = true);

  TempMDTuple cloneImpl() const {
    return getTemporary(getContext(),
                        SmallVector<Metadata *, 4>(op_begin(), op_end()));
  }

public:
  /// \brief Get the hash, if any.
  unsigned getHash() const { return SubclassData32; }

  static MDTuple *get(LLVMContext &Context, ArrayRef<Metadata *> MDs) {
    return getImpl(Context, MDs, Uniqued);
  }

  static MDTuple *getIfExists(LLVMContext &Context, ArrayRef<Metadata *> MDs) {
    return getImpl(Context, MDs, Uniqued, /* ShouldCreate */ false);
  }

  /// \brief Return a distinct node.
  ///
  /// Return a distinct node -- i.e., a node that is not uniqued.
  static MDTuple *getDistinct(LLVMContext &Context, ArrayRef<Metadata *> MDs) {
    return getImpl(Context, MDs, Distinct);
  }

  /// \brief Return a temporary node.
  ///
  /// For use in constructing cyclic MDNode structures. A temporary MDNode is
  /// not uniqued, may be RAUW'd, and must be manually deleted with
  /// deleteTemporary.
  static TempMDTuple getTemporary(LLVMContext &Context,
                                  ArrayRef<Metadata *> MDs) {
    return TempMDTuple(getImpl(Context, MDs, Temporary));
  }

  /// \brief Return a (temporary) clone of this.
  TempMDTuple clone() const { return cloneImpl(); }

  static bool classof(const Metadata *MD) {
    return MD->getMetadataID() == MDTupleKind;
  }
};

MDTuple *MDNode::get(LLVMContext &Context, ArrayRef<Metadata *> MDs) {
  return MDTuple::get(Context, MDs);
}

MDTuple *MDNode::getIfExists(LLVMContext &Context, ArrayRef<Metadata *> MDs) {
  return MDTuple::getIfExists(Context, MDs);
}

MDTuple *MDNode::getDistinct(LLVMContext &Context, ArrayRef<Metadata *> MDs) {
  return MDTuple::getDistinct(Context, MDs);
}

TempMDTuple MDNode::getTemporary(LLVMContext &Context,
                                 ArrayRef<Metadata *> MDs) {
  return MDTuple::getTemporary(Context, MDs);
}

void TempMDNodeDeleter::operator()(MDNode *Node) const {
  MDNode::deleteTemporary(Node);
}

/// \brief Typed iterator through MDNode operands.
///
/// An iterator that transforms an \a MDNode::iterator into an iterator over a
/// particular Metadata subclass.
template <class T>
class TypedMDOperandIterator
    : std::iterator<std::input_iterator_tag, T *, std::ptrdiff_t, void, T *> {
  MDNode::op_iterator I = nullptr;

public:
  TypedMDOperandIterator() = default;
  explicit TypedMDOperandIterator(MDNode::op_iterator I) : I(I) {}

  T *operator*() const { return cast_or_null<T>(*I); }

  TypedMDOperandIterator &operator++() {
    ++I;
    return *this;
  }

  TypedMDOperandIterator operator++(int) {
    TypedMDOperandIterator Temp(*this);
    ++I;
    return Temp;
  }

  bool operator==(const TypedMDOperandIterator &X) const { return I == X.I; }
  bool operator!=(const TypedMDOperandIterator &X) const { return I != X.I; }
};

/// \brief Typed, array-like tuple of metadata.
///
/// This is a wrapper for \a MDTuple that makes it act like an array holding a
/// particular type of metadata.
template <class T> class MDTupleTypedArrayWrapper {
  const MDTuple *N = nullptr;

public:
  MDTupleTypedArrayWrapper() = default;
  MDTupleTypedArrayWrapper(const MDTuple *N) : N(N) {}

  template <class U>
  MDTupleTypedArrayWrapper(
      const MDTupleTypedArrayWrapper<U> &Other,
      typename std::enable_if<std::is_convertible<U *, T *>::value>::type * =
          nullptr)
      : N(Other.get()) {}

  template <class U>
  explicit MDTupleTypedArrayWrapper(
      const MDTupleTypedArrayWrapper<U> &Other,
      typename std::enable_if<!std::is_convertible<U *, T *>::value>::type * =
          nullptr)
      : N(Other.get()) {}

  explicit operator bool() const { return get(); }
  explicit operator MDTuple *() const { return get(); }

  MDTuple *get() const { return const_cast<MDTuple *>(N); }
  MDTuple *operator->() const { return get(); }
  MDTuple &operator*() const { return *get(); }

  // FIXME: Fix callers and remove condition on N.
  unsigned size() const { return N ? N->getNumOperands() : 0u; }
  bool empty() const { return N ? N->getNumOperands() == 0 : true; }
  T *operator[](unsigned I) const { return cast_or_null<T>(N->getOperand(I)); }

  // FIXME: Fix callers and remove condition on N.
  typedef TypedMDOperandIterator<T> iterator;
  iterator begin() const { return N ? iterator(N->op_begin()) : iterator(); }
  iterator end() const { return N ? iterator(N->op_end()) : iterator(); }
};

#define HANDLE_METADATA(CLASS)                                                 \
  typedef MDTupleTypedArrayWrapper<CLASS> CLASS##Array;
#include "llvm/IR/Metadata.def"

/// Placeholder metadata for operands of distinct MDNodes.
///
/// This is a lightweight placeholder for an operand of a distinct node.  It's
/// purpose is to help track forward references when creating a distinct node.
/// This allows distinct nodes involved in a cycle to be constructed before
/// their operands without requiring a heavyweight temporary node with
/// full-blown RAUW support.
///
/// Each placeholder supports only a single MDNode user.  Clients should pass
/// an ID, retrieved via \a getID(), to indicate the "real" operand that this
/// should be replaced with.
///
/// While it would be possible to implement move operators, they would be
/// fairly expensive.  Leave them unimplemented to discourage their use
/// (clients can use std::deque, std::list, BumpPtrAllocator, etc.).
class DistinctMDOperandPlaceholder : public Metadata {
  friend class MetadataTracking;

  Metadata **Use = nullptr;

public:
  explicit DistinctMDOperandPlaceholder(unsigned ID)
      : Metadata(DistinctMDOperandPlaceholderKind, Distinct) {
    SubclassData32 = ID;
  }

  DistinctMDOperandPlaceholder() = delete;
  DistinctMDOperandPlaceholder(DistinctMDOperandPlaceholder &&) = delete;
  DistinctMDOperandPlaceholder(const DistinctMDOperandPlaceholder &) = delete;

  ~DistinctMDOperandPlaceholder() {
    if (Use)
      *Use = nullptr;
  }

  unsigned getID() const { return SubclassData32; }

  /// Replace the use of this with MD.
  void replaceUseWith(Metadata *MD) {
    if (!Use)
      return;
    *Use = MD;
    Use = nullptr;
  }
};

//===----------------------------------------------------------------------===//
/// \brief A tuple of MDNodes.
///
/// Despite its name, a NamedMDNode isn't itself an MDNode. NamedMDNodes belong
/// to modules, have names, and contain lists of MDNodes.
///
/// TODO: Inherit from Metadata.
class NamedMDNode : public ilist_node<NamedMDNode> {
  friend class LLVMContextImpl;
  friend class Module;

  std::string Name;
  Module *Parent = nullptr;
  void *Operands; // SmallVector<TrackingMDRef, 4>

  void setParent(Module *M) { Parent = M; }

  explicit NamedMDNode(const Twine &N);

  template<class T1, class T2>
  class op_iterator_impl :
      public std::iterator<std::bidirectional_iterator_tag, T2> {
    const NamedMDNode *Node = nullptr;
    unsigned Idx = 0;

    op_iterator_impl(const NamedMDNode *N, unsigned i) : Node(N), Idx(i) { }

    friend class NamedMDNode;

  public:
    op_iterator_impl() = default;

    bool operator==(const op_iterator_impl &o) const { return Idx == o.Idx; }
    bool operator!=(const op_iterator_impl &o) const { return Idx != o.Idx; }

    op_iterator_impl &operator++() {
      ++Idx;
      return *this;
    }

    op_iterator_impl operator++(int) {
      op_iterator_impl tmp(*this);
      operator++();
      return tmp;
    }

    op_iterator_impl &operator--() {
      --Idx;
      return *this;
    }

    op_iterator_impl operator--(int) {
      op_iterator_impl tmp(*this);
      operator--();
      return tmp;
    }

    T1 operator*() const { return Node->getOperand(Idx); }
  };

public:
  NamedMDNode(const NamedMDNode &) = delete;
  ~NamedMDNode();

  /// \brief Drop all references and remove the node from parent module.
  void eraseFromParent();

  /// Remove all uses and clear node vector.
  void dropAllReferences() { clearOperands(); }
  /// Drop all references to this node's operands.
  void clearOperands();

  /// \brief Get the module that holds this named metadata collection.
  inline Module *getParent() { return Parent; }
  inline const Module *getParent() const { return Parent; }

  MDNode *getOperand(unsigned i) const;
  unsigned getNumOperands() const;
  void addOperand(MDNode *M);
  void setOperand(unsigned I, MDNode *New);
  StringRef getName() const;
  void print(raw_ostream &ROS, bool IsForDebug = false) const;
  void print(raw_ostream &ROS, ModuleSlotTracker &MST,
             bool IsForDebug = false) const;
  void dump() const;

  // ---------------------------------------------------------------------------
  // Operand Iterator interface...
  //
  typedef op_iterator_impl<MDNode *, MDNode> op_iterator;
  op_iterator op_begin() { return op_iterator(this, 0); }
  op_iterator op_end()   { return op_iterator(this, getNumOperands()); }

  typedef op_iterator_impl<const MDNode *, MDNode> const_op_iterator;
  const_op_iterator op_begin() const { return const_op_iterator(this, 0); }
  const_op_iterator op_end()   const { return const_op_iterator(this, getNumOperands()); }

  inline iterator_range<op_iterator>  operands() {
    return make_range(op_begin(), op_end());
  }
  inline iterator_range<const_op_iterator> operands() const {
    return make_range(op_begin(), op_end());
  }
};

} // end namespace llvm

#endif // LLVM_IR_METADATA_H