llvm.org GIT mirror llvm / e3e43d9 include / llvm / Analysis / AliasAnalysis.h
e3e43d9

Tree @e3e43d9 (Download .tar.gz)

AliasAnalysis.h @e3e43d9raw · history · blame

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
//===- llvm/Analysis/AliasAnalysis.h - Alias Analysis Interface -*- C++ -*-===//
//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file defines the generic AliasAnalysis interface, which is used as the
// common interface used by all clients of alias analysis information, and
// implemented by all alias analysis implementations.  Mod/Ref information is
// also captured by this interface.
//
// Implementations of this interface must implement the various virtual methods,
// which automatically provides functionality for the entire suite of client
// APIs.
//
// This API identifies memory regions with the MemoryLocation class. The pointer
// component specifies the base memory address of the region. The Size specifies
// the maximum size (in address units) of the memory region, or
// MemoryLocation::UnknownSize if the size is not known. The TBAA tag
// identifies the "type" of the memory reference; see the
// TypeBasedAliasAnalysis class for details.
//
// Some non-obvious details include:
//  - Pointers that point to two completely different objects in memory never
//    alias, regardless of the value of the Size component.
//  - NoAlias doesn't imply inequal pointers. The most obvious example of this
//    is two pointers to constant memory. Even if they are equal, constant
//    memory is never stored to, so there will never be any dependencies.
//    In this and other situations, the pointers may be both NoAlias and
//    MustAlias at the same time. The current API can only return one result,
//    though this is rarely a problem in practice.
//
//===----------------------------------------------------------------------===//

#ifndef LLVM_ANALYSIS_ALIASANALYSIS_H
#define LLVM_ANALYSIS_ALIASANALYSIS_H

#include "llvm/Analysis/MemoryLocation.h"
#include "llvm/Analysis/TargetLibraryInfo.h"
#include "llvm/IR/CallSite.h"
#include "llvm/IR/Metadata.h"
#include "llvm/IR/PassManager.h"

namespace llvm {
class BasicAAResult;
class LoadInst;
class StoreInst;
class VAArgInst;
class DataLayout;
class Pass;
class AnalysisUsage;
class MemTransferInst;
class MemIntrinsic;
class DominatorTree;
class OrderedBasicBlock;

/// The possible results of an alias query.
///
/// These results are always computed between two MemoryLocation objects as
/// a query to some alias analysis.
///
/// Note that these are unscoped enumerations because we would like to support
/// implicitly testing a result for the existence of any possible aliasing with
/// a conversion to bool, but an "enum class" doesn't support this. The
/// canonical names from the literature are suffixed and unique anyways, and so
/// they serve as global constants in LLVM for these results.
///
/// See docs/AliasAnalysis.html for more information on the specific meanings
/// of these values.
enum AliasResult {
  /// The two locations do not alias at all.
  ///
  /// This value is arranged to convert to false, while all other values
  /// convert to true. This allows a boolean context to convert the result to
  /// a binary flag indicating whether there is the possibility of aliasing.
  NoAlias = 0,
  /// The two locations may or may not alias. This is the least precise result.
  MayAlias,
  /// The two locations alias, but only due to a partial overlap.
  PartialAlias,
  /// The two locations precisely alias each other.
  MustAlias,
};

/// Flags indicating whether a memory access modifies or references memory.
///
/// This is no access at all, a modification, a reference, or both
/// a modification and a reference. These are specifically structured such that
/// they form a two bit matrix and bit-tests for 'mod' or 'ref' work with any
/// of the possible values.
enum ModRefInfo {
  /// The access neither references nor modifies the value stored in memory.
  MRI_NoModRef = 0,
  /// The access references the value stored in memory.
  MRI_Ref = 1,
  /// The access modifies the value stored in memory.
  MRI_Mod = 2,
  /// The access both references and modifies the value stored in memory.
  MRI_ModRef = MRI_Ref | MRI_Mod
};

/// The locations at which a function might access memory.
///
/// These are primarily used in conjunction with the \c AccessKind bits to
/// describe both the nature of access and the locations of access for a
/// function call.
enum FunctionModRefLocation {
  /// Base case is no access to memory.
  FMRL_Nowhere = 0,
  /// Access to memory via argument pointers.
  FMRL_ArgumentPointees = 4,
  /// Memory that is inaccessible via LLVM IR.
  FMRL_InaccessibleMem = 8,
  /// Access to any memory.
  FMRL_Anywhere = 16 | FMRL_InaccessibleMem | FMRL_ArgumentPointees
};

/// Summary of how a function affects memory in the program.
///
/// Loads from constant globals are not considered memory accesses for this
/// interface. Also, functions may freely modify stack space local to their
/// invocation without having to report it through these interfaces.
enum FunctionModRefBehavior {
  /// This function does not perform any non-local loads or stores to memory.
  ///
  /// This property corresponds to the GCC 'const' attribute.
  /// This property corresponds to the LLVM IR 'readnone' attribute.
  /// This property corresponds to the IntrNoMem LLVM intrinsic flag.
  FMRB_DoesNotAccessMemory = FMRL_Nowhere | MRI_NoModRef,

  /// The only memory references in this function (if it has any) are
  /// non-volatile loads from objects pointed to by its pointer-typed
  /// arguments, with arbitrary offsets.
  ///
  /// This property corresponds to the IntrReadArgMem LLVM intrinsic flag.
  FMRB_OnlyReadsArgumentPointees = FMRL_ArgumentPointees | MRI_Ref,

  /// The only memory references in this function (if it has any) are
  /// non-volatile loads and stores from objects pointed to by its
  /// pointer-typed arguments, with arbitrary offsets.
  ///
  /// This property corresponds to the IntrArgMemOnly LLVM intrinsic flag.
  FMRB_OnlyAccessesArgumentPointees = FMRL_ArgumentPointees | MRI_ModRef,

  /// The only memory references in this function (if it has any) are
  /// references of memory that is otherwise inaccessible via LLVM IR.
  ///
  /// This property corresponds to the LLVM IR inaccessiblememonly attribute.
  FMRB_OnlyAccessesInaccessibleMem = FMRL_InaccessibleMem | MRI_ModRef,

  /// The function may perform non-volatile loads and stores of objects
  /// pointed to by its pointer-typed arguments, with arbitrary offsets, and
  /// it may also perform loads and stores of memory that is otherwise
  /// inaccessible via LLVM IR.
  ///
  /// This property corresponds to the LLVM IR
  /// inaccessiblemem_or_argmemonly attribute.
  FMRB_OnlyAccessesInaccessibleOrArgMem = FMRL_InaccessibleMem |
                                          FMRL_ArgumentPointees | MRI_ModRef,

  /// This function does not perform any non-local stores or volatile loads,
  /// but may read from any memory location.
  ///
  /// This property corresponds to the GCC 'pure' attribute.
  /// This property corresponds to the LLVM IR 'readonly' attribute.
  /// This property corresponds to the IntrReadMem LLVM intrinsic flag.
  FMRB_OnlyReadsMemory = FMRL_Anywhere | MRI_Ref,

  // This function does not read from memory anywhere, but may write to any
  // memory location.
  //
  // This property corresponds to the LLVM IR 'writeonly' attribute.
  // This property corresponds to the IntrWriteMem LLVM intrinsic flag.
  FMRB_DoesNotReadMemory = FMRL_Anywhere | MRI_Mod,

  /// This indicates that the function could not be classified into one of the
  /// behaviors above.
  FMRB_UnknownModRefBehavior = FMRL_Anywhere | MRI_ModRef
};

class AAResults {
public:
  // Make these results default constructable and movable. We have to spell
  // these out because MSVC won't synthesize them.
  AAResults(const TargetLibraryInfo &TLI) : TLI(TLI) {}
  AAResults(AAResults &&Arg);
  ~AAResults();

  /// Register a specific AA result.
  template <typename AAResultT> void addAAResult(AAResultT &AAResult) {
    // FIXME: We should use a much lighter weight system than the usual
    // polymorphic pattern because we don't own AAResult. It should
    // ideally involve two pointers and no separate allocation.
    AAs.emplace_back(new Model<AAResultT>(AAResult, *this));
  }

  /// Register a function analysis ID that the results aggregation depends on.
  ///
  /// This is used in the new pass manager to implement the invalidation logic
  /// where we must invalidate the results aggregation if any of our component
  /// analyses become invalid.
  void addAADependencyID(AnalysisKey *ID) { AADeps.push_back(ID); }

  /// Handle invalidation events in the new pass manager.
  ///
  /// The aggregation is invalidated if any of the underlying analyses is
  /// invalidated.
  bool invalidate(Function &F, const PreservedAnalyses &PA,
                  FunctionAnalysisManager::Invalidator &Inv);

  //===--------------------------------------------------------------------===//
  /// \name Alias Queries
  /// @{

  /// The main low level interface to the alias analysis implementation.
  /// Returns an AliasResult indicating whether the two pointers are aliased to
  /// each other. This is the interface that must be implemented by specific
  /// alias analysis implementations.
  AliasResult alias(const MemoryLocation &LocA, const MemoryLocation &LocB);

  /// A convenience wrapper around the primary \c alias interface.
  AliasResult alias(const Value *V1, uint64_t V1Size, const Value *V2,
                    uint64_t V2Size) {
    return alias(MemoryLocation(V1, V1Size), MemoryLocation(V2, V2Size));
  }

  /// A convenience wrapper around the primary \c alias interface.
  AliasResult alias(const Value *V1, const Value *V2) {
    return alias(V1, MemoryLocation::UnknownSize, V2,
                 MemoryLocation::UnknownSize);
  }

  /// A trivial helper function to check to see if the specified pointers are
  /// no-alias.
  bool isNoAlias(const MemoryLocation &LocA, const MemoryLocation &LocB) {
    return alias(LocA, LocB) == NoAlias;
  }

  /// A convenience wrapper around the \c isNoAlias helper interface.
  bool isNoAlias(const Value *V1, uint64_t V1Size, const Value *V2,
                 uint64_t V2Size) {
    return isNoAlias(MemoryLocation(V1, V1Size), MemoryLocation(V2, V2Size));
  }

  /// A convenience wrapper around the \c isNoAlias helper interface.
  bool isNoAlias(const Value *V1, const Value *V2) {
    return isNoAlias(MemoryLocation(V1), MemoryLocation(V2));
  }

  /// A trivial helper function to check to see if the specified pointers are
  /// must-alias.
  bool isMustAlias(const MemoryLocation &LocA, const MemoryLocation &LocB) {
    return alias(LocA, LocB) == MustAlias;
  }

  /// A convenience wrapper around the \c isMustAlias helper interface.
  bool isMustAlias(const Value *V1, const Value *V2) {
    return alias(V1, 1, V2, 1) == MustAlias;
  }

  /// Checks whether the given location points to constant memory, or if
  /// \p OrLocal is true whether it points to a local alloca.
  bool pointsToConstantMemory(const MemoryLocation &Loc, bool OrLocal = false);

  /// A convenience wrapper around the primary \c pointsToConstantMemory
  /// interface.
  bool pointsToConstantMemory(const Value *P, bool OrLocal = false) {
    return pointsToConstantMemory(MemoryLocation(P), OrLocal);
  }

  /// @}
  //===--------------------------------------------------------------------===//
  /// \name Simple mod/ref information
  /// @{

  /// Get the ModRef info associated with a pointer argument of a callsite. The
  /// result's bits are set to indicate the allowed aliasing ModRef kinds. Note
  /// that these bits do not necessarily account for the overall behavior of
  /// the function, but rather only provide additional per-argument
  /// information.
  ModRefInfo getArgModRefInfo(ImmutableCallSite CS, unsigned ArgIdx);

  /// Return the behavior of the given call site.
  FunctionModRefBehavior getModRefBehavior(ImmutableCallSite CS);

  /// Return the behavior when calling the given function.
  FunctionModRefBehavior getModRefBehavior(const Function *F);

  /// Checks if the specified call is known to never read or write memory.
  ///
  /// Note that if the call only reads from known-constant memory, it is also
  /// legal to return true. Also, calls that unwind the stack are legal for
  /// this predicate.
  ///
  /// Many optimizations (such as CSE and LICM) can be performed on such calls
  /// without worrying about aliasing properties, and many calls have this
  /// property (e.g. calls to 'sin' and 'cos').
  ///
  /// This property corresponds to the GCC 'const' attribute.
  bool doesNotAccessMemory(ImmutableCallSite CS) {
    return getModRefBehavior(CS) == FMRB_DoesNotAccessMemory;
  }

  /// Checks if the specified function is known to never read or write memory.
  ///
  /// Note that if the function only reads from known-constant memory, it is
  /// also legal to return true. Also, function that unwind the stack are legal
  /// for this predicate.
  ///
  /// Many optimizations (such as CSE and LICM) can be performed on such calls
  /// to such functions without worrying about aliasing properties, and many
  /// functions have this property (e.g. 'sin' and 'cos').
  ///
  /// This property corresponds to the GCC 'const' attribute.
  bool doesNotAccessMemory(const Function *F) {
    return getModRefBehavior(F) == FMRB_DoesNotAccessMemory;
  }

  /// Checks if the specified call is known to only read from non-volatile
  /// memory (or not access memory at all).
  ///
  /// Calls that unwind the stack are legal for this predicate.
  ///
  /// This property allows many common optimizations to be performed in the
  /// absence of interfering store instructions, such as CSE of strlen calls.
  ///
  /// This property corresponds to the GCC 'pure' attribute.
  bool onlyReadsMemory(ImmutableCallSite CS) {
    return onlyReadsMemory(getModRefBehavior(CS));
  }

  /// Checks if the specified function is known to only read from non-volatile
  /// memory (or not access memory at all).
  ///
  /// Functions that unwind the stack are legal for this predicate.
  ///
  /// This property allows many common optimizations to be performed in the
  /// absence of interfering store instructions, such as CSE of strlen calls.
  ///
  /// This property corresponds to the GCC 'pure' attribute.
  bool onlyReadsMemory(const Function *F) {
    return onlyReadsMemory(getModRefBehavior(F));
  }

  /// Checks if functions with the specified behavior are known to only read
  /// from non-volatile memory (or not access memory at all).
  static bool onlyReadsMemory(FunctionModRefBehavior MRB) {
    return !(MRB & MRI_Mod);
  }

  /// Checks if functions with the specified behavior are known to only write
  /// memory (or not access memory at all).
  static bool doesNotReadMemory(FunctionModRefBehavior MRB) {
    return !(MRB & MRI_Ref);
  }

  /// Checks if functions with the specified behavior are known to read and
  /// write at most from objects pointed to by their pointer-typed arguments
  /// (with arbitrary offsets).
  static bool onlyAccessesArgPointees(FunctionModRefBehavior MRB) {
    return !(MRB & FMRL_Anywhere & ~FMRL_ArgumentPointees);
  }

  /// Checks if functions with the specified behavior are known to potentially
  /// read or write from objects pointed to be their pointer-typed arguments
  /// (with arbitrary offsets).
  static bool doesAccessArgPointees(FunctionModRefBehavior MRB) {
    return (MRB & MRI_ModRef) && (MRB & FMRL_ArgumentPointees);
  }

  /// Checks if functions with the specified behavior are known to read and
  /// write at most from memory that is inaccessible from LLVM IR.
  static bool onlyAccessesInaccessibleMem(FunctionModRefBehavior MRB) {
    return !(MRB & FMRL_Anywhere & ~FMRL_InaccessibleMem);
  }

  /// Checks if functions with the specified behavior are known to potentially
  /// read or write from memory that is inaccessible from LLVM IR.
  static bool doesAccessInaccessibleMem(FunctionModRefBehavior MRB) {
    return (MRB & MRI_ModRef) && (MRB & FMRL_InaccessibleMem);
  }

  /// Checks if functions with the specified behavior are known to read and
  /// write at most from memory that is inaccessible from LLVM IR or objects
  /// pointed to by their pointer-typed arguments (with arbitrary offsets).
  static bool onlyAccessesInaccessibleOrArgMem(FunctionModRefBehavior MRB) {
    return !(MRB & FMRL_Anywhere &
             ~(FMRL_InaccessibleMem | FMRL_ArgumentPointees));
  }

  /// getModRefInfo (for call sites) - Return information about whether
  /// a particular call site modifies or reads the specified memory location.
  ModRefInfo getModRefInfo(ImmutableCallSite CS, const MemoryLocation &Loc);

  /// getModRefInfo (for call sites) - A convenience wrapper.
  ModRefInfo getModRefInfo(ImmutableCallSite CS, const Value *P,
                           uint64_t Size) {
    return getModRefInfo(CS, MemoryLocation(P, Size));
  }

  /// getModRefInfo (for calls) - Return information about whether
  /// a particular call modifies or reads the specified memory location.
  ModRefInfo getModRefInfo(const CallInst *C, const MemoryLocation &Loc) {
    return getModRefInfo(ImmutableCallSite(C), Loc);
  }

  /// getModRefInfo (for calls) - A convenience wrapper.
  ModRefInfo getModRefInfo(const CallInst *C, const Value *P, uint64_t Size) {
    return getModRefInfo(C, MemoryLocation(P, Size));
  }

  /// getModRefInfo (for invokes) - Return information about whether
  /// a particular invoke modifies or reads the specified memory location.
  ModRefInfo getModRefInfo(const InvokeInst *I, const MemoryLocation &Loc) {
    return getModRefInfo(ImmutableCallSite(I), Loc);
  }

  /// getModRefInfo (for invokes) - A convenience wrapper.
  ModRefInfo getModRefInfo(const InvokeInst *I, const Value *P, uint64_t Size) {
    return getModRefInfo(I, MemoryLocation(P, Size));
  }

  /// getModRefInfo (for loads) - Return information about whether
  /// a particular load modifies or reads the specified memory location.
  ModRefInfo getModRefInfo(const LoadInst *L, const MemoryLocation &Loc);

  /// getModRefInfo (for loads) - A convenience wrapper.
  ModRefInfo getModRefInfo(const LoadInst *L, const Value *P, uint64_t Size) {
    return getModRefInfo(L, MemoryLocation(P, Size));
  }

  /// getModRefInfo (for stores) - Return information about whether
  /// a particular store modifies or reads the specified memory location.
  ModRefInfo getModRefInfo(const StoreInst *S, const MemoryLocation &Loc);

  /// getModRefInfo (for stores) - A convenience wrapper.
  ModRefInfo getModRefInfo(const StoreInst *S, const Value *P, uint64_t Size) {
    return getModRefInfo(S, MemoryLocation(P, Size));
  }

  /// getModRefInfo (for fences) - Return information about whether
  /// a particular store modifies or reads the specified memory location.
  ModRefInfo getModRefInfo(const FenceInst *S, const MemoryLocation &Loc);

  /// getModRefInfo (for fences) - A convenience wrapper.
  ModRefInfo getModRefInfo(const FenceInst *S, const Value *P, uint64_t Size) {
    return getModRefInfo(S, MemoryLocation(P, Size));
  }

  /// getModRefInfo (for cmpxchges) - Return information about whether
  /// a particular cmpxchg modifies or reads the specified memory location.
  ModRefInfo getModRefInfo(const AtomicCmpXchgInst *CX,
                           const MemoryLocation &Loc);

  /// getModRefInfo (for cmpxchges) - A convenience wrapper.
  ModRefInfo getModRefInfo(const AtomicCmpXchgInst *CX, const Value *P,
                           unsigned Size) {
    return getModRefInfo(CX, MemoryLocation(P, Size));
  }

  /// getModRefInfo (for atomicrmws) - Return information about whether
  /// a particular atomicrmw modifies or reads the specified memory location.
  ModRefInfo getModRefInfo(const AtomicRMWInst *RMW, const MemoryLocation &Loc);

  /// getModRefInfo (for atomicrmws) - A convenience wrapper.
  ModRefInfo getModRefInfo(const AtomicRMWInst *RMW, const Value *P,
                           unsigned Size) {
    return getModRefInfo(RMW, MemoryLocation(P, Size));
  }

  /// getModRefInfo (for va_args) - Return information about whether
  /// a particular va_arg modifies or reads the specified memory location.
  ModRefInfo getModRefInfo(const VAArgInst *I, const MemoryLocation &Loc);

  /// getModRefInfo (for va_args) - A convenience wrapper.
  ModRefInfo getModRefInfo(const VAArgInst *I, const Value *P, uint64_t Size) {
    return getModRefInfo(I, MemoryLocation(P, Size));
  }

  /// getModRefInfo (for catchpads) - Return information about whether
  /// a particular catchpad modifies or reads the specified memory location.
  ModRefInfo getModRefInfo(const CatchPadInst *I, const MemoryLocation &Loc);

  /// getModRefInfo (for catchpads) - A convenience wrapper.
  ModRefInfo getModRefInfo(const CatchPadInst *I, const Value *P,
                           uint64_t Size) {
    return getModRefInfo(I, MemoryLocation(P, Size));
  }

  /// getModRefInfo (for catchrets) - Return information about whether
  /// a particular catchret modifies or reads the specified memory location.
  ModRefInfo getModRefInfo(const CatchReturnInst *I, const MemoryLocation &Loc);

  /// getModRefInfo (for catchrets) - A convenience wrapper.
  ModRefInfo getModRefInfo(const CatchReturnInst *I, const Value *P,
                           uint64_t Size) {
    return getModRefInfo(I, MemoryLocation(P, Size));
  }

  /// Check whether or not an instruction may read or write memory (without
  /// regard to a specific location).
  ///
  /// For function calls, this delegates to the alias-analysis specific
  /// call-site mod-ref behavior queries. Otherwise it delegates to the generic
  /// mod ref information query without a location.
  ModRefInfo getModRefInfo(const Instruction *I) {
    if (auto CS = ImmutableCallSite(I)) {
      auto MRB = getModRefBehavior(CS);
      if ((MRB & MRI_ModRef) == MRI_ModRef)
        return MRI_ModRef;
      if (MRB & MRI_Ref)
        return MRI_Ref;
      if (MRB & MRI_Mod)
        return MRI_Mod;
      return MRI_NoModRef;
    }

    return getModRefInfo(I, MemoryLocation());
  }

  /// Check whether or not an instruction may read or write the specified
  /// memory location.
  ///
  /// Note explicitly that getModRefInfo considers the effects of reading and
  /// writing the memory location, and not the effect of ordering relative to
  /// other instructions.  Thus, a volatile load is considered to be Ref,
  /// because it does not actually write memory, it just can't be reordered
  /// relative to other volatiles (or removed).  Atomic ordered loads/stores are
  /// considered ModRef ATM because conservatively, the visible effect appears
  /// as if memory was written, not just an ordering constraint.
  ///
  /// An instruction that doesn't read or write memory may be trivially LICM'd
  /// for example.
  ///
  /// This primarily delegates to specific helpers above.
  ModRefInfo getModRefInfo(const Instruction *I, const MemoryLocation &Loc) {
    switch (I->getOpcode()) {
    case Instruction::VAArg:  return getModRefInfo((const VAArgInst*)I, Loc);
    case Instruction::Load:   return getModRefInfo((const LoadInst*)I,  Loc);
    case Instruction::Store:  return getModRefInfo((const StoreInst*)I, Loc);
    case Instruction::Fence:  return getModRefInfo((const FenceInst*)I, Loc);
    case Instruction::AtomicCmpXchg:
      return getModRefInfo((const AtomicCmpXchgInst*)I, Loc);
    case Instruction::AtomicRMW:
      return getModRefInfo((const AtomicRMWInst*)I, Loc);
    case Instruction::Call:   return getModRefInfo((const CallInst*)I,  Loc);
    case Instruction::Invoke: return getModRefInfo((const InvokeInst*)I,Loc);
    case Instruction::CatchPad:
      return getModRefInfo((const CatchPadInst *)I, Loc);
    case Instruction::CatchRet:
      return getModRefInfo((const CatchReturnInst *)I, Loc);
    default:
      return MRI_NoModRef;
    }
  }

  /// A convenience wrapper for constructing the memory location.
  ModRefInfo getModRefInfo(const Instruction *I, const Value *P,
                           uint64_t Size) {
    return getModRefInfo(I, MemoryLocation(P, Size));
  }

  /// Return information about whether a call and an instruction may refer to
  /// the same memory locations.
  ModRefInfo getModRefInfo(Instruction *I, ImmutableCallSite Call);

  /// Return information about whether two call sites may refer to the same set
  /// of memory locations. See the AA documentation for details:
  ///   http://llvm.org/docs/AliasAnalysis.html#ModRefInfo
  ModRefInfo getModRefInfo(ImmutableCallSite CS1, ImmutableCallSite CS2);

  /// \brief Return information about whether a particular call site modifies
  /// or reads the specified memory location \p MemLoc before instruction \p I
  /// in a BasicBlock. A ordered basic block \p OBB can be used to speed up
  /// instruction ordering queries inside the BasicBlock containing \p I.
  ModRefInfo callCapturesBefore(const Instruction *I,
                                const MemoryLocation &MemLoc, DominatorTree *DT,
                                OrderedBasicBlock *OBB = nullptr);

  /// \brief A convenience wrapper to synthesize a memory location.
  ModRefInfo callCapturesBefore(const Instruction *I, const Value *P,
                                uint64_t Size, DominatorTree *DT,
                                OrderedBasicBlock *OBB = nullptr) {
    return callCapturesBefore(I, MemoryLocation(P, Size), DT, OBB);
  }

  /// @}
  //===--------------------------------------------------------------------===//
  /// \name Higher level methods for querying mod/ref information.
  /// @{

  /// Check if it is possible for execution of the specified basic block to
  /// modify the location Loc.
  bool canBasicBlockModify(const BasicBlock &BB, const MemoryLocation &Loc);

  /// A convenience wrapper synthesizing a memory location.
  bool canBasicBlockModify(const BasicBlock &BB, const Value *P,
                           uint64_t Size) {
    return canBasicBlockModify(BB, MemoryLocation(P, Size));
  }

  /// Check if it is possible for the execution of the specified instructions
  /// to mod\ref (according to the mode) the location Loc.
  ///
  /// The instructions to consider are all of the instructions in the range of
  /// [I1,I2] INCLUSIVE. I1 and I2 must be in the same basic block.
  bool canInstructionRangeModRef(const Instruction &I1, const Instruction &I2,
                                 const MemoryLocation &Loc,
                                 const ModRefInfo Mode);

  /// A convenience wrapper synthesizing a memory location.
  bool canInstructionRangeModRef(const Instruction &I1, const Instruction &I2,
                                 const Value *Ptr, uint64_t Size,
                                 const ModRefInfo Mode) {
    return canInstructionRangeModRef(I1, I2, MemoryLocation(Ptr, Size), Mode);
  }

private:
  class Concept;
  template <typename T> class Model;

  template <typename T> friend class AAResultBase;

  const TargetLibraryInfo &TLI;

  std::vector<std::unique_ptr<Concept>> AAs;

  std::vector<AnalysisKey *> AADeps;
};

/// Temporary typedef for legacy code that uses a generic \c AliasAnalysis
/// pointer or reference.
typedef AAResults AliasAnalysis;

/// A private abstract base class describing the concept of an individual alias
/// analysis implementation.
///
/// This interface is implemented by any \c Model instantiation. It is also the
/// interface which a type used to instantiate the model must provide.
///
/// All of these methods model methods by the same name in the \c
/// AAResults class. Only differences and specifics to how the
/// implementations are called are documented here.
class AAResults::Concept {
public:
  virtual ~Concept() = 0;

  /// An update API used internally by the AAResults to provide
  /// a handle back to the top level aggregation.
  virtual void setAAResults(AAResults *NewAAR) = 0;

  //===--------------------------------------------------------------------===//
  /// \name Alias Queries
  /// @{

  /// The main low level interface to the alias analysis implementation.
  /// Returns an AliasResult indicating whether the two pointers are aliased to
  /// each other. This is the interface that must be implemented by specific
  /// alias analysis implementations.
  virtual AliasResult alias(const MemoryLocation &LocA,
                            const MemoryLocation &LocB) = 0;

  /// Checks whether the given location points to constant memory, or if
  /// \p OrLocal is true whether it points to a local alloca.
  virtual bool pointsToConstantMemory(const MemoryLocation &Loc,
                                      bool OrLocal) = 0;

  /// @}
  //===--------------------------------------------------------------------===//
  /// \name Simple mod/ref information
  /// @{

  /// Get the ModRef info associated with a pointer argument of a callsite. The
  /// result's bits are set to indicate the allowed aliasing ModRef kinds. Note
  /// that these bits do not necessarily account for the overall behavior of
  /// the function, but rather only provide additional per-argument
  /// information.
  virtual ModRefInfo getArgModRefInfo(ImmutableCallSite CS,
                                      unsigned ArgIdx) = 0;

  /// Return the behavior of the given call site.
  virtual FunctionModRefBehavior getModRefBehavior(ImmutableCallSite CS) = 0;

  /// Return the behavior when calling the given function.
  virtual FunctionModRefBehavior getModRefBehavior(const Function *F) = 0;

  /// getModRefInfo (for call sites) - Return information about whether
  /// a particular call site modifies or reads the specified memory location.
  virtual ModRefInfo getModRefInfo(ImmutableCallSite CS,
                                   const MemoryLocation &Loc) = 0;

  /// Return information about whether two call sites may refer to the same set
  /// of memory locations. See the AA documentation for details:
  ///   http://llvm.org/docs/AliasAnalysis.html#ModRefInfo
  virtual ModRefInfo getModRefInfo(ImmutableCallSite CS1,
                                   ImmutableCallSite CS2) = 0;

  /// @}
};

/// A private class template which derives from \c Concept and wraps some other
/// type.
///
/// This models the concept by directly forwarding each interface point to the
/// wrapped type which must implement a compatible interface. This provides
/// a type erased binding.
template <typename AAResultT> class AAResults::Model final : public Concept {
  AAResultT &Result;

public:
  explicit Model(AAResultT &Result, AAResults &AAR) : Result(Result) {
    Result.setAAResults(&AAR);
  }
  ~Model() override {}

  void setAAResults(AAResults *NewAAR) override { Result.setAAResults(NewAAR); }

  AliasResult alias(const MemoryLocation &LocA,
                    const MemoryLocation &LocB) override {
    return Result.alias(LocA, LocB);
  }

  bool pointsToConstantMemory(const MemoryLocation &Loc,
                              bool OrLocal) override {
    return Result.pointsToConstantMemory(Loc, OrLocal);
  }

  ModRefInfo getArgModRefInfo(ImmutableCallSite CS, unsigned ArgIdx) override {
    return Result.getArgModRefInfo(CS, ArgIdx);
  }

  FunctionModRefBehavior getModRefBehavior(ImmutableCallSite CS) override {
    return Result.getModRefBehavior(CS);
  }

  FunctionModRefBehavior getModRefBehavior(const Function *F) override {
    return Result.getModRefBehavior(F);
  }

  ModRefInfo getModRefInfo(ImmutableCallSite CS,
                           const MemoryLocation &Loc) override {
    return Result.getModRefInfo(CS, Loc);
  }

  ModRefInfo getModRefInfo(ImmutableCallSite CS1,
                           ImmutableCallSite CS2) override {
    return Result.getModRefInfo(CS1, CS2);
  }
};

/// A CRTP-driven "mixin" base class to help implement the function alias
/// analysis results concept.
///
/// Because of the nature of many alias analysis implementations, they often
/// only implement a subset of the interface. This base class will attempt to
/// implement the remaining portions of the interface in terms of simpler forms
/// of the interface where possible, and otherwise provide conservatively
/// correct fallback implementations.
///
/// Implementors of an alias analysis should derive from this CRTP, and then
/// override specific methods that they wish to customize. There is no need to
/// use virtual anywhere, the CRTP base class does static dispatch to the
/// derived type passed into it.
template <typename DerivedT> class AAResultBase {
  // Expose some parts of the interface only to the AAResults::Model
  // for wrapping. Specifically, this allows the model to call our
  // setAAResults method without exposing it as a fully public API.
  friend class AAResults::Model<DerivedT>;

  /// A pointer to the AAResults object that this AAResult is
  /// aggregated within. May be null if not aggregated.
  AAResults *AAR;

  /// Helper to dispatch calls back through the derived type.
  DerivedT &derived() { return static_cast<DerivedT &>(*this); }

  /// A setter for the AAResults pointer, which is used to satisfy the
  /// AAResults::Model contract.
  void setAAResults(AAResults *NewAAR) { AAR = NewAAR; }

protected:
  /// This proxy class models a common pattern where we delegate to either the
  /// top-level \c AAResults aggregation if one is registered, or to the
  /// current result if none are registered.
  class AAResultsProxy {
    AAResults *AAR;
    DerivedT &CurrentResult;

  public:
    AAResultsProxy(AAResults *AAR, DerivedT &CurrentResult)
        : AAR(AAR), CurrentResult(CurrentResult) {}

    AliasResult alias(const MemoryLocation &LocA, const MemoryLocation &LocB) {
      return AAR ? AAR->alias(LocA, LocB) : CurrentResult.alias(LocA, LocB);
    }

    bool pointsToConstantMemory(const MemoryLocation &Loc, bool OrLocal) {
      return AAR ? AAR->pointsToConstantMemory(Loc, OrLocal)
                 : CurrentResult.pointsToConstantMemory(Loc, OrLocal);
    }

    ModRefInfo getArgModRefInfo(ImmutableCallSite CS, unsigned ArgIdx) {
      return AAR ? AAR->getArgModRefInfo(CS, ArgIdx) : CurrentResult.getArgModRefInfo(CS, ArgIdx);
    }

    FunctionModRefBehavior getModRefBehavior(ImmutableCallSite CS) {
      return AAR ? AAR->getModRefBehavior(CS) : CurrentResult.getModRefBehavior(CS);
    }

    FunctionModRefBehavior getModRefBehavior(const Function *F) {
      return AAR ? AAR->getModRefBehavior(F) : CurrentResult.getModRefBehavior(F);
    }

    ModRefInfo getModRefInfo(ImmutableCallSite CS, const MemoryLocation &Loc) {
      return AAR ? AAR->getModRefInfo(CS, Loc)
                 : CurrentResult.getModRefInfo(CS, Loc);
    }

    ModRefInfo getModRefInfo(ImmutableCallSite CS1, ImmutableCallSite CS2) {
      return AAR ? AAR->getModRefInfo(CS1, CS2) : CurrentResult.getModRefInfo(CS1, CS2);
    }
  };

  explicit AAResultBase() {}

  // Provide all the copy and move constructors so that derived types aren't
  // constrained.
  AAResultBase(const AAResultBase &Arg) {}
  AAResultBase(AAResultBase &&Arg) {}

  /// Get a proxy for the best AA result set to query at this time.
  ///
  /// When this result is part of a larger aggregation, this will proxy to that
  /// aggregation. When this result is used in isolation, it will just delegate
  /// back to the derived class's implementation.
  ///
  /// Note that callers of this need to take considerable care to not cause
  /// performance problems when they use this routine, in the case of a large
  /// number of alias analyses being aggregated, it can be expensive to walk
  /// back across the chain.
  AAResultsProxy getBestAAResults() { return AAResultsProxy(AAR, derived()); }

public:
  AliasResult alias(const MemoryLocation &LocA, const MemoryLocation &LocB) {
    return MayAlias;
  }

  bool pointsToConstantMemory(const MemoryLocation &Loc, bool OrLocal) {
    return false;
  }

  ModRefInfo getArgModRefInfo(ImmutableCallSite CS, unsigned ArgIdx) {
    return MRI_ModRef;
  }

  FunctionModRefBehavior getModRefBehavior(ImmutableCallSite CS) {
    return FMRB_UnknownModRefBehavior;
  }

  FunctionModRefBehavior getModRefBehavior(const Function *F) {
    return FMRB_UnknownModRefBehavior;
  }

  ModRefInfo getModRefInfo(ImmutableCallSite CS, const MemoryLocation &Loc) {
    return MRI_ModRef;
  }

  ModRefInfo getModRefInfo(ImmutableCallSite CS1, ImmutableCallSite CS2) {
    return MRI_ModRef;
  }
};


/// Return true if this pointer is returned by a noalias function.
bool isNoAliasCall(const Value *V);

/// Return true if this is an argument with the noalias attribute.
bool isNoAliasArgument(const Value *V);

/// Return true if this pointer refers to a distinct and identifiable object.
/// This returns true for:
///    Global Variables and Functions (but not Global Aliases)
///    Allocas
///    ByVal and NoAlias Arguments
///    NoAlias returns (e.g. calls to malloc)
///
bool isIdentifiedObject(const Value *V);

/// Return true if V is umabigously identified at the function-level.
/// Different IdentifiedFunctionLocals can't alias.
/// Further, an IdentifiedFunctionLocal can not alias with any function
/// arguments other than itself, which is not necessarily true for
/// IdentifiedObjects.
bool isIdentifiedFunctionLocal(const Value *V);

/// A manager for alias analyses.
///
/// This class can have analyses registered with it and when run, it will run
/// all of them and aggregate their results into single AA results interface
/// that dispatches across all of the alias analysis results available.
///
/// Note that the order in which analyses are registered is very significant.
/// That is the order in which the results will be aggregated and queried.
///
/// This manager effectively wraps the AnalysisManager for registering alias
/// analyses. When you register your alias analysis with this manager, it will
/// ensure the analysis itself is registered with its AnalysisManager.
class AAManager : public AnalysisInfoMixin<AAManager> {
public:
  typedef AAResults Result;

  /// Register a specific AA result.
  template <typename AnalysisT> void registerFunctionAnalysis() {
    ResultGetters.push_back(&getFunctionAAResultImpl<AnalysisT>);
  }

  /// Register a specific AA result.
  template <typename AnalysisT> void registerModuleAnalysis() {
    ResultGetters.push_back(&getModuleAAResultImpl<AnalysisT>);
  }

  Result run(Function &F, FunctionAnalysisManager &AM) {
    Result R(AM.getResult<TargetLibraryAnalysis>(F));
    for (auto &Getter : ResultGetters)
      (*Getter)(F, AM, R);
    return R;
  }

private:
  friend AnalysisInfoMixin<AAManager>;
  static AnalysisKey Key;

  SmallVector<void (*)(Function &F, FunctionAnalysisManager &AM,
                       AAResults &AAResults),
              4> ResultGetters;

  template <typename AnalysisT>
  static void getFunctionAAResultImpl(Function &F,
                                      FunctionAnalysisManager &AM,
                                      AAResults &AAResults) {
    AAResults.addAAResult(AM.template getResult<AnalysisT>(F));
    AAResults.addAADependencyID(AnalysisT::ID());
  }

  template <typename AnalysisT>
  static void getModuleAAResultImpl(Function &F, FunctionAnalysisManager &AM,
                                    AAResults &AAResults) {
    auto &MAMProxy = AM.getResult<ModuleAnalysisManagerFunctionProxy>(F);
    auto &MAM = MAMProxy.getManager();
    if (auto *R = MAM.template getCachedResult<AnalysisT>(*F.getParent())) {
      AAResults.addAAResult(*R);
      MAMProxy
          .template registerOuterAnalysisInvalidation<AnalysisT, AAManager>();
    }
  }
};

/// A wrapper pass to provide the legacy pass manager access to a suitably
/// prepared AAResults object.
class AAResultsWrapperPass : public FunctionPass {
  std::unique_ptr<AAResults> AAR;

public:
  static char ID;

  AAResultsWrapperPass();

  AAResults &getAAResults() { return *AAR; }
  const AAResults &getAAResults() const { return *AAR; }

  bool runOnFunction(Function &F) override;

  void getAnalysisUsage(AnalysisUsage &AU) const override;
};

FunctionPass *createAAResultsWrapperPass();

/// A wrapper pass around a callback which can be used to populate the
/// AAResults in the AAResultsWrapperPass from an external AA.
///
/// The callback provided here will be used each time we prepare an AAResults
/// object, and will receive a reference to the function wrapper pass, the
/// function, and the AAResults object to populate. This should be used when
/// setting up a custom pass pipeline to inject a hook into the AA results.
ImmutablePass *createExternalAAWrapperPass(
    std::function<void(Pass &, Function &, AAResults &)> Callback);

/// A helper for the legacy pass manager to create a \c AAResults
/// object populated to the best of our ability for a particular function when
/// inside of a \c ModulePass or a \c CallGraphSCCPass.
///
/// If a \c ModulePass or a \c CallGraphSCCPass calls \p
/// createLegacyPMAAResults, it also needs to call \p addUsedAAAnalyses in \p
/// getAnalysisUsage.
AAResults createLegacyPMAAResults(Pass &P, Function &F, BasicAAResult &BAR);

/// A helper for the legacy pass manager to populate \p AU to add uses to make
/// sure the analyses required by \p createLegacyPMAAResults are available.
void getAAResultsAnalysisUsage(AnalysisUsage &AU);

} // End llvm namespace

#endif