llvm.org GIT mirror llvm / debcb01 lib / VMCore / Verifier.cpp
debcb01

Tree @debcb01 (Download .tar.gz)

Verifier.cpp @debcb01raw · history · blame

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
//===-- Verifier.cpp - Implement the Module Verifier -------------*- C++ -*-==//
//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file defines the function verifier interface, that can be used for some
// sanity checking of input to the system.
//
// Note that this does not provide full `Java style' security and verifications,
// instead it just tries to ensure that code is well-formed.
//
//  * Both of a binary operator's parameters are of the same type
//  * Verify that the indices of mem access instructions match other operands
//  * Verify that arithmetic and other things are only performed on first-class
//    types.  Verify that shifts & logicals only happen on integrals f.e.
//  * All of the constants in a switch statement are of the correct type
//  * The code is in valid SSA form
//  * It should be illegal to put a label into any other type (like a structure)
//    or to return one. [except constant arrays!]
//  * Only phi nodes can be self referential: 'add i32 %0, %0 ; <int>:0' is bad
//  * PHI nodes must have an entry for each predecessor, with no extras.
//  * PHI nodes must be the first thing in a basic block, all grouped together
//  * PHI nodes must have at least one entry
//  * All basic blocks should only end with terminator insts, not contain them
//  * The entry node to a function must not have predecessors
//  * All Instructions must be embedded into a basic block
//  * Functions cannot take a void-typed parameter
//  * Verify that a function's argument list agrees with it's declared type.
//  * It is illegal to specify a name for a void value.
//  * It is illegal to have a internal global value with no initializer
//  * It is illegal to have a ret instruction that returns a value that does not
//    agree with the function return value type.
//  * Function call argument types match the function prototype
//  * All other things that are tested by asserts spread about the code...
//
//===----------------------------------------------------------------------===//

#include "llvm/Analysis/Verifier.h"
#include "llvm/CallingConv.h"
#include "llvm/Constants.h"
#include "llvm/DerivedTypes.h"
#include "llvm/InlineAsm.h"
#include "llvm/IntrinsicInst.h"
#include "llvm/Metadata.h"
#include "llvm/Module.h"
#include "llvm/ModuleProvider.h"
#include "llvm/Pass.h"
#include "llvm/PassManager.h"
#include "llvm/Analysis/Dominators.h"
#include "llvm/Assembly/Writer.h"
#include "llvm/CodeGen/ValueTypes.h"
#include "llvm/Support/CallSite.h"
#include "llvm/Support/CFG.h"
#include "llvm/Support/InstVisitor.h"
#include "llvm/Support/Streams.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/StringExtras.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/Support/Compiler.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/raw_ostream.h"
#include <algorithm>
#include <sstream>
#include <cstdarg>
using namespace llvm;

namespace {  // Anonymous namespace for class
  struct VISIBILITY_HIDDEN PreVerifier : public FunctionPass {
    static char ID; // Pass ID, replacement for typeid

    PreVerifier() : FunctionPass(&ID) { }

    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
      AU.setPreservesAll();
    }

    // Check that the prerequisites for successful DominatorTree construction
    // are satisfied.
    bool runOnFunction(Function &F) {
      bool Broken = false;

      for (Function::iterator I = F.begin(), E = F.end(); I != E; ++I) {
        if (I->empty() || !I->back().isTerminator()) {
          cerr << "Basic Block does not have terminator!\n";
          WriteAsOperand(*cerr, I, true);
          cerr << "\n";
          Broken = true;
        }
      }

      if (Broken)
        llvm_report_error("Broken module, no Basic Block terminator!");

      return false;
    }
  };
}

char PreVerifier::ID = 0;
static RegisterPass<PreVerifier>
PreVer("preverify", "Preliminary module verification");
static const PassInfo *const PreVerifyID = &PreVer;

namespace {
  struct VISIBILITY_HIDDEN
     Verifier : public FunctionPass, InstVisitor<Verifier> {
    static char ID; // Pass ID, replacement for typeid
    bool Broken;          // Is this module found to be broken?
    bool RealPass;        // Are we not being run by a PassManager?
    VerifierFailureAction action;
                          // What to do if verification fails.
    Module *Mod;          // Module we are verifying right now
    DominatorTree *DT; // Dominator Tree, caution can be null!
    std::stringstream msgs;  // A stringstream to collect messages

    /// InstInThisBlock - when verifying a basic block, keep track of all of the
    /// instructions we have seen so far.  This allows us to do efficient
    /// dominance checks for the case when an instruction has an operand that is
    /// an instruction in the same block.
    SmallPtrSet<Instruction*, 16> InstsInThisBlock;

    Verifier()
      : FunctionPass(&ID), 
      Broken(false), RealPass(true), action(AbortProcessAction),
      DT(0), msgs( std::ios::app | std::ios::out ) {}
    explicit Verifier(VerifierFailureAction ctn)
      : FunctionPass(&ID), 
      Broken(false), RealPass(true), action(ctn), DT(0),
      msgs( std::ios::app | std::ios::out ) {}
    explicit Verifier(bool AB)
      : FunctionPass(&ID), 
      Broken(false), RealPass(true),
      action( AB ? AbortProcessAction : PrintMessageAction), DT(0),
      msgs( std::ios::app | std::ios::out ) {}
    explicit Verifier(DominatorTree &dt)
      : FunctionPass(&ID), 
      Broken(false), RealPass(false), action(PrintMessageAction),
      DT(&dt), msgs( std::ios::app | std::ios::out ) {}


    bool doInitialization(Module &M) {
      Mod = &M;
      verifyTypeSymbolTable(M.getTypeSymbolTable());

      // If this is a real pass, in a pass manager, we must abort before
      // returning back to the pass manager, or else the pass manager may try to
      // run other passes on the broken module.
      if (RealPass)
        return abortIfBroken();
      return false;
    }

    bool runOnFunction(Function &F) {
      // Get dominator information if we are being run by PassManager
      if (RealPass) DT = &getAnalysis<DominatorTree>();

      Mod = F.getParent();

      visit(F);
      InstsInThisBlock.clear();

      // If this is a real pass, in a pass manager, we must abort before
      // returning back to the pass manager, or else the pass manager may try to
      // run other passes on the broken module.
      if (RealPass)
        return abortIfBroken();

      return false;
    }

    bool doFinalization(Module &M) {
      // Scan through, checking all of the external function's linkage now...
      for (Module::iterator I = M.begin(), E = M.end(); I != E; ++I) {
        visitGlobalValue(*I);

        // Check to make sure function prototypes are okay.
        if (I->isDeclaration()) visitFunction(*I);
      }

      for (Module::global_iterator I = M.global_begin(), E = M.global_end(); 
           I != E; ++I)
        visitGlobalVariable(*I);

      for (Module::alias_iterator I = M.alias_begin(), E = M.alias_end(); 
           I != E; ++I)
        visitGlobalAlias(*I);

      // If the module is broken, abort at this time.
      return abortIfBroken();
    }

    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
      AU.setPreservesAll();
      AU.addRequiredID(PreVerifyID);
      if (RealPass)
        AU.addRequired<DominatorTree>();
    }

    /// abortIfBroken - If the module is broken and we are supposed to abort on
    /// this condition, do so.
    ///
    bool abortIfBroken() {
      if (!Broken) return false;
      msgs << "Broken module found, ";
      switch (action) {
      default: llvm_unreachable("Unknown action");
      case AbortProcessAction:
        msgs << "compilation aborted!\n";
        cerr << msgs.str();
        // Client should choose different reaction if abort is not desired
        abort();
      case PrintMessageAction:
        msgs << "verification continues.\n";
        cerr << msgs.str();
        return false;
      case ReturnStatusAction:
        msgs << "compilation terminated.\n";
        return true;
      }
    }


    // Verification methods...
    void verifyTypeSymbolTable(TypeSymbolTable &ST);
    void visitGlobalValue(GlobalValue &GV);
    void visitGlobalVariable(GlobalVariable &GV);
    void visitGlobalAlias(GlobalAlias &GA);
    void visitFunction(Function &F);
    void visitBasicBlock(BasicBlock &BB);
    using InstVisitor<Verifier>::visit;
       
    void visit(Instruction &I);
       
    void visitTruncInst(TruncInst &I);
    void visitZExtInst(ZExtInst &I);
    void visitSExtInst(SExtInst &I);
    void visitFPTruncInst(FPTruncInst &I);
    void visitFPExtInst(FPExtInst &I);
    void visitFPToUIInst(FPToUIInst &I);
    void visitFPToSIInst(FPToSIInst &I);
    void visitUIToFPInst(UIToFPInst &I);
    void visitSIToFPInst(SIToFPInst &I);
    void visitIntToPtrInst(IntToPtrInst &I);
    void visitPtrToIntInst(PtrToIntInst &I);
    void visitBitCastInst(BitCastInst &I);
    void visitPHINode(PHINode &PN);
    void visitBinaryOperator(BinaryOperator &B);
    void visitICmpInst(ICmpInst &IC);
    void visitFCmpInst(FCmpInst &FC);
    void visitExtractElementInst(ExtractElementInst &EI);
    void visitInsertElementInst(InsertElementInst &EI);
    void visitShuffleVectorInst(ShuffleVectorInst &EI);
    void visitVAArgInst(VAArgInst &VAA) { visitInstruction(VAA); }
    void visitCallInst(CallInst &CI);
    void visitInvokeInst(InvokeInst &II);
    void visitGetElementPtrInst(GetElementPtrInst &GEP);
    void visitLoadInst(LoadInst &LI);
    void visitStoreInst(StoreInst &SI);
    void visitInstruction(Instruction &I);
    void visitTerminatorInst(TerminatorInst &I);
    void visitReturnInst(ReturnInst &RI);
    void visitSwitchInst(SwitchInst &SI);
    void visitSelectInst(SelectInst &SI);
    void visitUserOp1(Instruction &I);
    void visitUserOp2(Instruction &I) { visitUserOp1(I); }
    void visitIntrinsicFunctionCall(Intrinsic::ID ID, CallInst &CI);
    void visitAllocationInst(AllocationInst &AI);
    void visitExtractValueInst(ExtractValueInst &EVI);
    void visitInsertValueInst(InsertValueInst &IVI);

    void VerifyCallSite(CallSite CS);
    bool PerformTypeCheck(Intrinsic::ID ID, Function *F, const Type *Ty,
                          int VT, unsigned ArgNo, std::string &Suffix);
    void VerifyIntrinsicPrototype(Intrinsic::ID ID, Function *F,
                                  unsigned RetNum, unsigned ParamNum, ...);
    void VerifyParameterAttrs(Attributes Attrs, const Type *Ty,
                              bool isReturnValue, const Value *V);
    void VerifyFunctionAttrs(const FunctionType *FT, const AttrListPtr &Attrs,
                             const Value *V);

    void WriteValue(const Value *V) {
      if (!V) return;
      if (isa<Instruction>(V)) {
        msgs << *V;
      } else {
        WriteAsOperand(msgs, V, true, Mod);
        msgs << "\n";
      }
    }

    void WriteType(const Type *T) {
      if (!T) return;
      raw_os_ostream RO(msgs);
      RO << ' ';
      WriteTypeSymbolic(RO, T, Mod);
    }


    // CheckFailed - A check failed, so print out the condition and the message
    // that failed.  This provides a nice place to put a breakpoint if you want
    // to see why something is not correct.
    void CheckFailed(const Twine &Message,
                     const Value *V1 = 0, const Value *V2 = 0,
                     const Value *V3 = 0, const Value *V4 = 0) {
      msgs << Message.str() << "\n";
      WriteValue(V1);
      WriteValue(V2);
      WriteValue(V3);
      WriteValue(V4);
      Broken = true;
    }

    void CheckFailed(const Twine &Message, const Value* V1,
                     const Type* T2, const Value* V3 = 0) {
      msgs << Message.str() << "\n";
      WriteValue(V1);
      WriteType(T2);
      WriteValue(V3);
      Broken = true;
    }
  };
} // End anonymous namespace

char Verifier::ID = 0;
static RegisterPass<Verifier> X("verify", "Module Verifier");

// Assert - We know that cond should be true, if not print an error message.
#define Assert(C, M) \
  do { if (!(C)) { CheckFailed(M); return; } } while (0)
#define Assert1(C, M, V1) \
  do { if (!(C)) { CheckFailed(M, V1); return; } } while (0)
#define Assert2(C, M, V1, V2) \
  do { if (!(C)) { CheckFailed(M, V1, V2); return; } } while (0)
#define Assert3(C, M, V1, V2, V3) \
  do { if (!(C)) { CheckFailed(M, V1, V2, V3); return; } } while (0)
#define Assert4(C, M, V1, V2, V3, V4) \
  do { if (!(C)) { CheckFailed(M, V1, V2, V3, V4); return; } } while (0)

void Verifier::visit(Instruction &I) {
  for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i)
    Assert1(I.getOperand(i) != 0, "Operand is null", &I);
  InstVisitor<Verifier>::visit(I);
}


void Verifier::visitGlobalValue(GlobalValue &GV) {
  Assert1(!GV.isDeclaration() ||
          GV.hasExternalLinkage() ||
          GV.hasDLLImportLinkage() ||
          GV.hasExternalWeakLinkage() ||
          GV.hasGhostLinkage() ||
          (isa<GlobalAlias>(GV) &&
           (GV.hasLocalLinkage() || GV.hasWeakLinkage())),
  "Global is external, but doesn't have external or dllimport or weak linkage!",
          &GV);

  Assert1(!GV.hasDLLImportLinkage() || GV.isDeclaration(),
          "Global is marked as dllimport, but not external", &GV);
  
  Assert1(!GV.hasAppendingLinkage() || isa<GlobalVariable>(GV),
          "Only global variables can have appending linkage!", &GV);

  if (GV.hasAppendingLinkage()) {
    GlobalVariable &GVar = cast<GlobalVariable>(GV);
    Assert1(isa<ArrayType>(GVar.getType()->getElementType()),
            "Only global arrays can have appending linkage!", &GV);
  }
}

void Verifier::visitGlobalVariable(GlobalVariable &GV) {
  if (GV.hasInitializer()) {
    Assert1(GV.getInitializer()->getType() == GV.getType()->getElementType(),
            "Global variable initializer type does not match global "
            "variable type!", &GV);

    // Verify that any metadata used in a global initializer points only to
    // other globals.
    if (MDNode *FirstNode = dyn_cast<MDNode>(GV.getInitializer())) {
      SmallVector<const MDNode *, 4> NodesToAnalyze;
      NodesToAnalyze.push_back(FirstNode);
      while (!NodesToAnalyze.empty()) {
        const MDNode *N = NodesToAnalyze.back();
        NodesToAnalyze.pop_back();

        for (MDNode::const_elem_iterator I = N->elem_begin(),
               E = N->elem_end(); I != E; ++I)
          if (const Value *V = *I) {
            if (const MDNode *Next = dyn_cast<MDNode>(V))
              NodesToAnalyze.push_back(Next);
            else
              Assert3(isa<Constant>(V),
                      "reference to instruction from global metadata node",
                      &GV, N, V);
          }
      }
    }
  } else {
    Assert1(GV.hasExternalLinkage() || GV.hasDLLImportLinkage() ||
            GV.hasExternalWeakLinkage(),
            "invalid linkage type for global declaration", &GV);
  }

  visitGlobalValue(GV);
}

void Verifier::visitGlobalAlias(GlobalAlias &GA) {
  Assert1(!GA.getName().empty(),
          "Alias name cannot be empty!", &GA);
  Assert1(GA.hasExternalLinkage() || GA.hasLocalLinkage() ||
          GA.hasWeakLinkage(),
          "Alias should have external or external weak linkage!", &GA);
  Assert1(GA.getAliasee(),
          "Aliasee cannot be NULL!", &GA);
  Assert1(GA.getType() == GA.getAliasee()->getType(),
          "Alias and aliasee types should match!", &GA);

  if (!isa<GlobalValue>(GA.getAliasee())) {
    const ConstantExpr *CE = dyn_cast<ConstantExpr>(GA.getAliasee());
    Assert1(CE && 
            (CE->getOpcode() == Instruction::BitCast ||
             CE->getOpcode() == Instruction::GetElementPtr) &&
            isa<GlobalValue>(CE->getOperand(0)),
            "Aliasee should be either GlobalValue or bitcast of GlobalValue",
            &GA);
  }

  const GlobalValue* Aliasee = GA.resolveAliasedGlobal(/*stopOnWeak*/ false);
  Assert1(Aliasee,
          "Aliasing chain should end with function or global variable", &GA);

  visitGlobalValue(GA);
}

void Verifier::verifyTypeSymbolTable(TypeSymbolTable &ST) {
}

// VerifyParameterAttrs - Check the given attributes for an argument or return
// value of the specified type.  The value V is printed in error messages.
void Verifier::VerifyParameterAttrs(Attributes Attrs, const Type *Ty,
                                    bool isReturnValue, const Value *V) {
  if (Attrs == Attribute::None)
    return;

  Attributes FnCheckAttr = Attrs & Attribute::FunctionOnly;
  Assert1(!FnCheckAttr, "Attribute " + Attribute::getAsString(FnCheckAttr) +
          " only applies to the function!", V);

  if (isReturnValue) {
    Attributes RetI = Attrs & Attribute::ParameterOnly;
    Assert1(!RetI, "Attribute " + Attribute::getAsString(RetI) +
            " does not apply to return values!", V);
  }

  for (unsigned i = 0;
       i < array_lengthof(Attribute::MutuallyIncompatible); ++i) {
    Attributes MutI = Attrs & Attribute::MutuallyIncompatible[i];
    Assert1(!(MutI & (MutI - 1)), "Attributes " +
            Attribute::getAsString(MutI) + " are incompatible!", V);
  }

  Attributes TypeI = Attrs & Attribute::typeIncompatible(Ty);
  Assert1(!TypeI, "Wrong type for attribute " +
          Attribute::getAsString(TypeI), V);

  Attributes ByValI = Attrs & Attribute::ByVal;
  if (const PointerType *PTy = dyn_cast<PointerType>(Ty)) {
    Assert1(!ByValI || PTy->getElementType()->isSized(),
            "Attribute " + Attribute::getAsString(ByValI) +
            " does not support unsized types!", V);
  } else {
    Assert1(!ByValI,
            "Attribute " + Attribute::getAsString(ByValI) +
            " only applies to parameters with pointer type!", V);
  }
}

// VerifyFunctionAttrs - Check parameter attributes against a function type.
// The value V is printed in error messages.
void Verifier::VerifyFunctionAttrs(const FunctionType *FT,
                                   const AttrListPtr &Attrs,
                                   const Value *V) {
  if (Attrs.isEmpty())
    return;

  bool SawNest = false;

  for (unsigned i = 0, e = Attrs.getNumSlots(); i != e; ++i) {
    const AttributeWithIndex &Attr = Attrs.getSlot(i);

    const Type *Ty;
    if (Attr.Index == 0)
      Ty = FT->getReturnType();
    else if (Attr.Index-1 < FT->getNumParams())
      Ty = FT->getParamType(Attr.Index-1);
    else
      break;  // VarArgs attributes, verified elsewhere.

    VerifyParameterAttrs(Attr.Attrs, Ty, Attr.Index == 0, V);

    if (Attr.Attrs & Attribute::Nest) {
      Assert1(!SawNest, "More than one parameter has attribute nest!", V);
      SawNest = true;
    }

    if (Attr.Attrs & Attribute::StructRet)
      Assert1(Attr.Index == 1, "Attribute sret not on first parameter!", V);
  }

  Attributes FAttrs = Attrs.getFnAttributes();
  Attributes NotFn = FAttrs & (~Attribute::FunctionOnly);
  Assert1(!NotFn, "Attribute " + Attribute::getAsString(NotFn) +
          " does not apply to the function!", V);

  for (unsigned i = 0;
       i < array_lengthof(Attribute::MutuallyIncompatible); ++i) {
    Attributes MutI = FAttrs & Attribute::MutuallyIncompatible[i];
    Assert1(!(MutI & (MutI - 1)), "Attributes " +
            Attribute::getAsString(MutI) + " are incompatible!", V);
  }
}

static bool VerifyAttributeCount(const AttrListPtr &Attrs, unsigned Params) {
  if (Attrs.isEmpty())
    return true;
    
  unsigned LastSlot = Attrs.getNumSlots() - 1;
  unsigned LastIndex = Attrs.getSlot(LastSlot).Index;
  if (LastIndex <= Params
      || (LastIndex == (unsigned)~0
          && (LastSlot == 0 || Attrs.getSlot(LastSlot - 1).Index <= Params)))  
    return true;
    
  return false;
}
// visitFunction - Verify that a function is ok.
//
void Verifier::visitFunction(Function &F) {
  // Check function arguments.
  const FunctionType *FT = F.getFunctionType();
  unsigned NumArgs = F.arg_size();

  Assert2(FT->getNumParams() == NumArgs,
          "# formal arguments must match # of arguments for function type!",
          &F, FT);
  Assert1(F.getReturnType()->isFirstClassType() ||
          F.getReturnType() == Type::VoidTy || 
          isa<StructType>(F.getReturnType()),
          "Functions cannot return aggregate values!", &F);

  Assert1(!F.hasStructRetAttr() || F.getReturnType() == Type::VoidTy,
          "Invalid struct return type!", &F);

  const AttrListPtr &Attrs = F.getAttributes();

  Assert1(VerifyAttributeCount(Attrs, FT->getNumParams()),
          "Attributes after last parameter!", &F);

  // Check function attributes.
  VerifyFunctionAttrs(FT, Attrs, &F);

  // Check that this function meets the restrictions on this calling convention.
  switch (F.getCallingConv()) {
  default:
    break;
  case CallingConv::C:
    break;
  case CallingConv::Fast:
  case CallingConv::Cold:
  case CallingConv::X86_FastCall:
    Assert1(!F.isVarArg(),
            "Varargs functions must have C calling conventions!", &F);
    break;
  }
  
  bool isLLVMdotName = F.getName().size() >= 5 &&
                       F.getName().substr(0, 5) == "llvm.";
  if (!isLLVMdotName)
    Assert1(F.getReturnType() != Type::MetadataTy,
            "Function may not return metadata unless it's an intrinsic", &F);

  // Check that the argument values match the function type for this function...
  unsigned i = 0;
  for (Function::arg_iterator I = F.arg_begin(), E = F.arg_end();
       I != E; ++I, ++i) {
    Assert2(I->getType() == FT->getParamType(i),
            "Argument value does not match function argument type!",
            I, FT->getParamType(i));
    Assert1(I->getType()->isFirstClassType(),
            "Function arguments must have first-class types!", I);
    if (!isLLVMdotName)
      Assert2(I->getType() != Type::MetadataTy,
              "Function takes metadata but isn't an intrinsic", I, &F);
  }

  if (F.isDeclaration()) {
    Assert1(F.hasExternalLinkage() || F.hasDLLImportLinkage() ||
            F.hasExternalWeakLinkage() || F.hasGhostLinkage(),
            "invalid linkage type for function declaration", &F);
  } else {
    // Verify that this function (which has a body) is not named "llvm.*".  It
    // is not legal to define intrinsics.
    Assert1(!isLLVMdotName, "llvm intrinsics cannot be defined!", &F);
    
    // Check the entry node
    BasicBlock *Entry = &F.getEntryBlock();
    Assert1(pred_begin(Entry) == pred_end(Entry),
            "Entry block to function must not have predecessors!", Entry);
  }
}


// verifyBasicBlock - Verify that a basic block is well formed...
//
void Verifier::visitBasicBlock(BasicBlock &BB) {
  InstsInThisBlock.clear();

  // Ensure that basic blocks have terminators!
  Assert1(BB.getTerminator(), "Basic Block does not have terminator!", &BB);

  // Check constraints that this basic block imposes on all of the PHI nodes in
  // it.
  if (isa<PHINode>(BB.front())) {
    SmallVector<BasicBlock*, 8> Preds(pred_begin(&BB), pred_end(&BB));
    SmallVector<std::pair<BasicBlock*, Value*>, 8> Values;
    std::sort(Preds.begin(), Preds.end());
    PHINode *PN;
    for (BasicBlock::iterator I = BB.begin(); (PN = dyn_cast<PHINode>(I));++I) {

      // Ensure that PHI nodes have at least one entry!
      Assert1(PN->getNumIncomingValues() != 0,
              "PHI nodes must have at least one entry.  If the block is dead, "
              "the PHI should be removed!", PN);
      Assert1(PN->getNumIncomingValues() == Preds.size(),
              "PHINode should have one entry for each predecessor of its "
              "parent basic block!", PN);

      // Get and sort all incoming values in the PHI node...
      Values.clear();
      Values.reserve(PN->getNumIncomingValues());
      for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
        Values.push_back(std::make_pair(PN->getIncomingBlock(i),
                                        PN->getIncomingValue(i)));
      std::sort(Values.begin(), Values.end());

      for (unsigned i = 0, e = Values.size(); i != e; ++i) {
        // Check to make sure that if there is more than one entry for a
        // particular basic block in this PHI node, that the incoming values are
        // all identical.
        //
        Assert4(i == 0 || Values[i].first  != Values[i-1].first ||
                Values[i].second == Values[i-1].second,
                "PHI node has multiple entries for the same basic block with "
                "different incoming values!", PN, Values[i].first,
                Values[i].second, Values[i-1].second);

        // Check to make sure that the predecessors and PHI node entries are
        // matched up.
        Assert3(Values[i].first == Preds[i],
                "PHI node entries do not match predecessors!", PN,
                Values[i].first, Preds[i]);
      }
    }
  }
}

void Verifier::visitTerminatorInst(TerminatorInst &I) {
  // Ensure that terminators only exist at the end of the basic block.
  Assert1(&I == I.getParent()->getTerminator(),
          "Terminator found in the middle of a basic block!", I.getParent());
  visitInstruction(I);
}

void Verifier::visitReturnInst(ReturnInst &RI) {
  Function *F = RI.getParent()->getParent();
  unsigned N = RI.getNumOperands();
  if (F->getReturnType() == Type::VoidTy) 
    Assert2(N == 0,
            "Found return instr that returns non-void in Function of void "
            "return type!", &RI, F->getReturnType());
  else if (N == 1 && F->getReturnType() == RI.getOperand(0)->getType()) {
    // Exactly one return value and it matches the return type. Good.
  } else if (const StructType *STy = dyn_cast<StructType>(F->getReturnType())) {
    // The return type is a struct; check for multiple return values.
    Assert2(STy->getNumElements() == N,
            "Incorrect number of return values in ret instruction!",
            &RI, F->getReturnType());
    for (unsigned i = 0; i != N; ++i)
      Assert2(STy->getElementType(i) == RI.getOperand(i)->getType(),
              "Function return type does not match operand "
              "type of return inst!", &RI, F->getReturnType());
  } else if (const ArrayType *ATy = dyn_cast<ArrayType>(F->getReturnType())) {
    // The return type is an array; check for multiple return values.
    Assert2(ATy->getNumElements() == N,
            "Incorrect number of return values in ret instruction!",
            &RI, F->getReturnType());
    for (unsigned i = 0; i != N; ++i)
      Assert2(ATy->getElementType() == RI.getOperand(i)->getType(),
              "Function return type does not match operand "
              "type of return inst!", &RI, F->getReturnType());
  } else {
    CheckFailed("Function return type does not match operand "
                "type of return inst!", &RI, F->getReturnType());
  }
  
  // Check to make sure that the return value has necessary properties for
  // terminators...
  visitTerminatorInst(RI);
}

void Verifier::visitSwitchInst(SwitchInst &SI) {
  // Check to make sure that all of the constants in the switch instruction
  // have the same type as the switched-on value.
  const Type *SwitchTy = SI.getCondition()->getType();
  for (unsigned i = 1, e = SI.getNumCases(); i != e; ++i)
    Assert1(SI.getCaseValue(i)->getType() == SwitchTy,
            "Switch constants must all be same type as switch value!", &SI);

  visitTerminatorInst(SI);
}

void Verifier::visitSelectInst(SelectInst &SI) {
  Assert1(!SelectInst::areInvalidOperands(SI.getOperand(0), SI.getOperand(1),
                                          SI.getOperand(2)),
          "Invalid operands for select instruction!", &SI);

  Assert1(SI.getTrueValue()->getType() == SI.getType(),
          "Select values must have same type as select instruction!", &SI);
  visitInstruction(SI);
}


/// visitUserOp1 - User defined operators shouldn't live beyond the lifetime of
/// a pass, if any exist, it's an error.
///
void Verifier::visitUserOp1(Instruction &I) {
  Assert1(0, "User-defined operators should not live outside of a pass!", &I);
}

void Verifier::visitTruncInst(TruncInst &I) {
  // Get the source and destination types
  const Type *SrcTy = I.getOperand(0)->getType();
  const Type *DestTy = I.getType();

  // Get the size of the types in bits, we'll need this later
  unsigned SrcBitSize = SrcTy->getScalarSizeInBits();
  unsigned DestBitSize = DestTy->getScalarSizeInBits();

  Assert1(SrcTy->isIntOrIntVector(), "Trunc only operates on integer", &I);
  Assert1(DestTy->isIntOrIntVector(), "Trunc only produces integer", &I);
  Assert1(isa<VectorType>(SrcTy) == isa<VectorType>(DestTy),
          "trunc source and destination must both be a vector or neither", &I);
  Assert1(SrcBitSize > DestBitSize,"DestTy too big for Trunc", &I);

  visitInstruction(I);
}

void Verifier::visitZExtInst(ZExtInst &I) {
  // Get the source and destination types
  const Type *SrcTy = I.getOperand(0)->getType();
  const Type *DestTy = I.getType();

  // Get the size of the types in bits, we'll need this later
  Assert1(SrcTy->isIntOrIntVector(), "ZExt only operates on integer", &I);
  Assert1(DestTy->isIntOrIntVector(), "ZExt only produces an integer", &I);
  Assert1(isa<VectorType>(SrcTy) == isa<VectorType>(DestTy),
          "zext source and destination must both be a vector or neither", &I);
  unsigned SrcBitSize = SrcTy->getScalarSizeInBits();
  unsigned DestBitSize = DestTy->getScalarSizeInBits();

  Assert1(SrcBitSize < DestBitSize,"Type too small for ZExt", &I);

  visitInstruction(I);
}

void Verifier::visitSExtInst(SExtInst &I) {
  // Get the source and destination types
  const Type *SrcTy = I.getOperand(0)->getType();
  const Type *DestTy = I.getType();

  // Get the size of the types in bits, we'll need this later
  unsigned SrcBitSize = SrcTy->getScalarSizeInBits();
  unsigned DestBitSize = DestTy->getScalarSizeInBits();

  Assert1(SrcTy->isIntOrIntVector(), "SExt only operates on integer", &I);
  Assert1(DestTy->isIntOrIntVector(), "SExt only produces an integer", &I);
  Assert1(isa<VectorType>(SrcTy) == isa<VectorType>(DestTy),
          "sext source and destination must both be a vector or neither", &I);
  Assert1(SrcBitSize < DestBitSize,"Type too small for SExt", &I);

  visitInstruction(I);
}

void Verifier::visitFPTruncInst(FPTruncInst &I) {
  // Get the source and destination types
  const Type *SrcTy = I.getOperand(0)->getType();
  const Type *DestTy = I.getType();
  // Get the size of the types in bits, we'll need this later
  unsigned SrcBitSize = SrcTy->getScalarSizeInBits();
  unsigned DestBitSize = DestTy->getScalarSizeInBits();

  Assert1(SrcTy->isFPOrFPVector(),"FPTrunc only operates on FP", &I);
  Assert1(DestTy->isFPOrFPVector(),"FPTrunc only produces an FP", &I);
  Assert1(isa<VectorType>(SrcTy) == isa<VectorType>(DestTy),
          "fptrunc source and destination must both be a vector or neither",&I);
  Assert1(SrcBitSize > DestBitSize,"DestTy too big for FPTrunc", &I);

  visitInstruction(I);
}

void Verifier::visitFPExtInst(FPExtInst &I) {
  // Get the source and destination types
  const Type *SrcTy = I.getOperand(0)->getType();
  const Type *DestTy = I.getType();

  // Get the size of the types in bits, we'll need this later
  unsigned SrcBitSize = SrcTy->getScalarSizeInBits();
  unsigned DestBitSize = DestTy->getScalarSizeInBits();

  Assert1(SrcTy->isFPOrFPVector(),"FPExt only operates on FP", &I);
  Assert1(DestTy->isFPOrFPVector(),"FPExt only produces an FP", &I);
  Assert1(isa<VectorType>(SrcTy) == isa<VectorType>(DestTy),
          "fpext source and destination must both be a vector or neither", &I);
  Assert1(SrcBitSize < DestBitSize,"DestTy too small for FPExt", &I);

  visitInstruction(I);
}

void Verifier::visitUIToFPInst(UIToFPInst &I) {
  // Get the source and destination types
  const Type *SrcTy = I.getOperand(0)->getType();
  const Type *DestTy = I.getType();

  bool SrcVec = isa<VectorType>(SrcTy);
  bool DstVec = isa<VectorType>(DestTy);

  Assert1(SrcVec == DstVec,
          "UIToFP source and dest must both be vector or scalar", &I);
  Assert1(SrcTy->isIntOrIntVector(),
          "UIToFP source must be integer or integer vector", &I);
  Assert1(DestTy->isFPOrFPVector(),
          "UIToFP result must be FP or FP vector", &I);

  if (SrcVec && DstVec)
    Assert1(cast<VectorType>(SrcTy)->getNumElements() ==
            cast<VectorType>(DestTy)->getNumElements(),
            "UIToFP source and dest vector length mismatch", &I);

  visitInstruction(I);
}

void Verifier::visitSIToFPInst(SIToFPInst &I) {
  // Get the source and destination types
  const Type *SrcTy = I.getOperand(0)->getType();
  const Type *DestTy = I.getType();

  bool SrcVec = SrcTy->getTypeID() == Type::VectorTyID;
  bool DstVec = DestTy->getTypeID() == Type::VectorTyID;

  Assert1(SrcVec == DstVec,
          "SIToFP source and dest must both be vector or scalar", &I);
  Assert1(SrcTy->isIntOrIntVector(),
          "SIToFP source must be integer or integer vector", &I);
  Assert1(DestTy->isFPOrFPVector(),
          "SIToFP result must be FP or FP vector", &I);

  if (SrcVec && DstVec)
    Assert1(cast<VectorType>(SrcTy)->getNumElements() ==
            cast<VectorType>(DestTy)->getNumElements(),
            "SIToFP source and dest vector length mismatch", &I);

  visitInstruction(I);
}

void Verifier::visitFPToUIInst(FPToUIInst &I) {
  // Get the source and destination types
  const Type *SrcTy = I.getOperand(0)->getType();
  const Type *DestTy = I.getType();

  bool SrcVec = isa<VectorType>(SrcTy);
  bool DstVec = isa<VectorType>(DestTy);

  Assert1(SrcVec == DstVec,
          "FPToUI source and dest must both be vector or scalar", &I);
  Assert1(SrcTy->isFPOrFPVector(), "FPToUI source must be FP or FP vector", &I);
  Assert1(DestTy->isIntOrIntVector(),
          "FPToUI result must be integer or integer vector", &I);

  if (SrcVec && DstVec)
    Assert1(cast<VectorType>(SrcTy)->getNumElements() ==
            cast<VectorType>(DestTy)->getNumElements(),
            "FPToUI source and dest vector length mismatch", &I);

  visitInstruction(I);
}

void Verifier::visitFPToSIInst(FPToSIInst &I) {
  // Get the source and destination types
  const Type *SrcTy = I.getOperand(0)->getType();
  const Type *DestTy = I.getType();

  bool SrcVec = isa<VectorType>(SrcTy);
  bool DstVec = isa<VectorType>(DestTy);

  Assert1(SrcVec == DstVec,
          "FPToSI source and dest must both be vector or scalar", &I);
  Assert1(SrcTy->isFPOrFPVector(),
          "FPToSI source must be FP or FP vector", &I);
  Assert1(DestTy->isIntOrIntVector(),
          "FPToSI result must be integer or integer vector", &I);

  if (SrcVec && DstVec)
    Assert1(cast<VectorType>(SrcTy)->getNumElements() ==
            cast<VectorType>(DestTy)->getNumElements(),
            "FPToSI source and dest vector length mismatch", &I);

  visitInstruction(I);
}

void Verifier::visitPtrToIntInst(PtrToIntInst &I) {
  // Get the source and destination types
  const Type *SrcTy = I.getOperand(0)->getType();
  const Type *DestTy = I.getType();

  Assert1(isa<PointerType>(SrcTy), "PtrToInt source must be pointer", &I);
  Assert1(DestTy->isInteger(), "PtrToInt result must be integral", &I);

  visitInstruction(I);
}

void Verifier::visitIntToPtrInst(IntToPtrInst &I) {
  // Get the source and destination types
  const Type *SrcTy = I.getOperand(0)->getType();
  const Type *DestTy = I.getType();

  Assert1(SrcTy->isInteger(), "IntToPtr source must be an integral", &I);
  Assert1(isa<PointerType>(DestTy), "IntToPtr result must be a pointer",&I);

  visitInstruction(I);
}

void Verifier::visitBitCastInst(BitCastInst &I) {
  // Get the source and destination types
  const Type *SrcTy = I.getOperand(0)->getType();
  const Type *DestTy = I.getType();

  // Get the size of the types in bits, we'll need this later
  unsigned SrcBitSize = SrcTy->getPrimitiveSizeInBits();
  unsigned DestBitSize = DestTy->getPrimitiveSizeInBits();

  // BitCast implies a no-op cast of type only. No bits change.
  // However, you can't cast pointers to anything but pointers.
  Assert1(isa<PointerType>(DestTy) == isa<PointerType>(DestTy),
          "Bitcast requires both operands to be pointer or neither", &I);
  Assert1(SrcBitSize == DestBitSize, "Bitcast requies types of same width", &I);

  // Disallow aggregates.
  Assert1(!SrcTy->isAggregateType(),
          "Bitcast operand must not be aggregate", &I);
  Assert1(!DestTy->isAggregateType(),
          "Bitcast type must not be aggregate", &I);

  visitInstruction(I);
}

/// visitPHINode - Ensure that a PHI node is well formed.
///
void Verifier::visitPHINode(PHINode &PN) {
  // Ensure that the PHI nodes are all grouped together at the top of the block.
  // This can be tested by checking whether the instruction before this is
  // either nonexistent (because this is begin()) or is a PHI node.  If not,
  // then there is some other instruction before a PHI.
  Assert2(&PN == &PN.getParent()->front() || 
          isa<PHINode>(--BasicBlock::iterator(&PN)),
          "PHI nodes not grouped at top of basic block!",
          &PN, PN.getParent());

  // Check that all of the operands of the PHI node have the same type as the
  // result.
  for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i)
    Assert1(PN.getType() == PN.getIncomingValue(i)->getType(),
            "PHI node operands are not the same type as the result!", &PN);

  // All other PHI node constraints are checked in the visitBasicBlock method.

  visitInstruction(PN);
}

void Verifier::VerifyCallSite(CallSite CS) {
  Instruction *I = CS.getInstruction();

  Assert1(isa<PointerType>(CS.getCalledValue()->getType()),
          "Called function must be a pointer!", I);
  const PointerType *FPTy = cast<PointerType>(CS.getCalledValue()->getType());
  Assert1(isa<FunctionType>(FPTy->getElementType()),
          "Called function is not pointer to function type!", I);

  const FunctionType *FTy = cast<FunctionType>(FPTy->getElementType());

  // Verify that the correct number of arguments are being passed
  if (FTy->isVarArg())
    Assert1(CS.arg_size() >= FTy->getNumParams(),
            "Called function requires more parameters than were provided!",I);
  else
    Assert1(CS.arg_size() == FTy->getNumParams(),
            "Incorrect number of arguments passed to called function!", I);

  // Verify that all arguments to the call match the function type...
  for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i)
    Assert3(CS.getArgument(i)->getType() == FTy->getParamType(i),
            "Call parameter type does not match function signature!",
            CS.getArgument(i), FTy->getParamType(i), I);

  const AttrListPtr &Attrs = CS.getAttributes();

  Assert1(VerifyAttributeCount(Attrs, CS.arg_size()),
          "Attributes after last parameter!", I);

  // Verify call attributes.
  VerifyFunctionAttrs(FTy, Attrs, I);

  if (FTy->isVarArg())
    // Check attributes on the varargs part.
    for (unsigned Idx = 1 + FTy->getNumParams(); Idx <= CS.arg_size(); ++Idx) {
      Attributes Attr = Attrs.getParamAttributes(Idx);

      VerifyParameterAttrs(Attr, CS.getArgument(Idx-1)->getType(), false, I);

      Attributes VArgI = Attr & Attribute::VarArgsIncompatible;
      Assert1(!VArgI, "Attribute " + Attribute::getAsString(VArgI) +
              " cannot be used for vararg call arguments!", I);
    }

  // Verify that there's no metadata unless it's a direct call to an intrinsic.
  if (!CS.getCalledFunction() || CS.getCalledFunction()->getName().size() < 5 ||
      CS.getCalledFunction()->getName().substr(0, 5) != "llvm.") {
    Assert1(FTy->getReturnType() != Type::MetadataTy,
            "Only intrinsics may return metadata", I);
    for (FunctionType::param_iterator PI = FTy->param_begin(),
           PE = FTy->param_end(); PI != PE; ++PI)
      Assert1(PI->get() != Type::MetadataTy, "Function has metadata parameter "
              "but isn't an intrinsic", I);
  }

  visitInstruction(*I);
}

void Verifier::visitCallInst(CallInst &CI) {
  VerifyCallSite(&CI);

  if (Function *F = CI.getCalledFunction())
    if (Intrinsic::ID ID = (Intrinsic::ID)F->getIntrinsicID())
      visitIntrinsicFunctionCall(ID, CI);
}

void Verifier::visitInvokeInst(InvokeInst &II) {
  VerifyCallSite(&II);
}

/// visitBinaryOperator - Check that both arguments to the binary operator are
/// of the same type!
///
void Verifier::visitBinaryOperator(BinaryOperator &B) {
  Assert1(B.getOperand(0)->getType() == B.getOperand(1)->getType(),
          "Both operands to a binary operator are not of the same type!", &B);

  switch (B.getOpcode()) {
  // Check that integer arithmetic operators are only used with
  // integral operands.
  case Instruction::Add:
  case Instruction::Sub:
  case Instruction::Mul:
  case Instruction::SDiv:
  case Instruction::UDiv:
  case Instruction::SRem:
  case Instruction::URem:
    Assert1(B.getType()->isIntOrIntVector(),
            "Integer arithmetic operators only work with integral types!", &B);
    Assert1(B.getType() == B.getOperand(0)->getType(),
            "Integer arithmetic operators must have same type "
            "for operands and result!", &B);
    break;
  // Check that floating-point arithmetic operators are only used with
  // floating-point operands.
  case Instruction::FAdd:
  case Instruction::FSub:
  case Instruction::FMul:
  case Instruction::FDiv:
  case Instruction::FRem:
    Assert1(B.getType()->isFPOrFPVector(),
            "Floating-point arithmetic operators only work with "
            "floating-point types!", &B);
    Assert1(B.getType() == B.getOperand(0)->getType(),
            "Floating-point arithmetic operators must have same type "
            "for operands and result!", &B);
    break;
  // Check that logical operators are only used with integral operands.
  case Instruction::And:
  case Instruction::Or:
  case Instruction::Xor:
    Assert1(B.getType()->isIntOrIntVector(),
            "Logical operators only work with integral types!", &B);
    Assert1(B.getType() == B.getOperand(0)->getType(),
            "Logical operators must have same type for operands and result!",
            &B);
    break;
  case Instruction::Shl:
  case Instruction::LShr:
  case Instruction::AShr:
    Assert1(B.getType()->isIntOrIntVector(),
            "Shifts only work with integral types!", &B);
    Assert1(B.getType() == B.getOperand(0)->getType(),
            "Shift return type must be same as operands!", &B);
    break;
  default:
    llvm_unreachable("Unknown BinaryOperator opcode!");
  }

  visitInstruction(B);
}

void Verifier::visitICmpInst(ICmpInst& IC) {
  // Check that the operands are the same type
  const Type* Op0Ty = IC.getOperand(0)->getType();
  const Type* Op1Ty = IC.getOperand(1)->getType();
  Assert1(Op0Ty == Op1Ty,
          "Both operands to ICmp instruction are not of the same type!", &IC);
  // Check that the operands are the right type
  Assert1(Op0Ty->isIntOrIntVector() || isa<PointerType>(Op0Ty),
          "Invalid operand types for ICmp instruction", &IC);

  visitInstruction(IC);
}

void Verifier::visitFCmpInst(FCmpInst& FC) {
  // Check that the operands are the same type
  const Type* Op0Ty = FC.getOperand(0)->getType();
  const Type* Op1Ty = FC.getOperand(1)->getType();
  Assert1(Op0Ty == Op1Ty,
          "Both operands to FCmp instruction are not of the same type!", &FC);
  // Check that the operands are the right type
  Assert1(Op0Ty->isFPOrFPVector(),
          "Invalid operand types for FCmp instruction", &FC);
  visitInstruction(FC);
}

void Verifier::visitExtractElementInst(ExtractElementInst &EI) {
  Assert1(ExtractElementInst::isValidOperands(EI.getOperand(0),
                                              EI.getOperand(1)),
          "Invalid extractelement operands!", &EI);
  visitInstruction(EI);
}

void Verifier::visitInsertElementInst(InsertElementInst &IE) {
  Assert1(InsertElementInst::isValidOperands(IE.getOperand(0),
                                             IE.getOperand(1),
                                             IE.getOperand(2)),
          "Invalid insertelement operands!", &IE);
  visitInstruction(IE);
}

void Verifier::visitShuffleVectorInst(ShuffleVectorInst &SV) {
  Assert1(ShuffleVectorInst::isValidOperands(SV.getOperand(0), SV.getOperand(1),
                                             SV.getOperand(2)),
          "Invalid shufflevector operands!", &SV);

  const VectorType *VTy = dyn_cast<VectorType>(SV.getOperand(0)->getType());
  Assert1(VTy, "Operands are not a vector type", &SV);

  // Check to see if Mask is valid.
  if (const ConstantVector *MV = dyn_cast<ConstantVector>(SV.getOperand(2))) {
    for (unsigned i = 0, e = MV->getNumOperands(); i != e; ++i) {
      if (ConstantInt* CI = dyn_cast<ConstantInt>(MV->getOperand(i))) {
        Assert1(!CI->uge(VTy->getNumElements()*2),
                "Invalid shufflevector shuffle mask!", &SV);
      } else {
        Assert1(isa<UndefValue>(MV->getOperand(i)),
                "Invalid shufflevector shuffle mask!", &SV);
      }
    }
  } else {
    Assert1(isa<UndefValue>(SV.getOperand(2)) || 
            isa<ConstantAggregateZero>(SV.getOperand(2)),
            "Invalid shufflevector shuffle mask!", &SV);
  }

  visitInstruction(SV);
}

void Verifier::visitGetElementPtrInst(GetElementPtrInst &GEP) {
  SmallVector<Value*, 16> Idxs(GEP.idx_begin(), GEP.idx_end());
  const Type *ElTy =
    GetElementPtrInst::getIndexedType(GEP.getOperand(0)->getType(),
                                      Idxs.begin(), Idxs.end());
  Assert1(ElTy, "Invalid indices for GEP pointer type!", &GEP);
  Assert2(isa<PointerType>(GEP.getType()) &&
          cast<PointerType>(GEP.getType())->getElementType() == ElTy,
          "GEP is not of right type for indices!", &GEP, ElTy);
  visitInstruction(GEP);
}

void Verifier::visitLoadInst(LoadInst &LI) {
  const Type *ElTy =
    cast<PointerType>(LI.getOperand(0)->getType())->getElementType();
  Assert2(ElTy == LI.getType(),
          "Load result type does not match pointer operand type!", &LI, ElTy);
  Assert1(ElTy != Type::MetadataTy, "Can't load metadata!", &LI);
  visitInstruction(LI);
}

void Verifier::visitStoreInst(StoreInst &SI) {
  const Type *ElTy =
    cast<PointerType>(SI.getOperand(1)->getType())->getElementType();
  Assert2(ElTy == SI.getOperand(0)->getType(),
          "Stored value type does not match pointer operand type!", &SI, ElTy);
  Assert1(ElTy != Type::MetadataTy, "Can't store metadata!", &SI);
  visitInstruction(SI);
}

void Verifier::visitAllocationInst(AllocationInst &AI) {
  const PointerType *PTy = AI.getType();
  Assert1(PTy->getAddressSpace() == 0, 
          "Allocation instruction pointer not in the generic address space!",
          &AI);
  Assert1(PTy->getElementType()->isSized(), "Cannot allocate unsized type",
          &AI);
  visitInstruction(AI);
}

void Verifier::visitExtractValueInst(ExtractValueInst &EVI) {
  Assert1(ExtractValueInst::getIndexedType(EVI.getAggregateOperand()->getType(),
                                           EVI.idx_begin(), EVI.idx_end()) ==
          EVI.getType(),
          "Invalid ExtractValueInst operands!", &EVI);
  
  visitInstruction(EVI);
}

void Verifier::visitInsertValueInst(InsertValueInst &IVI) {
  Assert1(ExtractValueInst::getIndexedType(IVI.getAggregateOperand()->getType(),
                                           IVI.idx_begin(), IVI.idx_end()) ==
          IVI.getOperand(1)->getType(),
          "Invalid InsertValueInst operands!", &IVI);
  
  visitInstruction(IVI);
}

/// verifyInstruction - Verify that an instruction is well formed.
///
void Verifier::visitInstruction(Instruction &I) {
  BasicBlock *BB = I.getParent();
  Assert1(BB, "Instruction not embedded in basic block!", &I);

  if (!isa<PHINode>(I)) {   // Check that non-phi nodes are not self referential
    for (Value::use_iterator UI = I.use_begin(), UE = I.use_end();
         UI != UE; ++UI)
      Assert1(*UI != (User*)&I || !DT->isReachableFromEntry(BB),
              "Only PHI nodes may reference their own value!", &I);
  }
  
  // Verify that if this is a terminator that it is at the end of the block.
  if (isa<TerminatorInst>(I))
    Assert1(BB->getTerminator() == &I, "Terminator not at end of block!", &I);
  

  // Check that void typed values don't have names
  Assert1(I.getType() != Type::VoidTy || !I.hasName(),
          "Instruction has a name, but provides a void value!", &I);

  // Check that the return value of the instruction is either void or a legal
  // value type.
  Assert1(I.getType() == Type::VoidTy || I.getType()->isFirstClassType()
          || ((isa<CallInst>(I) || isa<InvokeInst>(I)) 
              && isa<StructType>(I.getType())),
          "Instruction returns a non-scalar type!", &I);

  // Check that the instruction doesn't produce metadata or metadata*. Calls
  // all already checked against the callee type.
  Assert1(I.getType() != Type::MetadataTy ||
          isa<CallInst>(I) || isa<InvokeInst>(I),
          "Invalid use of metadata!", &I);

  if (const PointerType *PTy = dyn_cast<PointerType>(I.getType()))
    Assert1(PTy->getElementType() != Type::MetadataTy,
            "Instructions may not produce pointer to metadata.", &I);


  // Check that all uses of the instruction, if they are instructions
  // themselves, actually have parent basic blocks.  If the use is not an
  // instruction, it is an error!
  for (User::use_iterator UI = I.use_begin(), UE = I.use_end();
       UI != UE; ++UI) {
    Assert1(isa<Instruction>(*UI), "Use of instruction is not an instruction!",
            *UI);
    Instruction *Used = cast<Instruction>(*UI);
    Assert2(Used->getParent() != 0, "Instruction referencing instruction not"
            " embedded in a basic block!", &I, Used);
  }

  for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) {
    Assert1(I.getOperand(i) != 0, "Instruction has null operand!", &I);

    // Check to make sure that only first-class-values are operands to
    // instructions.
    if (!I.getOperand(i)->getType()->isFirstClassType()) {
      Assert1(0, "Instruction operands must be first-class values!", &I);
    }

    if (const PointerType *PTy =
            dyn_cast<PointerType>(I.getOperand(i)->getType()))
      Assert1(PTy->getElementType() != Type::MetadataTy,
              "Invalid use of metadata pointer.", &I);
    
    if (Function *F = dyn_cast<Function>(I.getOperand(i))) {
      // Check to make sure that the "address of" an intrinsic function is never
      // taken.
      Assert1(!F->isIntrinsic() || (i == 0 && isa<CallInst>(I)),
              "Cannot take the address of an intrinsic!", &I);
      Assert1(F->getParent() == Mod, "Referencing function in another module!",
              &I);
    } else if (BasicBlock *OpBB = dyn_cast<BasicBlock>(I.getOperand(i))) {
      Assert1(OpBB->getParent() == BB->getParent(),
              "Referring to a basic block in another function!", &I);
    } else if (Argument *OpArg = dyn_cast<Argument>(I.getOperand(i))) {
      Assert1(OpArg->getParent() == BB->getParent(),
              "Referring to an argument in another function!", &I);
    } else if (GlobalValue *GV = dyn_cast<GlobalValue>(I.getOperand(i))) {
      Assert1(GV->getParent() == Mod, "Referencing global in another module!",
              &I);
    } else if (Instruction *Op = dyn_cast<Instruction>(I.getOperand(i))) {
      BasicBlock *OpBlock = Op->getParent();

      // Check that a definition dominates all of its uses.
      if (InvokeInst *II = dyn_cast<InvokeInst>(Op)) {
        // Invoke results are only usable in the normal destination, not in the
        // exceptional destination.
        BasicBlock *NormalDest = II->getNormalDest();

        Assert2(NormalDest != II->getUnwindDest(),
                "No uses of invoke possible due to dominance structure!",
                Op, &I);

        // PHI nodes differ from other nodes because they actually "use" the
        // value in the predecessor basic blocks they correspond to.
        BasicBlock *UseBlock = BB;
        if (isa<PHINode>(I))
          UseBlock = cast<BasicBlock>(I.getOperand(i+1));

        if (isa<PHINode>(I) && UseBlock == OpBlock) {
          // Special case of a phi node in the normal destination or the unwind
          // destination.
          Assert2(BB == NormalDest || !DT->isReachableFromEntry(UseBlock),
                  "Invoke result not available in the unwind destination!",
                  Op, &I);
        } else {
          Assert2(DT->dominates(NormalDest, UseBlock) ||
                  !DT->isReachableFromEntry(UseBlock),
                  "Invoke result does not dominate all uses!", Op, &I);

          // If the normal successor of an invoke instruction has multiple
          // predecessors, then the normal edge from the invoke is critical,
          // so the invoke value can only be live if the destination block
          // dominates all of it's predecessors (other than the invoke).
          if (!NormalDest->getSinglePredecessor() &&
              DT->isReachableFromEntry(UseBlock))
            // If it is used by something non-phi, then the other case is that
            // 'NormalDest' dominates all of its predecessors other than the
            // invoke.  In this case, the invoke value can still be used.
            for (pred_iterator PI = pred_begin(NormalDest),
                 E = pred_end(NormalDest); PI != E; ++PI)
              if (*PI != II->getParent() && !DT->dominates(NormalDest, *PI) &&
                  DT->isReachableFromEntry(*PI)) {
                CheckFailed("Invoke result does not dominate all uses!", Op,&I);
                return;
              }
        }
      } else if (isa<PHINode>(I)) {
        // PHI nodes are more difficult than other nodes because they actually
        // "use" the value in the predecessor basic blocks they correspond to.
        BasicBlock *PredBB = cast<BasicBlock>(I.getOperand(i+1));
        Assert2(DT->dominates(OpBlock, PredBB) ||
                !DT->isReachableFromEntry(PredBB),
                "Instruction does not dominate all uses!", Op, &I);
      } else {
        if (OpBlock == BB) {
          // If they are in the same basic block, make sure that the definition
          // comes before the use.
          Assert2(InstsInThisBlock.count(Op) || !DT->isReachableFromEntry(BB),
                  "Instruction does not dominate all uses!", Op, &I);
        }

        // Definition must dominate use unless use is unreachable!
        Assert2(InstsInThisBlock.count(Op) || DT->dominates(Op, &I) ||
                !DT->isReachableFromEntry(BB),
                "Instruction does not dominate all uses!", Op, &I);
      }
    } else if (isa<InlineAsm>(I.getOperand(i))) {
      Assert1(i == 0 && (isa<CallInst>(I) || isa<InvokeInst>(I)),
              "Cannot take the address of an inline asm!", &I);
    }
  }
  InstsInThisBlock.insert(&I);
}

// Flags used by TableGen to mark intrinsic parameters with the
// LLVMExtendedElementVectorType and LLVMTruncatedElementVectorType classes.
static const unsigned ExtendedElementVectorType = 0x40000000;
static const unsigned TruncatedElementVectorType = 0x20000000;

/// visitIntrinsicFunction - Allow intrinsics to be verified in different ways.
///
void Verifier::visitIntrinsicFunctionCall(Intrinsic::ID ID, CallInst &CI) {
  Function *IF = CI.getCalledFunction();
  Assert1(IF->isDeclaration(), "Intrinsic functions should never be defined!",
          IF);
  
#define GET_INTRINSIC_VERIFIER
#include "llvm/Intrinsics.gen"
#undef GET_INTRINSIC_VERIFIER
  
  switch (ID) {
  default:
    break;
  case Intrinsic::dbg_declare:  // llvm.dbg.declare
    if (Constant *C = dyn_cast<Constant>(CI.getOperand(1)))
      Assert1(C && !isa<ConstantPointerNull>(C),
              "invalid llvm.dbg.declare intrinsic call", &CI);
    break;
  case Intrinsic::memcpy:
  case Intrinsic::memmove:
  case Intrinsic::memset:
    Assert1(isa<ConstantInt>(CI.getOperand(4)),
            "alignment argument of memory intrinsics must be a constant int",
            &CI);
    break;
  case Intrinsic::gcroot:
  case Intrinsic::gcwrite:
  case Intrinsic::gcread:
    if (ID == Intrinsic::gcroot) {
      AllocaInst *AI =
        dyn_cast<AllocaInst>(CI.getOperand(1)->stripPointerCasts());
      Assert1(AI && isa<PointerType>(AI->getType()->getElementType()),
              "llvm.gcroot parameter #1 must be a pointer alloca.", &CI);
      Assert1(isa<Constant>(CI.getOperand(2)),
              "llvm.gcroot parameter #2 must be a constant.", &CI);
    }
      
    Assert1(CI.getParent()->getParent()->hasGC(),
            "Enclosing function does not use GC.", &CI);
    break;
  case Intrinsic::init_trampoline:
    Assert1(isa<Function>(CI.getOperand(2)->stripPointerCasts()),
            "llvm.init_trampoline parameter #2 must resolve to a function.",
            &CI);
    break;
  case Intrinsic::prefetch:
    Assert1(isa<ConstantInt>(CI.getOperand(2)) &&
            isa<ConstantInt>(CI.getOperand(3)) &&
            cast<ConstantInt>(CI.getOperand(2))->getZExtValue() < 2 &&
            cast<ConstantInt>(CI.getOperand(3))->getZExtValue() < 4,
            "invalid arguments to llvm.prefetch",
            &CI);
    break;
  case Intrinsic::stackprotector:
    Assert1(isa<AllocaInst>(CI.getOperand(2)->stripPointerCasts()),
            "llvm.stackprotector parameter #2 must resolve to an alloca.",
            &CI);
    break;
  }
}

/// Produce a string to identify an intrinsic parameter or return value.
/// The ArgNo value numbers the return values from 0 to NumRets-1 and the
/// parameters beginning with NumRets.
///
static std::string IntrinsicParam(unsigned ArgNo, unsigned NumRets) {
  if (ArgNo < NumRets) {
    if (NumRets == 1)
      return "Intrinsic result type";
    else
      return "Intrinsic result type #" + utostr(ArgNo);
  } else
    return "Intrinsic parameter #" + utostr(ArgNo - NumRets);
}

bool Verifier::PerformTypeCheck(Intrinsic::ID ID, Function *F, const Type *Ty,
                                int VT, unsigned ArgNo, std::string &Suffix) {
  const FunctionType *FTy = F->getFunctionType();

  unsigned NumElts = 0;
  const Type *EltTy = Ty;
  const VectorType *VTy = dyn_cast<VectorType>(Ty);
  if (VTy) {
    EltTy = VTy->getElementType();
    NumElts = VTy->getNumElements();
  }

  const Type *RetTy = FTy->getReturnType();
  const StructType *ST = dyn_cast<StructType>(RetTy);
  unsigned NumRets = 1;
  if (ST)
    NumRets = ST->getNumElements();

  if (VT < 0) {
    int Match = ~VT;

    // Check flags that indicate a type that is an integral vector type with
    // elements that are larger or smaller than the elements of the matched
    // type.
    if ((Match & (ExtendedElementVectorType |
                  TruncatedElementVectorType)) != 0) {
      const IntegerType *IEltTy = dyn_cast<IntegerType>(EltTy);
      if (!VTy || !IEltTy) {
        CheckFailed(IntrinsicParam(ArgNo, NumRets) + " is not "
                    "an integral vector type.", F);
        return false;
      }
      // Adjust the current Ty (in the opposite direction) rather than
      // the type being matched against.
      if ((Match & ExtendedElementVectorType) != 0) {
        if ((IEltTy->getBitWidth() & 1) != 0) {
          CheckFailed(IntrinsicParam(ArgNo, NumRets) + " vector "
                      "element bit-width is odd.", F);
          return false;
        }
        Ty = VectorType::getTruncatedElementVectorType(VTy);
      } else
        Ty = VectorType::getExtendedElementVectorType(VTy);
      Match &= ~(ExtendedElementVectorType | TruncatedElementVectorType);
    }

    if (Match <= static_cast<int>(NumRets - 1)) {
      if (ST)
        RetTy = ST->getElementType(Match);

      if (Ty != RetTy) {
        CheckFailed(IntrinsicParam(ArgNo, NumRets) + " does not "
                    "match return type.", F);
        return false;
      }
    } else {
      if (Ty != FTy->getParamType(Match - NumRets)) {
        CheckFailed(IntrinsicParam(ArgNo, NumRets) + " does not "
                    "match parameter %" + utostr(Match - NumRets) + ".", F);
        return false;
      }
    }
  } else if (VT == MVT::iAny) {
    if (!EltTy->isInteger()) {
      CheckFailed(IntrinsicParam(ArgNo, NumRets) + " is not "
                  "an integer type.", F);
      return false;
    }

    unsigned GotBits = cast<IntegerType>(EltTy)->getBitWidth();
    Suffix += ".";

    if (EltTy != Ty)
      Suffix += "v" + utostr(NumElts);

    Suffix += "i" + utostr(GotBits);

    // Check some constraints on various intrinsics.
    switch (ID) {
    default: break; // Not everything needs to be checked.
    case Intrinsic::bswap:
      if (GotBits < 16 || GotBits % 16 != 0) {
        CheckFailed("Intrinsic requires even byte width argument", F);
        return false;
      }
      break;
    }
  } else if (VT == MVT::fAny) {
    if (!EltTy->isFloatingPoint()) {
      CheckFailed(IntrinsicParam(ArgNo, NumRets) + " is not "
                  "a floating-point type.", F);
      return false;
    }

    Suffix += ".";

    if (EltTy != Ty)
      Suffix += "v" + utostr(NumElts);

    Suffix += MVT::getMVT(EltTy).getMVTString();
  } else if (VT == MVT::iPTR) {
    if (!isa<PointerType>(Ty)) {
      CheckFailed(IntrinsicParam(ArgNo, NumRets) + " is not a "
                  "pointer and a pointer is required.", F);
      return false;
    }
  } else if (VT == MVT::iPTRAny) {
    // Outside of TableGen, we don't distinguish iPTRAny (to any address space)
    // and iPTR. In the verifier, we can not distinguish which case we have so
    // allow either case to be legal.
    if (const PointerType* PTyp = dyn_cast<PointerType>(Ty)) {
      Suffix += ".p" + utostr(PTyp->getAddressSpace()) + 
        MVT::getMVT(PTyp->getElementType()).getMVTString();
    } else {
      CheckFailed(IntrinsicParam(ArgNo, NumRets) + " is not a "
                  "pointer and a pointer is required.", F);
      return false;
    }
  } else if (MVT((MVT::SimpleValueType)VT).isVector()) {
    MVT VVT = MVT((MVT::SimpleValueType)VT);

    // If this is a vector argument, verify the number and type of elements.
    if (VVT.getVectorElementType() != MVT::getMVT(EltTy)) {
      CheckFailed("Intrinsic prototype has incorrect vector element type!", F);
      return false;
    }

    if (VVT.getVectorNumElements() != NumElts) {
      CheckFailed("Intrinsic prototype has incorrect number of "
                  "vector elements!", F);
      return false;
    }
  } else if (MVT((MVT::SimpleValueType)VT).getTypeForMVT() != EltTy) {
    CheckFailed(IntrinsicParam(ArgNo, NumRets) + " is wrong!", F);
    return false;
  } else if (EltTy != Ty) {
    CheckFailed(IntrinsicParam(ArgNo, NumRets) + " is a vector "
                "and a scalar is required.", F);
    return false;
  }

  return true;
}

/// VerifyIntrinsicPrototype - TableGen emits calls to this function into
/// Intrinsics.gen.  This implements a little state machine that verifies the
/// prototype of intrinsics.
void Verifier::VerifyIntrinsicPrototype(Intrinsic::ID ID, Function *F,
                                        unsigned RetNum,
                                        unsigned ParamNum, ...) {
  va_list VA;
  va_start(VA, ParamNum);
  const FunctionType *FTy = F->getFunctionType();
  
  // For overloaded intrinsics, the Suffix of the function name must match the
  // types of the arguments. This variable keeps track of the expected
  // suffix, to be checked at the end.
  std::string Suffix;

  if (FTy->getNumParams() + FTy->isVarArg() != ParamNum) {
    CheckFailed("Intrinsic prototype has incorrect number of arguments!", F);
    return;
  }

  const Type *Ty = FTy->getReturnType();
  const StructType *ST = dyn_cast<StructType>(Ty);

  // Verify the return types.
  if (ST && ST->getNumElements() != RetNum) {
    CheckFailed("Intrinsic prototype has incorrect number of return types!", F);
    return;
  }

  for (unsigned ArgNo = 0; ArgNo < RetNum; ++ArgNo) {
    int VT = va_arg(VA, int); // An MVT::SimpleValueType when non-negative.

    if (ST) Ty = ST->getElementType(ArgNo);

    if (!PerformTypeCheck(ID, F, Ty, VT, ArgNo, Suffix))
      break;
  }

  // Verify the parameter types.
  for (unsigned ArgNo = 0; ArgNo < ParamNum; ++ArgNo) {
    int VT = va_arg(VA, int); // An MVT::SimpleValueType when non-negative.

    if (VT == MVT::isVoid && ArgNo > 0) {
      if (!FTy->isVarArg())
        CheckFailed("Intrinsic prototype has no '...'!", F);
      break;
    }

    if (!PerformTypeCheck(ID, F, FTy->getParamType(ArgNo), VT, ArgNo + RetNum,
                          Suffix))
      break;
  }

  va_end(VA);

  // For intrinsics without pointer arguments, if we computed a Suffix then the
  // intrinsic is overloaded and we need to make sure that the name of the
  // function is correct. We add the suffix to the name of the intrinsic and
  // compare against the given function name. If they are not the same, the
  // function name is invalid. This ensures that overloading of intrinsics
  // uses a sane and consistent naming convention.  Note that intrinsics with
  // pointer argument may or may not be overloaded so we will check assuming it
  // has a suffix and not.
  if (!Suffix.empty()) {
    std::string Name(Intrinsic::getName(ID));
    if (Name + Suffix != F->getName()) {
      CheckFailed("Overloaded intrinsic has incorrect suffix: '" +
                  F->getName().substr(Name.length()) + "'. It should be '" +
                  Suffix + "'", F);
    }
  }

  // Check parameter attributes.
  Assert1(F->getAttributes() == Intrinsic::getAttributes(ID),
          "Intrinsic has wrong parameter attributes!", F);
}


//===----------------------------------------------------------------------===//
//  Implement the public interfaces to this file...
//===----------------------------------------------------------------------===//

FunctionPass *llvm::createVerifierPass(VerifierFailureAction action) {
  return new Verifier(action);
}


// verifyFunction - Create
bool llvm::verifyFunction(const Function &f, VerifierFailureAction action) {
  Function &F = const_cast<Function&>(f);
  assert(!F.isDeclaration() && "Cannot verify external functions");

  ExistingModuleProvider MP(F.getParent());
  FunctionPassManager FPM(&MP);
  Verifier *V = new Verifier(action);
  FPM.add(V);
  FPM.run(F);
  MP.releaseModule();
  return V->Broken;
}

/// verifyModule - Check a module for errors, printing messages on stderr.
/// Return true if the module is corrupt.
///
bool llvm::verifyModule(const Module &M, VerifierFailureAction action,
                        std::string *ErrorInfo) {
  PassManager PM;
  Verifier *V = new Verifier(action);
  PM.add(V);
  PM.run(const_cast<Module&>(M));
  
  if (ErrorInfo && V->Broken)
    *ErrorInfo = V->msgs.str();
  return V->Broken;
}

// vim: sw=2