llvm.org GIT mirror llvm / dbe266b lib / Transforms / Scalar / LoopRotation.cpp
dbe266b

Tree @dbe266b (Download .tar.gz)

LoopRotation.cpp @dbe266braw · history · blame

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
//===- LoopRotation.cpp - Loop Rotation Pass ------------------------------===//
//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements Loop Rotation Pass.
//
//===----------------------------------------------------------------------===//

#define DEBUG_TYPE "loop-rotate"
#include "llvm/Transforms/Scalar.h"
#include "llvm/Function.h"
#include "llvm/IntrinsicInst.h"
#include "llvm/Analysis/CodeMetrics.h"
#include "llvm/Analysis/LoopPass.h"
#include "llvm/Analysis/InstructionSimplify.h"
#include "llvm/Analysis/ScalarEvolution.h"
#include "llvm/Analysis/ValueTracking.h"
#include "llvm/Transforms/Utils/Local.h"
#include "llvm/Transforms/Utils/BasicBlockUtils.h"
#include "llvm/Transforms/Utils/SSAUpdater.h"
#include "llvm/Transforms/Utils/ValueMapper.h"
#include "llvm/Support/Debug.h"
#include "llvm/ADT/Statistic.h"
using namespace llvm;

#define MAX_HEADER_SIZE 16

STATISTIC(NumRotated, "Number of loops rotated");
namespace {

  class LoopRotate : public LoopPass {
  public:
    static char ID; // Pass ID, replacement for typeid
    LoopRotate() : LoopPass(ID) {
      initializeLoopRotatePass(*PassRegistry::getPassRegistry());
    }

    // LCSSA form makes instruction renaming easier.
    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
      AU.addPreserved<DominatorTree>();
      AU.addRequired<LoopInfo>();
      AU.addPreserved<LoopInfo>();
      AU.addRequiredID(LoopSimplifyID);
      AU.addPreservedID(LoopSimplifyID);
      AU.addRequiredID(LCSSAID);
      AU.addPreservedID(LCSSAID);
      AU.addPreserved<ScalarEvolution>();
    }

    bool runOnLoop(Loop *L, LPPassManager &LPM);
    void simplifyLoopLatch(Loop *L);
    bool rotateLoop(Loop *L);

  private:
    LoopInfo *LI;
  };
}

char LoopRotate::ID = 0;
INITIALIZE_PASS_BEGIN(LoopRotate, "loop-rotate", "Rotate Loops", false, false)
INITIALIZE_PASS_DEPENDENCY(LoopInfo)
INITIALIZE_PASS_DEPENDENCY(LoopSimplify)
INITIALIZE_PASS_DEPENDENCY(LCSSA)
INITIALIZE_PASS_END(LoopRotate, "loop-rotate", "Rotate Loops", false, false)

Pass *llvm::createLoopRotatePass() { return new LoopRotate(); }

/// Rotate Loop L as many times as possible. Return true if
/// the loop is rotated at least once.
bool LoopRotate::runOnLoop(Loop *L, LPPassManager &LPM) {
  LI = &getAnalysis<LoopInfo>();

  // Simplify the loop latch before attempting to rotate the header
  // upward. Rotation may not be needed if the loop tail can be folded into the
  // loop exit.
  simplifyLoopLatch(L);

  // One loop can be rotated multiple times.
  bool MadeChange = false;
  while (rotateLoop(L))
    MadeChange = true;

  return MadeChange;
}

/// RewriteUsesOfClonedInstructions - We just cloned the instructions from the
/// old header into the preheader.  If there were uses of the values produced by
/// these instruction that were outside of the loop, we have to insert PHI nodes
/// to merge the two values.  Do this now.
static void RewriteUsesOfClonedInstructions(BasicBlock *OrigHeader,
                                            BasicBlock *OrigPreheader,
                                            ValueToValueMapTy &ValueMap) {
  // Remove PHI node entries that are no longer live.
  BasicBlock::iterator I, E = OrigHeader->end();
  for (I = OrigHeader->begin(); PHINode *PN = dyn_cast<PHINode>(I); ++I)
    PN->removeIncomingValue(PN->getBasicBlockIndex(OrigPreheader));

  // Now fix up users of the instructions in OrigHeader, inserting PHI nodes
  // as necessary.
  SSAUpdater SSA;
  for (I = OrigHeader->begin(); I != E; ++I) {
    Value *OrigHeaderVal = I;

    // If there are no uses of the value (e.g. because it returns void), there
    // is nothing to rewrite.
    if (OrigHeaderVal->use_empty())
      continue;

    Value *OrigPreHeaderVal = ValueMap[OrigHeaderVal];

    // The value now exits in two versions: the initial value in the preheader
    // and the loop "next" value in the original header.
    SSA.Initialize(OrigHeaderVal->getType(), OrigHeaderVal->getName());
    SSA.AddAvailableValue(OrigHeader, OrigHeaderVal);
    SSA.AddAvailableValue(OrigPreheader, OrigPreHeaderVal);

    // Visit each use of the OrigHeader instruction.
    for (Value::use_iterator UI = OrigHeaderVal->use_begin(),
         UE = OrigHeaderVal->use_end(); UI != UE; ) {
      // Grab the use before incrementing the iterator.
      Use &U = UI.getUse();

      // Increment the iterator before removing the use from the list.
      ++UI;

      // SSAUpdater can't handle a non-PHI use in the same block as an
      // earlier def. We can easily handle those cases manually.
      Instruction *UserInst = cast<Instruction>(U.getUser());
      if (!isa<PHINode>(UserInst)) {
        BasicBlock *UserBB = UserInst->getParent();

        // The original users in the OrigHeader are already using the
        // original definitions.
        if (UserBB == OrigHeader)
          continue;

        // Users in the OrigPreHeader need to use the value to which the
        // original definitions are mapped.
        if (UserBB == OrigPreheader) {
          U = OrigPreHeaderVal;
          continue;
        }
      }

      // Anything else can be handled by SSAUpdater.
      SSA.RewriteUse(U);
    }
  }
}

/// Determine whether the instructions in this range my be safely and cheaply
/// speculated. This is not an important enough situation to develop complex
/// heuristics. We handle a single arithmetic instruction along with any type
/// conversions.
static bool shouldSpeculateInstrs(BasicBlock::iterator Begin,
                                  BasicBlock::iterator End) {
  bool seenIncrement = false;
  for (BasicBlock::iterator I = Begin; I != End; ++I) {

    if (!isSafeToSpeculativelyExecute(I))
      return false;

    if (isa<DbgInfoIntrinsic>(I))
      continue;

    switch (I->getOpcode()) {
    default:
      return false;
    case Instruction::GetElementPtr:
      // GEPs are cheap if all indices are constant.
      if (!cast<GEPOperator>(I)->hasAllConstantIndices())
        return false;
      // fall-thru to increment case
    case Instruction::Add:
    case Instruction::Sub:
    case Instruction::And:
    case Instruction::Or:
    case Instruction::Xor:
    case Instruction::Shl:
    case Instruction::LShr:
    case Instruction::AShr:
      if (seenIncrement)
        return false;
      seenIncrement = true;
      break;
    case Instruction::Trunc:
    case Instruction::ZExt:
    case Instruction::SExt:
      // ignore type conversions
      break;
    }
  }
  return true;
}

/// Fold the loop tail into the loop exit by speculating the loop tail
/// instructions. Typically, this is a single post-increment. In the case of a
/// simple 2-block loop, hoisting the increment can be much better than
/// duplicating the entire loop header. In the cast of loops with early exits,
/// rotation will not work anyway, but simplifyLoopLatch will put the loop in
/// canonical form so downstream passes can handle it.
///
/// I don't believe this invalidates SCEV.
void LoopRotate::simplifyLoopLatch(Loop *L) {
  BasicBlock *Latch = L->getLoopLatch();
  if (!Latch || Latch->hasAddressTaken())
    return;

  BranchInst *Jmp = dyn_cast<BranchInst>(Latch->getTerminator());
  if (!Jmp || !Jmp->isUnconditional())
    return;

  BasicBlock *LastExit = Latch->getSinglePredecessor();
  if (!LastExit || !L->isLoopExiting(LastExit))
    return;

  BranchInst *BI = dyn_cast<BranchInst>(LastExit->getTerminator());
  if (!BI)
    return;

  if (!shouldSpeculateInstrs(Latch->begin(), Jmp))
    return;

  DEBUG(dbgs() << "Folding loop latch " << Latch->getName() << " into "
        << LastExit->getName() << "\n");

  // Hoist the instructions from Latch into LastExit.
  LastExit->getInstList().splice(BI, Latch->getInstList(), Latch->begin(), Jmp);

  unsigned FallThruPath = BI->getSuccessor(0) == Latch ? 0 : 1;
  BasicBlock *Header = Jmp->getSuccessor(0);
  assert(Header == L->getHeader() && "expected a backward branch");

  // Remove Latch from the CFG so that LastExit becomes the new Latch.
  BI->setSuccessor(FallThruPath, Header);
  Latch->replaceSuccessorsPhiUsesWith(LastExit);
  Jmp->eraseFromParent();

  // Nuke the Latch block.
  assert(Latch->empty() && "unable to evacuate Latch");
  LI->removeBlock(Latch);
  if (DominatorTree *DT = getAnalysisIfAvailable<DominatorTree>())
    DT->eraseNode(Latch);
  Latch->eraseFromParent();
}

/// Rotate loop LP. Return true if the loop is rotated.
bool LoopRotate::rotateLoop(Loop *L) {
  // If the loop has only one block then there is not much to rotate.
  if (L->getBlocks().size() == 1)
    return false;

  BasicBlock *OrigHeader = L->getHeader();

  BranchInst *BI = dyn_cast<BranchInst>(OrigHeader->getTerminator());
  if (BI == 0 || BI->isUnconditional())
    return false;

  // If the loop header is not one of the loop exiting blocks then
  // either this loop is already rotated or it is not
  // suitable for loop rotation transformations.
  if (!L->isLoopExiting(OrigHeader))
    return false;

  // Updating PHInodes in loops with multiple exits adds complexity.
  // Keep it simple, and restrict loop rotation to loops with one exit only.
  // In future, lift this restriction and support for multiple exits if
  // required.
  SmallVector<BasicBlock*, 8> ExitBlocks;
  L->getExitBlocks(ExitBlocks);
  if (ExitBlocks.size() > 1)
    return false;

  // Check size of original header and reject loop if it is very big.
  {
    CodeMetrics Metrics;
    Metrics.analyzeBasicBlock(OrigHeader);
    if (Metrics.NumInsts > MAX_HEADER_SIZE)
      return false;
  }

  // Now, this loop is suitable for rotation.
  BasicBlock *OrigPreheader = L->getLoopPreheader();
  BasicBlock *OrigLatch = L->getLoopLatch();

  // If the loop could not be converted to canonical form, it must have an
  // indirectbr in it, just give up.
  if (OrigPreheader == 0 || OrigLatch == 0)
    return false;

  // Anything ScalarEvolution may know about this loop or the PHI nodes
  // in its header will soon be invalidated.
  if (ScalarEvolution *SE = getAnalysisIfAvailable<ScalarEvolution>())
    SE->forgetLoop(L);

  // Find new Loop header. NewHeader is a Header's one and only successor
  // that is inside loop.  Header's other successor is outside the
  // loop.  Otherwise loop is not suitable for rotation.
  BasicBlock *Exit = BI->getSuccessor(0);
  BasicBlock *NewHeader = BI->getSuccessor(1);
  if (L->contains(Exit))
    std::swap(Exit, NewHeader);
  assert(NewHeader && "Unable to determine new loop header");
  assert(L->contains(NewHeader) && !L->contains(Exit) &&
         "Unable to determine loop header and exit blocks");

  // This code assumes that the new header has exactly one predecessor.
  // Remove any single-entry PHI nodes in it.
  assert(NewHeader->getSinglePredecessor() &&
         "New header doesn't have one pred!");
  FoldSingleEntryPHINodes(NewHeader);

  // Begin by walking OrigHeader and populating ValueMap with an entry for
  // each Instruction.
  BasicBlock::iterator I = OrigHeader->begin(), E = OrigHeader->end();
  ValueToValueMapTy ValueMap;

  // For PHI nodes, the value available in OldPreHeader is just the
  // incoming value from OldPreHeader.
  for (; PHINode *PN = dyn_cast<PHINode>(I); ++I)
    ValueMap[PN] = PN->getIncomingValueForBlock(OrigPreheader);

  // For the rest of the instructions, either hoist to the OrigPreheader if
  // possible or create a clone in the OldPreHeader if not.
  TerminatorInst *LoopEntryBranch = OrigPreheader->getTerminator();
  while (I != E) {
    Instruction *Inst = I++;

    // If the instruction's operands are invariant and it doesn't read or write
    // memory, then it is safe to hoist.  Doing this doesn't change the order of
    // execution in the preheader, but does prevent the instruction from
    // executing in each iteration of the loop.  This means it is safe to hoist
    // something that might trap, but isn't safe to hoist something that reads
    // memory (without proving that the loop doesn't write).
    if (L->hasLoopInvariantOperands(Inst) &&
        !Inst->mayReadFromMemory() && !Inst->mayWriteToMemory() &&
        !isa<TerminatorInst>(Inst) && !isa<DbgInfoIntrinsic>(Inst) &&
        !isa<AllocaInst>(Inst)) {
      Inst->moveBefore(LoopEntryBranch);
      continue;
    }

    // Otherwise, create a duplicate of the instruction.
    Instruction *C = Inst->clone();

    // Eagerly remap the operands of the instruction.
    RemapInstruction(C, ValueMap,
                     RF_NoModuleLevelChanges|RF_IgnoreMissingEntries);

    // With the operands remapped, see if the instruction constant folds or is
    // otherwise simplifyable.  This commonly occurs because the entry from PHI
    // nodes allows icmps and other instructions to fold.
    Value *V = SimplifyInstruction(C);
    if (V && LI->replacementPreservesLCSSAForm(C, V)) {
      // If so, then delete the temporary instruction and stick the folded value
      // in the map.
      delete C;
      ValueMap[Inst] = V;
    } else {
      // Otherwise, stick the new instruction into the new block!
      C->setName(Inst->getName());
      C->insertBefore(LoopEntryBranch);
      ValueMap[Inst] = C;
    }
  }

  // Along with all the other instructions, we just cloned OrigHeader's
  // terminator into OrigPreHeader. Fix up the PHI nodes in each of OrigHeader's
  // successors by duplicating their incoming values for OrigHeader.
  TerminatorInst *TI = OrigHeader->getTerminator();
  for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i)
    for (BasicBlock::iterator BI = TI->getSuccessor(i)->begin();
         PHINode *PN = dyn_cast<PHINode>(BI); ++BI)
      PN->addIncoming(PN->getIncomingValueForBlock(OrigHeader), OrigPreheader);

  // Now that OrigPreHeader has a clone of OrigHeader's terminator, remove
  // OrigPreHeader's old terminator (the original branch into the loop), and
  // remove the corresponding incoming values from the PHI nodes in OrigHeader.
  LoopEntryBranch->eraseFromParent();

  // If there were any uses of instructions in the duplicated block outside the
  // loop, update them, inserting PHI nodes as required
  RewriteUsesOfClonedInstructions(OrigHeader, OrigPreheader, ValueMap);

  // NewHeader is now the header of the loop.
  L->moveToHeader(NewHeader);
  assert(L->getHeader() == NewHeader && "Latch block is our new header");


  // At this point, we've finished our major CFG changes.  As part of cloning
  // the loop into the preheader we've simplified instructions and the
  // duplicated conditional branch may now be branching on a constant.  If it is
  // branching on a constant and if that constant means that we enter the loop,
  // then we fold away the cond branch to an uncond branch.  This simplifies the
  // loop in cases important for nested loops, and it also means we don't have
  // to split as many edges.
  BranchInst *PHBI = cast<BranchInst>(OrigPreheader->getTerminator());
  assert(PHBI->isConditional() && "Should be clone of BI condbr!");
  if (!isa<ConstantInt>(PHBI->getCondition()) ||
      PHBI->getSuccessor(cast<ConstantInt>(PHBI->getCondition())->isZero())
          != NewHeader) {
    // The conditional branch can't be folded, handle the general case.
    // Update DominatorTree to reflect the CFG change we just made.  Then split
    // edges as necessary to preserve LoopSimplify form.
    if (DominatorTree *DT = getAnalysisIfAvailable<DominatorTree>()) {
      // Since OrigPreheader now has the conditional branch to Exit block, it is
      // the dominator of Exit.
      DT->changeImmediateDominator(Exit, OrigPreheader);
      DT->changeImmediateDominator(NewHeader, OrigPreheader);

      // Update OrigHeader to be dominated by the new header block.
      DT->changeImmediateDominator(OrigHeader, OrigLatch);
    }

    // Right now OrigPreHeader has two successors, NewHeader and ExitBlock, and
    // thus is not a preheader anymore.  Split the edge to form a real preheader.
    BasicBlock *NewPH = SplitCriticalEdge(OrigPreheader, NewHeader, this);
    NewPH->setName(NewHeader->getName() + ".lr.ph");

    // Preserve canonical loop form, which means that 'Exit' should have only one
    // predecessor.
    BasicBlock *ExitSplit = SplitCriticalEdge(L->getLoopLatch(), Exit, this);
    ExitSplit->moveBefore(Exit);
  } else {
    // We can fold the conditional branch in the preheader, this makes things
    // simpler. The first step is to remove the extra edge to the Exit block.
    Exit->removePredecessor(OrigPreheader, true /*preserve LCSSA*/);
    BranchInst *NewBI = BranchInst::Create(NewHeader, PHBI);
    NewBI->setDebugLoc(PHBI->getDebugLoc());
    PHBI->eraseFromParent();

    // With our CFG finalized, update DomTree if it is available.
    if (DominatorTree *DT = getAnalysisIfAvailable<DominatorTree>()) {
      // Update OrigHeader to be dominated by the new header block.
      DT->changeImmediateDominator(NewHeader, OrigPreheader);
      DT->changeImmediateDominator(OrigHeader, OrigLatch);
    }
  }

  assert(L->getLoopPreheader() && "Invalid loop preheader after loop rotation");
  assert(L->getLoopLatch() && "Invalid loop latch after loop rotation");

  // Now that the CFG and DomTree are in a consistent state again, try to merge
  // the OrigHeader block into OrigLatch.  This will succeed if they are
  // connected by an unconditional branch.  This is just a cleanup so the
  // emitted code isn't too gross in this common case.
  MergeBlockIntoPredecessor(OrigHeader, this);

  ++NumRotated;
  return true;
}