llvm.org GIT mirror llvm / d94715e lib / Transforms / Scalar / SampleProfile.cpp
d94715e

Tree @d94715e (Download .tar.gz)

SampleProfile.cpp @d94715eraw · history · blame

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
//===- SampleProfile.cpp - Incorporate sample profiles into the IR --------===//
//
//                      The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements the SampleProfileLoader transformation. This pass
// reads a profile file generated by a sampling profiler (e.g. Linux Perf -
// http://perf.wiki.kernel.org/) and generates IR metadata to reflect the
// profile information in the given profile.
//
// This pass generates branch weight annotations on the IR:
//
// - prof: Represents branch weights. This annotation is added to branches
//      to indicate the weights of each edge coming out of the branch.
//      The weight of each edge is the weight of the target block for
//      that edge. The weight of a block B is computed as the maximum
//      number of samples found in B.
//
//===----------------------------------------------------------------------===//

#include "llvm/Transforms/Scalar.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/ADT/SmallSet.h"
#include "llvm/ADT/StringMap.h"
#include "llvm/ADT/StringRef.h"
#include "llvm/Analysis/LoopInfo.h"
#include "llvm/Analysis/PostDominators.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/DebugInfo.h"
#include "llvm/IR/DiagnosticInfo.h"
#include "llvm/IR/Dominators.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/InstIterator.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/LLVMContext.h"
#include "llvm/IR/MDBuilder.h"
#include "llvm/IR/Metadata.h"
#include "llvm/IR/Module.h"
#include "llvm/Pass.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/LineIterator.h"
#include "llvm/Support/MemoryBuffer.h"
#include "llvm/Support/Regex.h"
#include "llvm/Support/raw_ostream.h"
#include <cctype>

using namespace llvm;

#define DEBUG_TYPE "sample-profile"

// Command line option to specify the file to read samples from. This is
// mainly used for debugging.
static cl::opt<std::string> SampleProfileFile(
    "sample-profile-file", cl::init(""), cl::value_desc("filename"),
    cl::desc("Profile file loaded by -sample-profile"), cl::Hidden);
static cl::opt<unsigned> SampleProfileMaxPropagateIterations(
    "sample-profile-max-propagate-iterations", cl::init(100),
    cl::desc("Maximum number of iterations to go through when propagating "
             "sample block/edge weights through the CFG."));

namespace {
/// \brief Represents the relative location of an instruction.
///
/// Instruction locations are specified by the line offset from the
/// beginning of the function (marked by the line where the function
/// header is) and the discriminator value within that line.
///
/// The discriminator value is useful to distinguish instructions
/// that are on the same line but belong to different basic blocks
/// (e.g., the two post-increment instructions in "if (p) x++; else y++;").
struct InstructionLocation {
  InstructionLocation(int L, unsigned D) : LineOffset(L), Discriminator(D) {}
  int LineOffset;
  unsigned Discriminator;
};
}

namespace llvm {
template <> struct DenseMapInfo<InstructionLocation> {
  typedef DenseMapInfo<int> OffsetInfo;
  typedef DenseMapInfo<unsigned> DiscriminatorInfo;
  static inline InstructionLocation getEmptyKey() {
    return InstructionLocation(OffsetInfo::getEmptyKey(),
                               DiscriminatorInfo::getEmptyKey());
  }
  static inline InstructionLocation getTombstoneKey() {
    return InstructionLocation(OffsetInfo::getTombstoneKey(),
                               DiscriminatorInfo::getTombstoneKey());
  }
  static inline unsigned getHashValue(InstructionLocation Val) {
    return DenseMapInfo<std::pair<int, unsigned>>::getHashValue(
        std::pair<int, unsigned>(Val.LineOffset, Val.Discriminator));
  }
  static inline bool isEqual(InstructionLocation LHS, InstructionLocation RHS) {
    return LHS.LineOffset == RHS.LineOffset &&
           LHS.Discriminator == RHS.Discriminator;
  }
};
}

namespace {
typedef DenseMap<InstructionLocation, unsigned> BodySampleMap;
typedef DenseMap<BasicBlock *, unsigned> BlockWeightMap;
typedef DenseMap<BasicBlock *, BasicBlock *> EquivalenceClassMap;
typedef std::pair<BasicBlock *, BasicBlock *> Edge;
typedef DenseMap<Edge, unsigned> EdgeWeightMap;
typedef DenseMap<BasicBlock *, SmallVector<BasicBlock *, 8>> BlockEdgeMap;

/// \brief Representation of the runtime profile for a function.
///
/// This data structure contains the runtime profile for a given
/// function. It contains the total number of samples collected
/// in the function and a map of samples collected in every statement.
class SampleFunctionProfile {
public:
  SampleFunctionProfile()
      : TotalSamples(0), TotalHeadSamples(0), HeaderLineno(0), DT(nullptr),
        PDT(nullptr), LI(nullptr), Ctx(nullptr) {}

  unsigned getFunctionLoc(Function &F);
  bool emitAnnotations(Function &F, DominatorTree *DomTree,
                       PostDominatorTree *PostDomTree, LoopInfo *Loops);
  unsigned getInstWeight(Instruction &I);
  unsigned getBlockWeight(BasicBlock *B);
  void addTotalSamples(unsigned Num) { TotalSamples += Num; }
  void addHeadSamples(unsigned Num) { TotalHeadSamples += Num; }
  void addBodySamples(int LineOffset, unsigned Discriminator, unsigned Num) {
    assert(LineOffset >= 0);
    BodySamples[InstructionLocation(LineOffset, Discriminator)] += Num;
  }
  void print(raw_ostream &OS);
  void printEdgeWeight(raw_ostream &OS, Edge E);
  void printBlockWeight(raw_ostream &OS, BasicBlock *BB);
  void printBlockEquivalence(raw_ostream &OS, BasicBlock *BB);
  bool computeBlockWeights(Function &F);
  void findEquivalenceClasses(Function &F);
  void findEquivalencesFor(BasicBlock *BB1,
                           SmallVector<BasicBlock *, 8> Descendants,
                           DominatorTreeBase<BasicBlock> *DomTree);
  void propagateWeights(Function &F);
  unsigned visitEdge(Edge E, unsigned *NumUnknownEdges, Edge *UnknownEdge);
  void buildEdges(Function &F);
  bool propagateThroughEdges(Function &F);
  bool empty() { return BodySamples.empty(); }

protected:
  /// \brief Total number of samples collected inside this function.
  ///
  /// Samples are cumulative, they include all the samples collected
  /// inside this function and all its inlined callees.
  unsigned TotalSamples;

  /// \brief Total number of samples collected at the head of the function.
  /// FIXME: Use head samples to estimate a cold/hot attribute for the function.
  unsigned TotalHeadSamples;

  /// \brief Line number for the function header. Used to compute relative
  /// line numbers from the absolute line LOCs found in instruction locations.
  /// The relative line numbers are needed to address the samples from the
  /// profile file.
  unsigned HeaderLineno;

  /// \brief Map line offsets to collected samples.
  ///
  /// Each entry in this map contains the number of samples
  /// collected at the corresponding line offset. All line locations
  /// are an offset from the start of the function.
  BodySampleMap BodySamples;

  /// \brief Map basic blocks to their computed weights.
  ///
  /// The weight of a basic block is defined to be the maximum
  /// of all the instruction weights in that block.
  BlockWeightMap BlockWeights;

  /// \brief Map edges to their computed weights.
  ///
  /// Edge weights are computed by propagating basic block weights in
  /// SampleProfile::propagateWeights.
  EdgeWeightMap EdgeWeights;

  /// \brief Set of visited blocks during propagation.
  SmallPtrSet<BasicBlock *, 128> VisitedBlocks;

  /// \brief Set of visited edges during propagation.
  SmallSet<Edge, 128> VisitedEdges;

  /// \brief Equivalence classes for block weights.
  ///
  /// Two blocks BB1 and BB2 are in the same equivalence class if they
  /// dominate and post-dominate each other, and they are in the same loop
  /// nest. When this happens, the two blocks are guaranteed to execute
  /// the same number of times.
  EquivalenceClassMap EquivalenceClass;

  /// \brief Dominance, post-dominance and loop information.
  DominatorTree *DT;
  PostDominatorTree *PDT;
  LoopInfo *LI;

  /// \brief Predecessors for each basic block in the CFG.
  BlockEdgeMap Predecessors;

  /// \brief Successors for each basic block in the CFG.
  BlockEdgeMap Successors;

  /// \brief LLVM context holding the debug data we need.
  LLVMContext *Ctx;
};

/// \brief Sample-based profile reader.
///
/// Each profile contains sample counts for all the functions
/// executed. Inside each function, statements are annotated with the
/// collected samples on all the instructions associated with that
/// statement.
///
/// For this to produce meaningful data, the program needs to be
/// compiled with some debug information (at minimum, line numbers:
/// -gline-tables-only). Otherwise, it will be impossible to match IR
/// instructions to the line numbers collected by the profiler.
///
/// From the profile file, we are interested in collecting the
/// following information:
///
/// * A list of functions included in the profile (mangled names).
///
/// * For each function F:
///   1. The total number of samples collected in F.
///
///   2. The samples collected at each line in F. To provide some
///      protection against source code shuffling, line numbers should
///      be relative to the start of the function.
class SampleModuleProfile {
public:
  SampleModuleProfile(const Module &M, StringRef F)
      : Profiles(0), Filename(F), M(M) {}

  void dump();
  bool loadText();
  void loadNative() { llvm_unreachable("not implemented"); }
  void printFunctionProfile(raw_ostream &OS, StringRef FName);
  void dumpFunctionProfile(StringRef FName);
  SampleFunctionProfile &getProfile(const Function &F) {
    return Profiles[F.getName()];
  }

  /// \brief Report a parse error message.
  void reportParseError(int64_t LineNumber, Twine Msg) const {
    DiagnosticInfoSampleProfile Diag(Filename.data(), LineNumber, Msg);
    M.getContext().diagnose(Diag);
  }

protected:
  /// \brief Map every function to its associated profile.
  ///
  /// The profile of every function executed at runtime is collected
  /// in the structure SampleFunctionProfile. This maps function objects
  /// to their corresponding profiles.
  StringMap<SampleFunctionProfile> Profiles;

  /// \brief Path name to the file holding the profile data.
  ///
  /// The format of this file is defined by each profiler
  /// independently. If possible, the profiler should have a text
  /// version of the profile format to be used in constructing test
  /// cases and debugging.
  StringRef Filename;

  /// \brief Module being compiled. Used mainly to access the current
  /// LLVM context for diagnostics.
  const Module &M;
};

/// \brief Sample profile pass.
///
/// This pass reads profile data from the file specified by
/// -sample-profile-file and annotates every affected function with the
/// profile information found in that file.
class SampleProfileLoader : public FunctionPass {
public:
  // Class identification, replacement for typeinfo
  static char ID;

  SampleProfileLoader(StringRef Name = SampleProfileFile)
      : FunctionPass(ID), Profiler(), Filename(Name), ProfileIsValid(false) {
    initializeSampleProfileLoaderPass(*PassRegistry::getPassRegistry());
  }

  bool doInitialization(Module &M) override;

  void dump() { Profiler->dump(); }

  const char *getPassName() const override { return "Sample profile pass"; }

  bool runOnFunction(Function &F) override;

  void getAnalysisUsage(AnalysisUsage &AU) const override {
    AU.setPreservesCFG();
    AU.addRequired<LoopInfo>();
    AU.addRequired<DominatorTreeWrapperPass>();
    AU.addRequired<PostDominatorTree>();
  }

protected:
  /// \brief Profile reader object.
  std::unique_ptr<SampleModuleProfile> Profiler;

  /// \brief Name of the profile file to load.
  StringRef Filename;

  /// \brief Flag indicating whether the profile input loaded successfully.
  bool ProfileIsValid;
};
}

/// \brief Print this function profile on stream \p OS.
///
/// \param OS Stream to emit the output to.
void SampleFunctionProfile::print(raw_ostream &OS) {
  OS << TotalSamples << ", " << TotalHeadSamples << ", " << BodySamples.size()
     << " sampled lines\n";
  for (BodySampleMap::const_iterator SI = BodySamples.begin(),
                                     SE = BodySamples.end();
       SI != SE; ++SI)
    OS << "\tline offset: " << SI->first.LineOffset
       << ", discriminator: " << SI->first.Discriminator
       << ", number of samples: " << SI->second << "\n";
  OS << "\n";
}

/// \brief Print the weight of edge \p E on stream \p OS.
///
/// \param OS  Stream to emit the output to.
/// \param E  Edge to print.
void SampleFunctionProfile::printEdgeWeight(raw_ostream &OS, Edge E) {
  OS << "weight[" << E.first->getName() << "->" << E.second->getName()
     << "]: " << EdgeWeights[E] << "\n";
}

/// \brief Print the equivalence class of block \p BB on stream \p OS.
///
/// \param OS  Stream to emit the output to.
/// \param BB  Block to print.
void SampleFunctionProfile::printBlockEquivalence(raw_ostream &OS,
                                                  BasicBlock *BB) {
  BasicBlock *Equiv = EquivalenceClass[BB];
  OS << "equivalence[" << BB->getName()
     << "]: " << ((Equiv) ? EquivalenceClass[BB]->getName() : "NONE") << "\n";
}

/// \brief Print the weight of block \p BB on stream \p OS.
///
/// \param OS  Stream to emit the output to.
/// \param BB  Block to print.
void SampleFunctionProfile::printBlockWeight(raw_ostream &OS, BasicBlock *BB) {
  OS << "weight[" << BB->getName() << "]: " << BlockWeights[BB] << "\n";
}

/// \brief Print the function profile for \p FName on stream \p OS.
///
/// \param OS Stream to emit the output to.
/// \param FName Name of the function to print.
void SampleModuleProfile::printFunctionProfile(raw_ostream &OS,
                                               StringRef FName) {
  OS << "Function: " << FName << ":\n";
  Profiles[FName].print(OS);
}

/// \brief Dump the function profile for \p FName.
///
/// \param FName Name of the function to print.
void SampleModuleProfile::dumpFunctionProfile(StringRef FName) {
  printFunctionProfile(dbgs(), FName);
}

/// \brief Dump all the function profiles found.
void SampleModuleProfile::dump() {
  for (StringMap<SampleFunctionProfile>::const_iterator I = Profiles.begin(),
                                                        E = Profiles.end();
       I != E; ++I)
    dumpFunctionProfile(I->getKey());
}

/// \brief Load samples from a text file.
///
/// The file contains a list of samples for every function executed at
/// runtime. Each function profile has the following format:
///
///    function1:total_samples:total_head_samples
///    offset1[.discriminator]: number_of_samples [fn1:num fn2:num ... ]
///    offset2[.discriminator]: number_of_samples [fn3:num fn4:num ... ]
///    ...
///    offsetN[.discriminator]: number_of_samples [fn5:num fn6:num ... ]
///
/// Function names must be mangled in order for the profile loader to
/// match them in the current translation unit. The two numbers in the
/// function header specify how many total samples were accumulated in
/// the function (first number), and the total number of samples accumulated
/// at the prologue of the function (second number). This head sample
/// count provides an indicator of how frequent is the function invoked.
///
/// Each sampled line may contain several items. Some are optional
/// (marked below):
///
/// a- Source line offset. This number represents the line number
///    in the function where the sample was collected. The line number
///    is always relative to the line where symbol of the function
///    is defined. So, if the function has its header at line 280,
///    the offset 13 is at line 293 in the file.
///
/// b- [OPTIONAL] Discriminator. This is used if the sampled program
///    was compiled with DWARF discriminator support
///    (http://wiki.dwarfstd.org/index.php?title=Path_Discriminators)
///
/// c- Number of samples. This is the number of samples collected by
///    the profiler at this source location.
///
/// d- [OPTIONAL] Potential call targets and samples. If present, this
///    line contains a call instruction. This models both direct and
///    indirect calls. Each called target is listed together with the
///    number of samples. For example,
///
///    130: 7  foo:3  bar:2  baz:7
///
///    The above means that at relative line offset 130 there is a
///    call instruction that calls one of foo(), bar() and baz(). With
///    baz() being the relatively more frequent call target.
///
///    FIXME: This is currently unhandled, but it has a lot of
///           potential for aiding the inliner.
///
///
/// Since this is a flat profile, a function that shows up more than
/// once gets all its samples aggregated across all its instances.
///
/// FIXME: flat profiles are too imprecise to provide good optimization
///        opportunities. Convert them to context-sensitive profile.
///
/// This textual representation is useful to generate unit tests and
/// for debugging purposes, but it should not be used to generate
/// profiles for large programs, as the representation is extremely
/// inefficient.
///
/// \returns true if the file was loaded successfully, false otherwise.
bool SampleModuleProfile::loadText() {
  ErrorOr<std::unique_ptr<MemoryBuffer>> BufferOrErr =
      MemoryBuffer::getFile(Filename);
  if (std::error_code EC = BufferOrErr.getError()) {
    std::string Msg(EC.message());
    M.getContext().diagnose(DiagnosticInfoSampleProfile(Filename.data(), Msg));
    return false;
  }
  std::unique_ptr<MemoryBuffer> Buffer = std::move(BufferOrErr.get());
  line_iterator LineIt(*Buffer, '#');

  // Read the profile of each function. Since each function may be
  // mentioned more than once, and we are collecting flat profiles,
  // accumulate samples as we parse them.
  Regex HeadRE("^([^0-9].*):([0-9]+):([0-9]+)$");
  Regex LineSample("^([0-9]+)\\.?([0-9]+)?: ([0-9]+)(.*)$");
  while (!LineIt.is_at_eof()) {
    // Read the header of each function.
    //
    // Note that for function identifiers we are actually expecting
    // mangled names, but we may not always get them. This happens when
    // the compiler decides not to emit the function (e.g., it was inlined
    // and removed). In this case, the binary will not have the linkage
    // name for the function, so the profiler will emit the function's
    // unmangled name, which may contain characters like ':' and '>' in its
    // name (member functions, templates, etc).
    //
    // The only requirement we place on the identifier, then, is that it
    // should not begin with a number.
    SmallVector<StringRef, 3> Matches;
    if (!HeadRE.match(*LineIt, &Matches)) {
      reportParseError(LineIt.line_number(),
                       "Expected 'mangled_name:NUM:NUM', found " + *LineIt);
      return false;
    }
    assert(Matches.size() == 4);
    StringRef FName = Matches[1];
    unsigned NumSamples, NumHeadSamples;
    Matches[2].getAsInteger(10, NumSamples);
    Matches[3].getAsInteger(10, NumHeadSamples);
    Profiles[FName] = SampleFunctionProfile();
    SampleFunctionProfile &FProfile = Profiles[FName];
    FProfile.addTotalSamples(NumSamples);
    FProfile.addHeadSamples(NumHeadSamples);
    ++LineIt;

    // Now read the body. The body of the function ends when we reach
    // EOF or when we see the start of the next function.
    while (!LineIt.is_at_eof() && isdigit((*LineIt)[0])) {
      if (!LineSample.match(*LineIt, &Matches)) {
        reportParseError(
            LineIt.line_number(),
            "Expected 'NUM[.NUM]: NUM[ mangled_name:NUM]*', found " + *LineIt);
        return false;
      }
      assert(Matches.size() == 5);
      unsigned LineOffset, NumSamples, Discriminator = 0;
      Matches[1].getAsInteger(10, LineOffset);
      if (Matches[2] != "")
        Matches[2].getAsInteger(10, Discriminator);
      Matches[3].getAsInteger(10, NumSamples);

      // FIXME: Handle called targets (in Matches[4]).

      // When dealing with instruction weights, we use the value
      // zero to indicate the absence of a sample. If we read an
      // actual zero from the profile file, return it as 1 to
      // avoid the confusion later on.
      if (NumSamples == 0)
        NumSamples = 1;
      FProfile.addBodySamples(LineOffset, Discriminator, NumSamples);
      ++LineIt;
    }
  }

  return true;
}

/// \brief Get the weight for an instruction.
///
/// The "weight" of an instruction \p Inst is the number of samples
/// collected on that instruction at runtime. To retrieve it, we
/// need to compute the line number of \p Inst relative to the start of its
/// function. We use HeaderLineno to compute the offset. We then
/// look up the samples collected for \p Inst using BodySamples.
///
/// \param Inst Instruction to query.
///
/// \returns The profiled weight of I.
unsigned SampleFunctionProfile::getInstWeight(Instruction &Inst) {
  DebugLoc DLoc = Inst.getDebugLoc();
  unsigned Lineno = DLoc.getLine();
  if (Lineno < HeaderLineno)
    return 0;

  DILocation DIL(DLoc.getAsMDNode(*Ctx));
  int LOffset = Lineno - HeaderLineno;
  unsigned Discriminator = DIL.getDiscriminator();
  unsigned Weight =
      BodySamples.lookup(InstructionLocation(LOffset, Discriminator));
  DEBUG(dbgs() << "    " << Lineno << "." << Discriminator << ":" << Inst
               << " (line offset: " << LOffset << "." << Discriminator
               << " - weight: " << Weight << ")\n");
  return Weight;
}

/// \brief Compute the weight of a basic block.
///
/// The weight of basic block \p B is the maximum weight of all the
/// instructions in B. The weight of \p B is computed and cached in
/// the BlockWeights map.
///
/// \param B The basic block to query.
///
/// \returns The computed weight of B.
unsigned SampleFunctionProfile::getBlockWeight(BasicBlock *B) {
  // If we've computed B's weight before, return it.
  std::pair<BlockWeightMap::iterator, bool> Entry =
      BlockWeights.insert(std::make_pair(B, 0));
  if (!Entry.second)
    return Entry.first->second;

  // Otherwise, compute and cache B's weight.
  unsigned Weight = 0;
  for (BasicBlock::iterator I = B->begin(), E = B->end(); I != E; ++I) {
    unsigned InstWeight = getInstWeight(*I);
    if (InstWeight > Weight)
      Weight = InstWeight;
  }
  Entry.first->second = Weight;
  return Weight;
}

/// \brief Compute and store the weights of every basic block.
///
/// This populates the BlockWeights map by computing
/// the weights of every basic block in the CFG.
///
/// \param F The function to query.
bool SampleFunctionProfile::computeBlockWeights(Function &F) {
  bool Changed = false;
  DEBUG(dbgs() << "Block weights\n");
  for (Function::iterator B = F.begin(), E = F.end(); B != E; ++B) {
    unsigned Weight = getBlockWeight(B);
    Changed |= (Weight > 0);
    DEBUG(printBlockWeight(dbgs(), B));
  }

  return Changed;
}

/// \brief Find equivalence classes for the given block.
///
/// This finds all the blocks that are guaranteed to execute the same
/// number of times as \p BB1. To do this, it traverses all the the
/// descendants of \p BB1 in the dominator or post-dominator tree.
///
/// A block BB2 will be in the same equivalence class as \p BB1 if
/// the following holds:
///
/// 1- \p BB1 is a descendant of BB2 in the opposite tree. So, if BB2
///    is a descendant of \p BB1 in the dominator tree, then BB2 should
///    dominate BB1 in the post-dominator tree.
///
/// 2- Both BB2 and \p BB1 must be in the same loop.
///
/// For every block BB2 that meets those two requirements, we set BB2's
/// equivalence class to \p BB1.
///
/// \param BB1  Block to check.
/// \param Descendants  Descendants of \p BB1 in either the dom or pdom tree.
/// \param DomTree  Opposite dominator tree. If \p Descendants is filled
///                 with blocks from \p BB1's dominator tree, then
///                 this is the post-dominator tree, and vice versa.
void SampleFunctionProfile::findEquivalencesFor(
    BasicBlock *BB1, SmallVector<BasicBlock *, 8> Descendants,
    DominatorTreeBase<BasicBlock> *DomTree) {
  for (SmallVectorImpl<BasicBlock *>::iterator I = Descendants.begin(),
                                               E = Descendants.end();
       I != E; ++I) {
    BasicBlock *BB2 = *I;
    bool IsDomParent = DomTree->dominates(BB2, BB1);
    bool IsInSameLoop = LI->getLoopFor(BB1) == LI->getLoopFor(BB2);
    if (BB1 != BB2 && VisitedBlocks.insert(BB2) && IsDomParent &&
        IsInSameLoop) {
      EquivalenceClass[BB2] = BB1;

      // If BB2 is heavier than BB1, make BB2 have the same weight
      // as BB1.
      //
      // Note that we don't worry about the opposite situation here
      // (when BB2 is lighter than BB1). We will deal with this
      // during the propagation phase. Right now, we just want to
      // make sure that BB1 has the largest weight of all the
      // members of its equivalence set.
      unsigned &BB1Weight = BlockWeights[BB1];
      unsigned &BB2Weight = BlockWeights[BB2];
      BB1Weight = std::max(BB1Weight, BB2Weight);
    }
  }
}

/// \brief Find equivalence classes.
///
/// Since samples may be missing from blocks, we can fill in the gaps by setting
/// the weights of all the blocks in the same equivalence class to the same
/// weight. To compute the concept of equivalence, we use dominance and loop
/// information. Two blocks B1 and B2 are in the same equivalence class if B1
/// dominates B2, B2 post-dominates B1 and both are in the same loop.
///
/// \param F The function to query.
void SampleFunctionProfile::findEquivalenceClasses(Function &F) {
  SmallVector<BasicBlock *, 8> DominatedBBs;
  DEBUG(dbgs() << "\nBlock equivalence classes\n");
  // Find equivalence sets based on dominance and post-dominance information.
  for (Function::iterator B = F.begin(), E = F.end(); B != E; ++B) {
    BasicBlock *BB1 = B;

    // Compute BB1's equivalence class once.
    if (EquivalenceClass.count(BB1)) {
      DEBUG(printBlockEquivalence(dbgs(), BB1));
      continue;
    }

    // By default, blocks are in their own equivalence class.
    EquivalenceClass[BB1] = BB1;

    // Traverse all the blocks dominated by BB1. We are looking for
    // every basic block BB2 such that:
    //
    // 1- BB1 dominates BB2.
    // 2- BB2 post-dominates BB1.
    // 3- BB1 and BB2 are in the same loop nest.
    //
    // If all those conditions hold, it means that BB2 is executed
    // as many times as BB1, so they are placed in the same equivalence
    // class by making BB2's equivalence class be BB1.
    DominatedBBs.clear();
    DT->getDescendants(BB1, DominatedBBs);
    findEquivalencesFor(BB1, DominatedBBs, PDT->DT);

    // Repeat the same logic for all the blocks post-dominated by BB1.
    // We are looking for every basic block BB2 such that:
    //
    // 1- BB1 post-dominates BB2.
    // 2- BB2 dominates BB1.
    // 3- BB1 and BB2 are in the same loop nest.
    //
    // If all those conditions hold, BB2's equivalence class is BB1.
    DominatedBBs.clear();
    PDT->getDescendants(BB1, DominatedBBs);
    findEquivalencesFor(BB1, DominatedBBs, DT);

    DEBUG(printBlockEquivalence(dbgs(), BB1));
  }

  // Assign weights to equivalence classes.
  //
  // All the basic blocks in the same equivalence class will execute
  // the same number of times. Since we know that the head block in
  // each equivalence class has the largest weight, assign that weight
  // to all the blocks in that equivalence class.
  DEBUG(dbgs() << "\nAssign the same weight to all blocks in the same class\n");
  for (Function::iterator B = F.begin(), E = F.end(); B != E; ++B) {
    BasicBlock *BB = B;
    BasicBlock *EquivBB = EquivalenceClass[BB];
    if (BB != EquivBB)
      BlockWeights[BB] = BlockWeights[EquivBB];
    DEBUG(printBlockWeight(dbgs(), BB));
  }
}

/// \brief Visit the given edge to decide if it has a valid weight.
///
/// If \p E has not been visited before, we copy to \p UnknownEdge
/// and increment the count of unknown edges.
///
/// \param E  Edge to visit.
/// \param NumUnknownEdges  Current number of unknown edges.
/// \param UnknownEdge  Set if E has not been visited before.
///
/// \returns E's weight, if known. Otherwise, return 0.
unsigned SampleFunctionProfile::visitEdge(Edge E, unsigned *NumUnknownEdges,
                                          Edge *UnknownEdge) {
  if (!VisitedEdges.count(E)) {
    (*NumUnknownEdges)++;
    *UnknownEdge = E;
    return 0;
  }

  return EdgeWeights[E];
}

/// \brief Propagate weights through incoming/outgoing edges.
///
/// If the weight of a basic block is known, and there is only one edge
/// with an unknown weight, we can calculate the weight of that edge.
///
/// Similarly, if all the edges have a known count, we can calculate the
/// count of the basic block, if needed.
///
/// \param F  Function to process.
///
/// \returns  True if new weights were assigned to edges or blocks.
bool SampleFunctionProfile::propagateThroughEdges(Function &F) {
  bool Changed = false;
  DEBUG(dbgs() << "\nPropagation through edges\n");
  for (Function::iterator BI = F.begin(), EI = F.end(); BI != EI; ++BI) {
    BasicBlock *BB = BI;

    // Visit all the predecessor and successor edges to determine
    // which ones have a weight assigned already. Note that it doesn't
    // matter that we only keep track of a single unknown edge. The
    // only case we are interested in handling is when only a single
    // edge is unknown (see setEdgeOrBlockWeight).
    for (unsigned i = 0; i < 2; i++) {
      unsigned TotalWeight = 0;
      unsigned NumUnknownEdges = 0;
      Edge UnknownEdge, SelfReferentialEdge;

      if (i == 0) {
        // First, visit all predecessor edges.
        for (size_t I = 0; I < Predecessors[BB].size(); I++) {
          Edge E = std::make_pair(Predecessors[BB][I], BB);
          TotalWeight += visitEdge(E, &NumUnknownEdges, &UnknownEdge);
          if (E.first == E.second)
            SelfReferentialEdge = E;
        }
      } else {
        // On the second round, visit all successor edges.
        for (size_t I = 0; I < Successors[BB].size(); I++) {
          Edge E = std::make_pair(BB, Successors[BB][I]);
          TotalWeight += visitEdge(E, &NumUnknownEdges, &UnknownEdge);
        }
      }

      // After visiting all the edges, there are three cases that we
      // can handle immediately:
      //
      // - All the edge weights are known (i.e., NumUnknownEdges == 0).
      //   In this case, we simply check that the sum of all the edges
      //   is the same as BB's weight. If not, we change BB's weight
      //   to match. Additionally, if BB had not been visited before,
      //   we mark it visited.
      //
      // - Only one edge is unknown and BB has already been visited.
      //   In this case, we can compute the weight of the edge by
      //   subtracting the total block weight from all the known
      //   edge weights. If the edges weight more than BB, then the
      //   edge of the last remaining edge is set to zero.
      //
      // - There exists a self-referential edge and the weight of BB is
      //   known. In this case, this edge can be based on BB's weight.
      //   We add up all the other known edges and set the weight on
      //   the self-referential edge as we did in the previous case.
      //
      // In any other case, we must continue iterating. Eventually,
      // all edges will get a weight, or iteration will stop when
      // it reaches SampleProfileMaxPropagateIterations.
      if (NumUnknownEdges <= 1) {
        unsigned &BBWeight = BlockWeights[BB];
        if (NumUnknownEdges == 0) {
          // If we already know the weight of all edges, the weight of the
          // basic block can be computed. It should be no larger than the sum
          // of all edge weights.
          if (TotalWeight > BBWeight) {
            BBWeight = TotalWeight;
            Changed = true;
            DEBUG(dbgs() << "All edge weights for " << BB->getName()
                         << " known. Set weight for block: ";
                  printBlockWeight(dbgs(), BB););
          }
          if (VisitedBlocks.insert(BB))
            Changed = true;
        } else if (NumUnknownEdges == 1 && VisitedBlocks.count(BB)) {
          // If there is a single unknown edge and the block has been
          // visited, then we can compute E's weight.
          if (BBWeight >= TotalWeight)
            EdgeWeights[UnknownEdge] = BBWeight - TotalWeight;
          else
            EdgeWeights[UnknownEdge] = 0;
          VisitedEdges.insert(UnknownEdge);
          Changed = true;
          DEBUG(dbgs() << "Set weight for edge: ";
                printEdgeWeight(dbgs(), UnknownEdge));
        }
      } else if (SelfReferentialEdge.first && VisitedBlocks.count(BB)) {
        unsigned &BBWeight = BlockWeights[BB];
        // We have a self-referential edge and the weight of BB is known.
        if (BBWeight >= TotalWeight)
          EdgeWeights[SelfReferentialEdge] = BBWeight - TotalWeight;
        else
          EdgeWeights[SelfReferentialEdge] = 0;
        VisitedEdges.insert(SelfReferentialEdge);
        Changed = true;
        DEBUG(dbgs() << "Set self-referential edge weight to: ";
              printEdgeWeight(dbgs(), SelfReferentialEdge));
      }
    }
  }

  return Changed;
}

/// \brief Build in/out edge lists for each basic block in the CFG.
///
/// We are interested in unique edges. If a block B1 has multiple
/// edges to another block B2, we only add a single B1->B2 edge.
void SampleFunctionProfile::buildEdges(Function &F) {
  for (Function::iterator I = F.begin(), E = F.end(); I != E; ++I) {
    BasicBlock *B1 = I;

    // Add predecessors for B1.
    SmallPtrSet<BasicBlock *, 16> Visited;
    if (!Predecessors[B1].empty())
      llvm_unreachable("Found a stale predecessors list in a basic block.");
    for (pred_iterator PI = pred_begin(B1), PE = pred_end(B1); PI != PE; ++PI) {
      BasicBlock *B2 = *PI;
      if (Visited.insert(B2))
        Predecessors[B1].push_back(B2);
    }

    // Add successors for B1.
    Visited.clear();
    if (!Successors[B1].empty())
      llvm_unreachable("Found a stale successors list in a basic block.");
    for (succ_iterator SI = succ_begin(B1), SE = succ_end(B1); SI != SE; ++SI) {
      BasicBlock *B2 = *SI;
      if (Visited.insert(B2))
        Successors[B1].push_back(B2);
    }
  }
}

/// \brief Propagate weights into edges
///
/// The following rules are applied to every block B in the CFG:
///
/// - If B has a single predecessor/successor, then the weight
///   of that edge is the weight of the block.
///
/// - If all incoming or outgoing edges are known except one, and the
///   weight of the block is already known, the weight of the unknown
///   edge will be the weight of the block minus the sum of all the known
///   edges. If the sum of all the known edges is larger than B's weight,
///   we set the unknown edge weight to zero.
///
/// - If there is a self-referential edge, and the weight of the block is
///   known, the weight for that edge is set to the weight of the block
///   minus the weight of the other incoming edges to that block (if
///   known).
void SampleFunctionProfile::propagateWeights(Function &F) {
  bool Changed = true;
  unsigned i = 0;

  // Before propagation starts, build, for each block, a list of
  // unique predecessors and successors. This is necessary to handle
  // identical edges in multiway branches. Since we visit all blocks and all
  // edges of the CFG, it is cleaner to build these lists once at the start
  // of the pass.
  buildEdges(F);

  // Propagate until we converge or we go past the iteration limit.
  while (Changed && i++ < SampleProfileMaxPropagateIterations) {
    Changed = propagateThroughEdges(F);
  }

  // Generate MD_prof metadata for every branch instruction using the
  // edge weights computed during propagation.
  DEBUG(dbgs() << "\nPropagation complete. Setting branch weights\n");
  MDBuilder MDB(F.getContext());
  for (Function::iterator I = F.begin(), E = F.end(); I != E; ++I) {
    BasicBlock *B = I;
    TerminatorInst *TI = B->getTerminator();
    if (TI->getNumSuccessors() == 1)
      continue;
    if (!isa<BranchInst>(TI) && !isa<SwitchInst>(TI))
      continue;

    DEBUG(dbgs() << "\nGetting weights for branch at line "
                 << TI->getDebugLoc().getLine() << ".\n");
    SmallVector<unsigned, 4> Weights;
    bool AllWeightsZero = true;
    for (unsigned I = 0; I < TI->getNumSuccessors(); ++I) {
      BasicBlock *Succ = TI->getSuccessor(I);
      Edge E = std::make_pair(B, Succ);
      unsigned Weight = EdgeWeights[E];
      DEBUG(dbgs() << "\t"; printEdgeWeight(dbgs(), E));
      Weights.push_back(Weight);
      if (Weight != 0)
        AllWeightsZero = false;
    }

    // Only set weights if there is at least one non-zero weight.
    // In any other case, let the analyzer set weights.
    if (!AllWeightsZero) {
      DEBUG(dbgs() << "SUCCESS. Found non-zero weights.\n");
      TI->setMetadata(llvm::LLVMContext::MD_prof,
                      MDB.createBranchWeights(Weights));
    } else {
      DEBUG(dbgs() << "SKIPPED. All branch weights are zero.\n");
    }
  }
}

/// \brief Get the line number for the function header.
///
/// This looks up function \p F in the current compilation unit and
/// retrieves the line number where the function is defined. This is
/// line 0 for all the samples read from the profile file. Every line
/// number is relative to this line.
///
/// \param F  Function object to query.
///
/// \returns the line number where \p F is defined. If it returns 0,
///          it means that there is no debug information available for \p F.
unsigned SampleFunctionProfile::getFunctionLoc(Function &F) {
  NamedMDNode *CUNodes = F.getParent()->getNamedMetadata("llvm.dbg.cu");
  if (CUNodes) {
    for (unsigned I = 0, E1 = CUNodes->getNumOperands(); I != E1; ++I) {
      DICompileUnit CU(CUNodes->getOperand(I));
      DIArray Subprograms = CU.getSubprograms();
      for (unsigned J = 0, E2 = Subprograms.getNumElements(); J != E2; ++J) {
        DISubprogram Subprogram(Subprograms.getElement(J));
        if (Subprogram.describes(&F))
          return Subprogram.getLineNumber();
      }
    }
  }

  F.getContext().diagnose(DiagnosticInfoSampleProfile(
      "No debug information found in function " + F.getName()));
  return 0;
}

/// \brief Generate branch weight metadata for all branches in \p F.
///
/// Branch weights are computed out of instruction samples using a
/// propagation heuristic. Propagation proceeds in 3 phases:
///
/// 1- Assignment of block weights. All the basic blocks in the function
///    are initial assigned the same weight as their most frequently
///    executed instruction.
///
/// 2- Creation of equivalence classes. Since samples may be missing from
///    blocks, we can fill in the gaps by setting the weights of all the
///    blocks in the same equivalence class to the same weight. To compute
///    the concept of equivalence, we use dominance and loop information.
///    Two blocks B1 and B2 are in the same equivalence class if B1
///    dominates B2, B2 post-dominates B1 and both are in the same loop.
///
/// 3- Propagation of block weights into edges. This uses a simple
///    propagation heuristic. The following rules are applied to every
///    block B in the CFG:
///
///    - If B has a single predecessor/successor, then the weight
///      of that edge is the weight of the block.
///
///    - If all the edges are known except one, and the weight of the
///      block is already known, the weight of the unknown edge will
///      be the weight of the block minus the sum of all the known
///      edges. If the sum of all the known edges is larger than B's weight,
///      we set the unknown edge weight to zero.
///
///    - If there is a self-referential edge, and the weight of the block is
///      known, the weight for that edge is set to the weight of the block
///      minus the weight of the other incoming edges to that block (if
///      known).
///
/// Since this propagation is not guaranteed to finalize for every CFG, we
/// only allow it to proceed for a limited number of iterations (controlled
/// by -sample-profile-max-propagate-iterations).
///
/// FIXME: Try to replace this propagation heuristic with a scheme
/// that is guaranteed to finalize. A work-list approach similar to
/// the standard value propagation algorithm used by SSA-CCP might
/// work here.
///
/// Once all the branch weights are computed, we emit the MD_prof
/// metadata on B using the computed values for each of its branches.
///
/// \param F The function to query.
///
/// \returns true if \p F was modified. Returns false, otherwise.
bool SampleFunctionProfile::emitAnnotations(Function &F, DominatorTree *DomTree,
                                            PostDominatorTree *PostDomTree,
                                            LoopInfo *Loops) {
  bool Changed = false;

  // Initialize invariants used during computation and propagation.
  HeaderLineno = getFunctionLoc(F);
  if (HeaderLineno == 0)
    return false;

  DEBUG(dbgs() << "Line number for the first instruction in " << F.getName()
               << ": " << HeaderLineno << "\n");
  DT = DomTree;
  PDT = PostDomTree;
  LI = Loops;
  Ctx = &F.getParent()->getContext();

  // Compute basic block weights.
  Changed |= computeBlockWeights(F);

  if (Changed) {
    // Find equivalence classes.
    findEquivalenceClasses(F);

    // Propagate weights to all edges.
    propagateWeights(F);
  }

  return Changed;
}

char SampleProfileLoader::ID = 0;
INITIALIZE_PASS_BEGIN(SampleProfileLoader, "sample-profile",
                      "Sample Profile loader", false, false)
INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
INITIALIZE_PASS_DEPENDENCY(PostDominatorTree)
INITIALIZE_PASS_DEPENDENCY(LoopInfo)
INITIALIZE_PASS_DEPENDENCY(AddDiscriminators)
INITIALIZE_PASS_END(SampleProfileLoader, "sample-profile",
                    "Sample Profile loader", false, false)

bool SampleProfileLoader::doInitialization(Module &M) {
  Profiler.reset(new SampleModuleProfile(M, Filename));
  ProfileIsValid = Profiler->loadText();
  return true;
}

FunctionPass *llvm::createSampleProfileLoaderPass() {
  return new SampleProfileLoader(SampleProfileFile);
}

FunctionPass *llvm::createSampleProfileLoaderPass(StringRef Name) {
  return new SampleProfileLoader(Name);
}

bool SampleProfileLoader::runOnFunction(Function &F) {
  if (!ProfileIsValid)
    return false;
  DominatorTree *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
  PostDominatorTree *PDT = &getAnalysis<PostDominatorTree>();
  LoopInfo *LI = &getAnalysis<LoopInfo>();
  SampleFunctionProfile &FunctionProfile = Profiler->getProfile(F);
  if (!FunctionProfile.empty())
    return FunctionProfile.emitAnnotations(F, DT, PDT, LI);
  return false;
}