llvm.org GIT mirror llvm / d8cc7be lib / Analysis / ConstantFolding.cpp
d8cc7be

Tree @d8cc7be (Download .tar.gz)

ConstantFolding.cpp @d8cc7beraw · history · blame

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
//===-- ConstantFolding.cpp - Fold instructions into constants ------------===//
//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file defines routines for folding instructions into constants.
//
// Also, to supplement the basic VMCore ConstantExpr simplifications,
// this file defines some additional folding routines that can make use of
// TargetData information. These functions cannot go in VMCore due to library
// dependency issues.
//
//===----------------------------------------------------------------------===//

#include "llvm/Analysis/ConstantFolding.h"
#include "llvm/Constants.h"
#include "llvm/DerivedTypes.h"
#include "llvm/Function.h"
#include "llvm/GlobalVariable.h"
#include "llvm/Instructions.h"
#include "llvm/Intrinsics.h"
#include "llvm/Analysis/ValueTracking.h"
#include "llvm/Target/TargetData.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/StringMap.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/GetElementPtrTypeIterator.h"
#include "llvm/Support/MathExtras.h"
#include <cerrno>
#include <cmath>
using namespace llvm;

//===----------------------------------------------------------------------===//
// Constant Folding internal helper functions
//===----------------------------------------------------------------------===//

/// FoldBitCast - Constant fold bitcast, symbolically evaluating it with 
/// TargetData.  This always returns a non-null constant, but it may be a
/// ConstantExpr if unfoldable.
static Constant *FoldBitCast(Constant *C, const Type *DestTy,
                             const TargetData &TD) {
  
  // This only handles casts to vectors currently.
  const VectorType *DestVTy = dyn_cast<VectorType>(DestTy);
  if (DestVTy == 0)
    return ConstantExpr::getBitCast(C, DestTy);
  
  // If this is a scalar -> vector cast, convert the input into a <1 x scalar>
  // vector so the code below can handle it uniformly.
  if (isa<ConstantFP>(C) || isa<ConstantInt>(C)) {
    Constant *Ops = C; // don't take the address of C!
    return FoldBitCast(ConstantVector::get(&Ops, 1), DestTy, TD);
  }
  
  // If this is a bitcast from constant vector -> vector, fold it.
  ConstantVector *CV = dyn_cast<ConstantVector>(C);
  if (CV == 0)
    return ConstantExpr::getBitCast(C, DestTy);
  
  // If the element types match, VMCore can fold it.
  unsigned NumDstElt = DestVTy->getNumElements();
  unsigned NumSrcElt = CV->getNumOperands();
  if (NumDstElt == NumSrcElt)
    return ConstantExpr::getBitCast(C, DestTy);
  
  const Type *SrcEltTy = CV->getType()->getElementType();
  const Type *DstEltTy = DestVTy->getElementType();
  
  // Otherwise, we're changing the number of elements in a vector, which 
  // requires endianness information to do the right thing.  For example,
  //    bitcast (<2 x i64> <i64 0, i64 1> to <4 x i32>)
  // folds to (little endian):
  //    <4 x i32> <i32 0, i32 0, i32 1, i32 0>
  // and to (big endian):
  //    <4 x i32> <i32 0, i32 0, i32 0, i32 1>
  
  // First thing is first.  We only want to think about integer here, so if
  // we have something in FP form, recast it as integer.
  if (DstEltTy->isFloatingPointTy()) {
    // Fold to an vector of integers with same size as our FP type.
    unsigned FPWidth = DstEltTy->getPrimitiveSizeInBits();
    const Type *DestIVTy =
      VectorType::get(IntegerType::get(C->getContext(), FPWidth), NumDstElt);
    // Recursively handle this integer conversion, if possible.
    C = FoldBitCast(C, DestIVTy, TD);
    if (!C) return ConstantExpr::getBitCast(C, DestTy);
    
    // Finally, VMCore can handle this now that #elts line up.
    return ConstantExpr::getBitCast(C, DestTy);
  }
  
  // Okay, we know the destination is integer, if the input is FP, convert
  // it to integer first.
  if (SrcEltTy->isFloatingPointTy()) {
    unsigned FPWidth = SrcEltTy->getPrimitiveSizeInBits();
    const Type *SrcIVTy =
      VectorType::get(IntegerType::get(C->getContext(), FPWidth), NumSrcElt);
    // Ask VMCore to do the conversion now that #elts line up.
    C = ConstantExpr::getBitCast(C, SrcIVTy);
    CV = dyn_cast<ConstantVector>(C);
    if (!CV)  // If VMCore wasn't able to fold it, bail out.
      return C;
  }
  
  // Now we know that the input and output vectors are both integer vectors
  // of the same size, and that their #elements is not the same.  Do the
  // conversion here, which depends on whether the input or output has
  // more elements.
  bool isLittleEndian = TD.isLittleEndian();
  
  SmallVector<Constant*, 32> Result;
  if (NumDstElt < NumSrcElt) {
    // Handle: bitcast (<4 x i32> <i32 0, i32 1, i32 2, i32 3> to <2 x i64>)
    Constant *Zero = Constant::getNullValue(DstEltTy);
    unsigned Ratio = NumSrcElt/NumDstElt;
    unsigned SrcBitSize = SrcEltTy->getPrimitiveSizeInBits();
    unsigned SrcElt = 0;
    for (unsigned i = 0; i != NumDstElt; ++i) {
      // Build each element of the result.
      Constant *Elt = Zero;
      unsigned ShiftAmt = isLittleEndian ? 0 : SrcBitSize*(Ratio-1);
      for (unsigned j = 0; j != Ratio; ++j) {
        Constant *Src = dyn_cast<ConstantInt>(CV->getOperand(SrcElt++));
        if (!Src)  // Reject constantexpr elements.
          return ConstantExpr::getBitCast(C, DestTy);
        
        // Zero extend the element to the right size.
        Src = ConstantExpr::getZExt(Src, Elt->getType());
        
        // Shift it to the right place, depending on endianness.
        Src = ConstantExpr::getShl(Src, 
                                   ConstantInt::get(Src->getType(), ShiftAmt));
        ShiftAmt += isLittleEndian ? SrcBitSize : -SrcBitSize;
        
        // Mix it in.
        Elt = ConstantExpr::getOr(Elt, Src);
      }
      Result.push_back(Elt);
    }
  } else {
    // Handle: bitcast (<2 x i64> <i64 0, i64 1> to <4 x i32>)
    unsigned Ratio = NumDstElt/NumSrcElt;
    unsigned DstBitSize = DstEltTy->getPrimitiveSizeInBits();
    
    // Loop over each source value, expanding into multiple results.
    for (unsigned i = 0; i != NumSrcElt; ++i) {
      Constant *Src = dyn_cast<ConstantInt>(CV->getOperand(i));
      if (!Src)  // Reject constantexpr elements.
        return ConstantExpr::getBitCast(C, DestTy);
      
      unsigned ShiftAmt = isLittleEndian ? 0 : DstBitSize*(Ratio-1);
      for (unsigned j = 0; j != Ratio; ++j) {
        // Shift the piece of the value into the right place, depending on
        // endianness.
        Constant *Elt = ConstantExpr::getLShr(Src, 
                                    ConstantInt::get(Src->getType(), ShiftAmt));
        ShiftAmt += isLittleEndian ? DstBitSize : -DstBitSize;
        
        // Truncate and remember this piece.
        Result.push_back(ConstantExpr::getTrunc(Elt, DstEltTy));
      }
    }
  }
  
  return ConstantVector::get(Result.data(), Result.size());
}


/// IsConstantOffsetFromGlobal - If this constant is actually a constant offset
/// from a global, return the global and the constant.  Because of
/// constantexprs, this function is recursive.
static bool IsConstantOffsetFromGlobal(Constant *C, GlobalValue *&GV,
                                       int64_t &Offset, const TargetData &TD) {
  // Trivial case, constant is the global.
  if ((GV = dyn_cast<GlobalValue>(C))) {
    Offset = 0;
    return true;
  }
  
  // Otherwise, if this isn't a constant expr, bail out.
  ConstantExpr *CE = dyn_cast<ConstantExpr>(C);
  if (!CE) return false;
  
  // Look through ptr->int and ptr->ptr casts.
  if (CE->getOpcode() == Instruction::PtrToInt ||
      CE->getOpcode() == Instruction::BitCast)
    return IsConstantOffsetFromGlobal(CE->getOperand(0), GV, Offset, TD);
  
  // i32* getelementptr ([5 x i32]* @a, i32 0, i32 5)    
  if (CE->getOpcode() == Instruction::GetElementPtr) {
    // Cannot compute this if the element type of the pointer is missing size
    // info.
    if (!cast<PointerType>(CE->getOperand(0)->getType())
                 ->getElementType()->isSized())
      return false;
    
    // If the base isn't a global+constant, we aren't either.
    if (!IsConstantOffsetFromGlobal(CE->getOperand(0), GV, Offset, TD))
      return false;
    
    // Otherwise, add any offset that our operands provide.
    gep_type_iterator GTI = gep_type_begin(CE);
    for (User::const_op_iterator i = CE->op_begin() + 1, e = CE->op_end();
         i != e; ++i, ++GTI) {
      ConstantInt *CI = dyn_cast<ConstantInt>(*i);
      if (!CI) return false;  // Index isn't a simple constant?
      if (CI->isZero()) continue;  // Not adding anything.
      
      if (const StructType *ST = dyn_cast<StructType>(*GTI)) {
        // N = N + Offset
        Offset += TD.getStructLayout(ST)->getElementOffset(CI->getZExtValue());
      } else {
        const SequentialType *SQT = cast<SequentialType>(*GTI);
        Offset += TD.getTypeAllocSize(SQT->getElementType())*CI->getSExtValue();
      }
    }
    return true;
  }
  
  return false;
}

/// ReadDataFromGlobal - Recursive helper to read bits out of global.  C is the
/// constant being copied out of. ByteOffset is an offset into C.  CurPtr is the
/// pointer to copy results into and BytesLeft is the number of bytes left in
/// the CurPtr buffer.  TD is the target data.
static bool ReadDataFromGlobal(Constant *C, uint64_t ByteOffset,
                               unsigned char *CurPtr, unsigned BytesLeft,
                               const TargetData &TD) {
  assert(ByteOffset <= TD.getTypeAllocSize(C->getType()) &&
         "Out of range access");
  
  // If this element is zero or undefined, we can just return since *CurPtr is
  // zero initialized.
  if (isa<ConstantAggregateZero>(C) || isa<UndefValue>(C))
    return true;
  
  if (ConstantInt *CI = dyn_cast<ConstantInt>(C)) {
    if (CI->getBitWidth() > 64 ||
        (CI->getBitWidth() & 7) != 0)
      return false;
    
    uint64_t Val = CI->getZExtValue();
    unsigned IntBytes = unsigned(CI->getBitWidth()/8);
    
    for (unsigned i = 0; i != BytesLeft && ByteOffset != IntBytes; ++i) {
      CurPtr[i] = (unsigned char)(Val >> (ByteOffset * 8));
      ++ByteOffset;
    }
    return true;
  }
  
  if (ConstantFP *CFP = dyn_cast<ConstantFP>(C)) {
    if (CFP->getType()->isDoubleTy()) {
      C = FoldBitCast(C, Type::getInt64Ty(C->getContext()), TD);
      return ReadDataFromGlobal(C, ByteOffset, CurPtr, BytesLeft, TD);
    }
    if (CFP->getType()->isFloatTy()){
      C = FoldBitCast(C, Type::getInt32Ty(C->getContext()), TD);
      return ReadDataFromGlobal(C, ByteOffset, CurPtr, BytesLeft, TD);
    }
    return false;
  }

  if (ConstantStruct *CS = dyn_cast<ConstantStruct>(C)) {
    const StructLayout *SL = TD.getStructLayout(CS->getType());
    unsigned Index = SL->getElementContainingOffset(ByteOffset);
    uint64_t CurEltOffset = SL->getElementOffset(Index);
    ByteOffset -= CurEltOffset;
    
    while (1) {
      // If the element access is to the element itself and not to tail padding,
      // read the bytes from the element.
      uint64_t EltSize = TD.getTypeAllocSize(CS->getOperand(Index)->getType());

      if (ByteOffset < EltSize &&
          !ReadDataFromGlobal(CS->getOperand(Index), ByteOffset, CurPtr,
                              BytesLeft, TD))
        return false;
      
      ++Index;
      
      // Check to see if we read from the last struct element, if so we're done.
      if (Index == CS->getType()->getNumElements())
        return true;

      // If we read all of the bytes we needed from this element we're done.
      uint64_t NextEltOffset = SL->getElementOffset(Index);

      if (BytesLeft <= NextEltOffset-CurEltOffset-ByteOffset)
        return true;

      // Move to the next element of the struct.
      CurPtr += NextEltOffset-CurEltOffset-ByteOffset;
      BytesLeft -= NextEltOffset-CurEltOffset-ByteOffset;
      ByteOffset = 0;
      CurEltOffset = NextEltOffset;
    }
    // not reached.
  }

  if (ConstantArray *CA = dyn_cast<ConstantArray>(C)) {
    uint64_t EltSize = TD.getTypeAllocSize(CA->getType()->getElementType());
    uint64_t Index = ByteOffset / EltSize;
    uint64_t Offset = ByteOffset - Index * EltSize;
    for (; Index != CA->getType()->getNumElements(); ++Index) {
      if (!ReadDataFromGlobal(CA->getOperand(Index), Offset, CurPtr,
                              BytesLeft, TD))
        return false;
      if (EltSize >= BytesLeft)
        return true;
      
      Offset = 0;
      BytesLeft -= EltSize;
      CurPtr += EltSize;
    }
    return true;
  }
  
  if (ConstantVector *CV = dyn_cast<ConstantVector>(C)) {
    uint64_t EltSize = TD.getTypeAllocSize(CV->getType()->getElementType());
    uint64_t Index = ByteOffset / EltSize;
    uint64_t Offset = ByteOffset - Index * EltSize;
    for (; Index != CV->getType()->getNumElements(); ++Index) {
      if (!ReadDataFromGlobal(CV->getOperand(Index), Offset, CurPtr,
                              BytesLeft, TD))
        return false;
      if (EltSize >= BytesLeft)
        return true;
      
      Offset = 0;
      BytesLeft -= EltSize;
      CurPtr += EltSize;
    }
    return true;
  }
  
  // Otherwise, unknown initializer type.
  return false;
}

static Constant *FoldReinterpretLoadFromConstPtr(Constant *C,
                                                 const TargetData &TD) {
  const Type *LoadTy = cast<PointerType>(C->getType())->getElementType();
  const IntegerType *IntType = dyn_cast<IntegerType>(LoadTy);
  
  // If this isn't an integer load we can't fold it directly.
  if (!IntType) {
    // If this is a float/double load, we can try folding it as an int32/64 load
    // and then bitcast the result.  This can be useful for union cases.  Note
    // that address spaces don't matter here since we're not going to result in
    // an actual new load.
    const Type *MapTy;
    if (LoadTy->isFloatTy())
      MapTy = Type::getInt32PtrTy(C->getContext());
    else if (LoadTy->isDoubleTy())
      MapTy = Type::getInt64PtrTy(C->getContext());
    else if (LoadTy->isVectorTy()) {
      MapTy = IntegerType::get(C->getContext(),
                               TD.getTypeAllocSizeInBits(LoadTy));
      MapTy = PointerType::getUnqual(MapTy);
    } else
      return 0;

    C = FoldBitCast(C, MapTy, TD);
    if (Constant *Res = FoldReinterpretLoadFromConstPtr(C, TD))
      return FoldBitCast(Res, LoadTy, TD);
    return 0;
  }
  
  unsigned BytesLoaded = (IntType->getBitWidth() + 7) / 8;
  if (BytesLoaded > 32 || BytesLoaded == 0) return 0;
  
  GlobalValue *GVal;
  int64_t Offset;
  if (!IsConstantOffsetFromGlobal(C, GVal, Offset, TD))
    return 0;
  
  GlobalVariable *GV = dyn_cast<GlobalVariable>(GVal);
  if (!GV || !GV->isConstant() || !GV->hasDefinitiveInitializer() ||
      !GV->getInitializer()->getType()->isSized())
    return 0;

  // If we're loading off the beginning of the global, some bytes may be valid,
  // but we don't try to handle this.
  if (Offset < 0) return 0;
  
  // If we're not accessing anything in this constant, the result is undefined.
  if (uint64_t(Offset) >= TD.getTypeAllocSize(GV->getInitializer()->getType()))
    return UndefValue::get(IntType);
  
  unsigned char RawBytes[32] = {0};
  if (!ReadDataFromGlobal(GV->getInitializer(), Offset, RawBytes,
                          BytesLoaded, TD))
    return 0;

  APInt ResultVal = APInt(IntType->getBitWidth(), RawBytes[BytesLoaded-1]);
  for (unsigned i = 1; i != BytesLoaded; ++i) {
    ResultVal <<= 8;
    ResultVal |= RawBytes[BytesLoaded-1-i];
  }

  return ConstantInt::get(IntType->getContext(), ResultVal);
}

/// ConstantFoldLoadFromConstPtr - Return the value that a load from C would
/// produce if it is constant and determinable.  If this is not determinable,
/// return null.
Constant *llvm::ConstantFoldLoadFromConstPtr(Constant *C,
                                             const TargetData *TD) {
  // First, try the easy cases:
  if (GlobalVariable *GV = dyn_cast<GlobalVariable>(C))
    if (GV->isConstant() && GV->hasDefinitiveInitializer())
      return GV->getInitializer();

  // If the loaded value isn't a constant expr, we can't handle it.
  ConstantExpr *CE = dyn_cast<ConstantExpr>(C);
  if (!CE) return 0;
  
  if (CE->getOpcode() == Instruction::GetElementPtr) {
    if (GlobalVariable *GV = dyn_cast<GlobalVariable>(CE->getOperand(0)))
      if (GV->isConstant() && GV->hasDefinitiveInitializer())
        if (Constant *V = 
             ConstantFoldLoadThroughGEPConstantExpr(GV->getInitializer(), CE))
          return V;
  }
  
  // Instead of loading constant c string, use corresponding integer value
  // directly if string length is small enough.
  std::string Str;
  if (TD && GetConstantStringInfo(CE, Str) && !Str.empty()) {
    unsigned StrLen = Str.length();
    const Type *Ty = cast<PointerType>(CE->getType())->getElementType();
    unsigned NumBits = Ty->getPrimitiveSizeInBits();
    // Replace load with immediate integer if the result is an integer or fp
    // value.
    if ((NumBits >> 3) == StrLen + 1 && (NumBits & 7) == 0 &&
        (isa<IntegerType>(Ty) || Ty->isFloatingPointTy())) {
      APInt StrVal(NumBits, 0);
      APInt SingleChar(NumBits, 0);
      if (TD->isLittleEndian()) {
        for (signed i = StrLen-1; i >= 0; i--) {
          SingleChar = (uint64_t) Str[i] & UCHAR_MAX;
          StrVal = (StrVal << 8) | SingleChar;
        }
      } else {
        for (unsigned i = 0; i < StrLen; i++) {
          SingleChar = (uint64_t) Str[i] & UCHAR_MAX;
          StrVal = (StrVal << 8) | SingleChar;
        }
        // Append NULL at the end.
        SingleChar = 0;
        StrVal = (StrVal << 8) | SingleChar;
      }
      
      Constant *Res = ConstantInt::get(CE->getContext(), StrVal);
      if (Ty->isFloatingPointTy())
        Res = ConstantExpr::getBitCast(Res, Ty);
      return Res;
    }
  }
  
  // If this load comes from anywhere in a constant global, and if the global
  // is all undef or zero, we know what it loads.
  if (GlobalVariable *GV = dyn_cast<GlobalVariable>(CE->getUnderlyingObject())){
    if (GV->isConstant() && GV->hasDefinitiveInitializer()) {
      const Type *ResTy = cast<PointerType>(C->getType())->getElementType();
      if (GV->getInitializer()->isNullValue())
        return Constant::getNullValue(ResTy);
      if (isa<UndefValue>(GV->getInitializer()))
        return UndefValue::get(ResTy);
    }
  }
  
  // Try hard to fold loads from bitcasted strange and non-type-safe things.  We
  // currently don't do any of this for big endian systems.  It can be
  // generalized in the future if someone is interested.
  if (TD && TD->isLittleEndian())
    return FoldReinterpretLoadFromConstPtr(CE, *TD);
  return 0;
}

static Constant *ConstantFoldLoadInst(const LoadInst *LI, const TargetData *TD){
  if (LI->isVolatile()) return 0;
  
  if (Constant *C = dyn_cast<Constant>(LI->getOperand(0)))
    return ConstantFoldLoadFromConstPtr(C, TD);

  return 0;
}

/// SymbolicallyEvaluateBinop - One of Op0/Op1 is a constant expression.
/// Attempt to symbolically evaluate the result of a binary operator merging
/// these together.  If target data info is available, it is provided as TD, 
/// otherwise TD is null.
static Constant *SymbolicallyEvaluateBinop(unsigned Opc, Constant *Op0,
                                           Constant *Op1, const TargetData *TD){
  // SROA
  
  // Fold (and 0xffffffff00000000, (shl x, 32)) -> shl.
  // Fold (lshr (or X, Y), 32) -> (lshr [X/Y], 32) if one doesn't contribute
  // bits.
  
  
  // If the constant expr is something like &A[123] - &A[4].f, fold this into a
  // constant.  This happens frequently when iterating over a global array.
  if (Opc == Instruction::Sub && TD) {
    GlobalValue *GV1, *GV2;
    int64_t Offs1, Offs2;
    
    if (IsConstantOffsetFromGlobal(Op0, GV1, Offs1, *TD))
      if (IsConstantOffsetFromGlobal(Op1, GV2, Offs2, *TD) &&
          GV1 == GV2) {
        // (&GV+C1) - (&GV+C2) -> C1-C2, pointer arithmetic cannot overflow.
        return ConstantInt::get(Op0->getType(), Offs1-Offs2);
      }
  }
    
  return 0;
}

/// CastGEPIndices - If array indices are not pointer-sized integers,
/// explicitly cast them so that they aren't implicitly casted by the
/// getelementptr.
static Constant *CastGEPIndices(Constant *const *Ops, unsigned NumOps,
                                const Type *ResultTy,
                                const TargetData *TD) {
  if (!TD) return 0;
  const Type *IntPtrTy = TD->getIntPtrType(ResultTy->getContext());

  bool Any = false;
  SmallVector<Constant*, 32> NewIdxs;
  for (unsigned i = 1; i != NumOps; ++i) {
    if ((i == 1 ||
         !isa<StructType>(GetElementPtrInst::getIndexedType(Ops[0]->getType(),
                                                            reinterpret_cast<Value *const *>(Ops+1),
                                                            i-1))) &&
        Ops[i]->getType() != IntPtrTy) {
      Any = true;
      NewIdxs.push_back(ConstantExpr::getCast(CastInst::getCastOpcode(Ops[i],
                                                                      true,
                                                                      IntPtrTy,
                                                                      true),
                                              Ops[i], IntPtrTy));
    } else
      NewIdxs.push_back(Ops[i]);
  }
  if (!Any) return 0;

  Constant *C =
    ConstantExpr::getGetElementPtr(Ops[0], &NewIdxs[0], NewIdxs.size());
  if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C))
    if (Constant *Folded = ConstantFoldConstantExpression(CE, TD))
      C = Folded;
  return C;
}

/// SymbolicallyEvaluateGEP - If we can symbolically evaluate the specified GEP
/// constant expression, do so.
static Constant *SymbolicallyEvaluateGEP(Constant *const *Ops, unsigned NumOps,
                                         const Type *ResultTy,
                                         const TargetData *TD) {
  Constant *Ptr = Ops[0];
  if (!TD || !cast<PointerType>(Ptr->getType())->getElementType()->isSized())
    return 0;

  unsigned BitWidth =
    TD->getTypeSizeInBits(TD->getIntPtrType(Ptr->getContext()));

  // If this is a constant expr gep that is effectively computing an
  // "offsetof", fold it into 'cast int Size to T*' instead of 'gep 0, 0, 12'
  for (unsigned i = 1; i != NumOps; ++i)
    if (!isa<ConstantInt>(Ops[i]))
      return 0;
  
  APInt Offset = APInt(BitWidth,
                       TD->getIndexedOffset(Ptr->getType(),
                                            (Value**)Ops+1, NumOps-1));
  Ptr = cast<Constant>(Ptr->stripPointerCasts());

  // If this is a GEP of a GEP, fold it all into a single GEP.
  while (GEPOperator *GEP = dyn_cast<GEPOperator>(Ptr)) {
    SmallVector<Value *, 4> NestedOps(GEP->op_begin()+1, GEP->op_end());

    // Do not try the incorporate the sub-GEP if some index is not a number.
    bool AllConstantInt = true;
    for (unsigned i = 0, e = NestedOps.size(); i != e; ++i)
      if (!isa<ConstantInt>(NestedOps[i])) {
        AllConstantInt = false;
        break;
      }
    if (!AllConstantInt)
      break;

    Ptr = cast<Constant>(GEP->getOperand(0));
    Offset += APInt(BitWidth,
                    TD->getIndexedOffset(Ptr->getType(),
                                         (Value**)NestedOps.data(),
                                         NestedOps.size()));
    Ptr = cast<Constant>(Ptr->stripPointerCasts());
  }

  // If the base value for this address is a literal integer value, fold the
  // getelementptr to the resulting integer value casted to the pointer type.
  APInt BasePtr(BitWidth, 0);
  if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Ptr))
    if (CE->getOpcode() == Instruction::IntToPtr)
      if (ConstantInt *Base = dyn_cast<ConstantInt>(CE->getOperand(0))) {
        BasePtr = Base->getValue();
        BasePtr.zextOrTrunc(BitWidth);
      }
  if (Ptr->isNullValue() || BasePtr != 0) {
    Constant *C = ConstantInt::get(Ptr->getContext(), Offset+BasePtr);
    return ConstantExpr::getIntToPtr(C, ResultTy);
  }

  // Otherwise form a regular getelementptr. Recompute the indices so that
  // we eliminate over-indexing of the notional static type array bounds.
  // This makes it easy to determine if the getelementptr is "inbounds".
  // Also, this helps GlobalOpt do SROA on GlobalVariables.
  const Type *Ty = Ptr->getType();
  SmallVector<Constant*, 32> NewIdxs;
  do {
    if (const SequentialType *ATy = dyn_cast<SequentialType>(Ty)) {
      if (ATy->isPointerTy()) {
        // The only pointer indexing we'll do is on the first index of the GEP.
        if (!NewIdxs.empty())
          break;
       
        // Only handle pointers to sized types, not pointers to functions.
        if (!ATy->getElementType()->isSized())
          return 0;
      }
        
      // Determine which element of the array the offset points into.
      APInt ElemSize(BitWidth, TD->getTypeAllocSize(ATy->getElementType()));
      if (ElemSize == 0)
        return 0;
      APInt NewIdx = Offset.udiv(ElemSize);
      Offset -= NewIdx * ElemSize;
      NewIdxs.push_back(ConstantInt::get(TD->getIntPtrType(Ty->getContext()),
                                         NewIdx));
      Ty = ATy->getElementType();
    } else if (const StructType *STy = dyn_cast<StructType>(Ty)) {
      // Determine which field of the struct the offset points into. The
      // getZExtValue is at least as safe as the StructLayout API because we
      // know the offset is within the struct at this point.
      const StructLayout &SL = *TD->getStructLayout(STy);
      unsigned ElIdx = SL.getElementContainingOffset(Offset.getZExtValue());
      NewIdxs.push_back(ConstantInt::get(Type::getInt32Ty(Ty->getContext()),
                                         ElIdx));
      Offset -= APInt(BitWidth, SL.getElementOffset(ElIdx));
      Ty = STy->getTypeAtIndex(ElIdx);
    } else {
      // We've reached some non-indexable type.
      break;
    }
  } while (Ty != cast<PointerType>(ResultTy)->getElementType());

  // If we haven't used up the entire offset by descending the static
  // type, then the offset is pointing into the middle of an indivisible
  // member, so we can't simplify it.
  if (Offset != 0)
    return 0;

  // Create a GEP.
  Constant *C =
    ConstantExpr::getGetElementPtr(Ptr, &NewIdxs[0], NewIdxs.size());
  assert(cast<PointerType>(C->getType())->getElementType() == Ty &&
         "Computed GetElementPtr has unexpected type!");

  // If we ended up indexing a member with a type that doesn't match
  // the type of what the original indices indexed, add a cast.
  if (Ty != cast<PointerType>(ResultTy)->getElementType())
    C = FoldBitCast(C, ResultTy, *TD);

  return C;
}



//===----------------------------------------------------------------------===//
// Constant Folding public APIs
//===----------------------------------------------------------------------===//


/// ConstantFoldInstruction - Attempt to constant fold the specified
/// instruction.  If successful, the constant result is returned, if not, null
/// is returned.  Note that this function can only fail when attempting to fold
/// instructions like loads and stores, which have no constant expression form.
///
Constant *llvm::ConstantFoldInstruction(Instruction *I, const TargetData *TD) {
  if (PHINode *PN = dyn_cast<PHINode>(I)) {
    if (PN->getNumIncomingValues() == 0)
      return UndefValue::get(PN->getType());

    Constant *Result = dyn_cast<Constant>(PN->getIncomingValue(0));
    if (Result == 0) return 0;

    // Handle PHI nodes specially here...
    for (unsigned i = 1, e = PN->getNumIncomingValues(); i != e; ++i)
      if (PN->getIncomingValue(i) != Result && PN->getIncomingValue(i) != PN)
        return 0;   // Not all the same incoming constants...

    // If we reach here, all incoming values are the same constant.
    return Result;
  }

  // Scan the operand list, checking to see if they are all constants, if so,
  // hand off to ConstantFoldInstOperands.
  SmallVector<Constant*, 8> Ops;
  for (User::op_iterator i = I->op_begin(), e = I->op_end(); i != e; ++i)
    if (Constant *Op = dyn_cast<Constant>(*i))
      Ops.push_back(Op);
    else
      return 0;  // All operands not constant!

  if (const CmpInst *CI = dyn_cast<CmpInst>(I))
    return ConstantFoldCompareInstOperands(CI->getPredicate(), Ops[0], Ops[1],
                                           TD);
  
  if (const LoadInst *LI = dyn_cast<LoadInst>(I))
    return ConstantFoldLoadInst(LI, TD);
  
  return ConstantFoldInstOperands(I->getOpcode(), I->getType(),
                                  Ops.data(), Ops.size(), TD);
}

/// ConstantFoldConstantExpression - Attempt to fold the constant expression
/// using the specified TargetData.  If successful, the constant result is
/// result is returned, if not, null is returned.
Constant *llvm::ConstantFoldConstantExpression(const ConstantExpr *CE,
                                               const TargetData *TD) {
  SmallVector<Constant*, 8> Ops;
  for (User::const_op_iterator i = CE->op_begin(), e = CE->op_end(); i != e; ++i) {
    Constant *NewC = cast<Constant>(*i);
    // Recursively fold the ConstantExpr's operands.
    if (ConstantExpr *NewCE = dyn_cast<ConstantExpr>(NewC))
      NewC = ConstantFoldConstantExpression(NewCE, TD);
    Ops.push_back(NewC);
  }

  if (CE->isCompare())
    return ConstantFoldCompareInstOperands(CE->getPredicate(), Ops[0], Ops[1],
                                           TD);
  return ConstantFoldInstOperands(CE->getOpcode(), CE->getType(),
                                  Ops.data(), Ops.size(), TD);
}

/// ConstantFoldInstOperands - Attempt to constant fold an instruction with the
/// specified opcode and operands.  If successful, the constant result is
/// returned, if not, null is returned.  Note that this function can fail when
/// attempting to fold instructions like loads and stores, which have no
/// constant expression form.
///
/// TODO: This function neither utilizes nor preserves nsw/nuw/inbounds/etc
/// information, due to only being passed an opcode and operands. Constant
/// folding using this function strips this information.
///
Constant *llvm::ConstantFoldInstOperands(unsigned Opcode, const Type *DestTy, 
                                         Constant* const* Ops, unsigned NumOps,
                                         const TargetData *TD) {
  // Handle easy binops first.
  if (Instruction::isBinaryOp(Opcode)) {
    if (isa<ConstantExpr>(Ops[0]) || isa<ConstantExpr>(Ops[1]))
      if (Constant *C = SymbolicallyEvaluateBinop(Opcode, Ops[0], Ops[1], TD))
        return C;
    
    return ConstantExpr::get(Opcode, Ops[0], Ops[1]);
  }
  
  switch (Opcode) {
  default: return 0;
  case Instruction::ICmp:
  case Instruction::FCmp: assert(0 && "Invalid for compares");
  case Instruction::Call:
    if (Function *F = dyn_cast<Function>(Ops[NumOps - 1]))
      if (canConstantFoldCallTo(F))
        return ConstantFoldCall(F, Ops, NumOps - 1);
    return 0;
  case Instruction::PtrToInt:
    // If the input is a inttoptr, eliminate the pair.  This requires knowing
    // the width of a pointer, so it can't be done in ConstantExpr::getCast.
    if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Ops[0])) {
      if (TD && CE->getOpcode() == Instruction::IntToPtr) {
        Constant *Input = CE->getOperand(0);
        unsigned InWidth = Input->getType()->getScalarSizeInBits();
        if (TD->getPointerSizeInBits() < InWidth) {
          Constant *Mask = 
            ConstantInt::get(CE->getContext(), APInt::getLowBitsSet(InWidth,
                                                  TD->getPointerSizeInBits()));
          Input = ConstantExpr::getAnd(Input, Mask);
        }
        // Do a zext or trunc to get to the dest size.
        return ConstantExpr::getIntegerCast(Input, DestTy, false);
      }
    }
    return ConstantExpr::getCast(Opcode, Ops[0], DestTy);
  case Instruction::IntToPtr:
    // If the input is a ptrtoint, turn the pair into a ptr to ptr bitcast if
    // the int size is >= the ptr size.  This requires knowing the width of a
    // pointer, so it can't be done in ConstantExpr::getCast.
    if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Ops[0]))
      if (TD &&
          TD->getPointerSizeInBits() <= CE->getType()->getScalarSizeInBits() &&
          CE->getOpcode() == Instruction::PtrToInt)
        return FoldBitCast(CE->getOperand(0), DestTy, *TD);

    return ConstantExpr::getCast(Opcode, Ops[0], DestTy);
  case Instruction::Trunc:
  case Instruction::ZExt:
  case Instruction::SExt:
  case Instruction::FPTrunc:
  case Instruction::FPExt:
  case Instruction::UIToFP:
  case Instruction::SIToFP:
  case Instruction::FPToUI:
  case Instruction::FPToSI:
      return ConstantExpr::getCast(Opcode, Ops[0], DestTy);
  case Instruction::BitCast:
    if (TD)
      return FoldBitCast(Ops[0], DestTy, *TD);
    return ConstantExpr::getBitCast(Ops[0], DestTy);
  case Instruction::Select:
    return ConstantExpr::getSelect(Ops[0], Ops[1], Ops[2]);
  case Instruction::ExtractElement:
    return ConstantExpr::getExtractElement(Ops[0], Ops[1]);
  case Instruction::InsertElement:
    return ConstantExpr::getInsertElement(Ops[0], Ops[1], Ops[2]);
  case Instruction::ShuffleVector:
    return ConstantExpr::getShuffleVector(Ops[0], Ops[1], Ops[2]);
  case Instruction::GetElementPtr:
    if (Constant *C = CastGEPIndices(Ops, NumOps, DestTy, TD))
      return C;
    if (Constant *C = SymbolicallyEvaluateGEP(Ops, NumOps, DestTy, TD))
      return C;
    
    return ConstantExpr::getGetElementPtr(Ops[0], Ops+1, NumOps-1);
  }
}

/// ConstantFoldCompareInstOperands - Attempt to constant fold a compare
/// instruction (icmp/fcmp) with the specified operands.  If it fails, it
/// returns a constant expression of the specified operands.
///
Constant *llvm::ConstantFoldCompareInstOperands(unsigned Predicate,
                                                Constant *Ops0, Constant *Ops1, 
                                                const TargetData *TD) {
  // fold: icmp (inttoptr x), null         -> icmp x, 0
  // fold: icmp (ptrtoint x), 0            -> icmp x, null
  // fold: icmp (inttoptr x), (inttoptr y) -> icmp trunc/zext x, trunc/zext y
  // fold: icmp (ptrtoint x), (ptrtoint y) -> icmp x, y
  //
  // ConstantExpr::getCompare cannot do this, because it doesn't have TD
  // around to know if bit truncation is happening.
  if (ConstantExpr *CE0 = dyn_cast<ConstantExpr>(Ops0)) {
    if (TD && Ops1->isNullValue()) {
      const Type *IntPtrTy = TD->getIntPtrType(CE0->getContext());
      if (CE0->getOpcode() == Instruction::IntToPtr) {
        // Convert the integer value to the right size to ensure we get the
        // proper extension or truncation.
        Constant *C = ConstantExpr::getIntegerCast(CE0->getOperand(0),
                                                   IntPtrTy, false);
        Constant *Null = Constant::getNullValue(C->getType());
        return ConstantFoldCompareInstOperands(Predicate, C, Null, TD);
      }
      
      // Only do this transformation if the int is intptrty in size, otherwise
      // there is a truncation or extension that we aren't modeling.
      if (CE0->getOpcode() == Instruction::PtrToInt && 
          CE0->getType() == IntPtrTy) {
        Constant *C = CE0->getOperand(0);
        Constant *Null = Constant::getNullValue(C->getType());
        return ConstantFoldCompareInstOperands(Predicate, C, Null, TD);
      }
    }
    
    if (ConstantExpr *CE1 = dyn_cast<ConstantExpr>(Ops1)) {
      if (TD && CE0->getOpcode() == CE1->getOpcode()) {
        const Type *IntPtrTy = TD->getIntPtrType(CE0->getContext());

        if (CE0->getOpcode() == Instruction::IntToPtr) {
          // Convert the integer value to the right size to ensure we get the
          // proper extension or truncation.
          Constant *C0 = ConstantExpr::getIntegerCast(CE0->getOperand(0),
                                                      IntPtrTy, false);
          Constant *C1 = ConstantExpr::getIntegerCast(CE1->getOperand(0),
                                                      IntPtrTy, false);
          return ConstantFoldCompareInstOperands(Predicate, C0, C1, TD);
        }

        // Only do this transformation if the int is intptrty in size, otherwise
        // there is a truncation or extension that we aren't modeling.
        if ((CE0->getOpcode() == Instruction::PtrToInt &&
             CE0->getType() == IntPtrTy &&
             CE0->getOperand(0)->getType() == CE1->getOperand(0)->getType()))
          return ConstantFoldCompareInstOperands(Predicate, CE0->getOperand(0),
                                                 CE1->getOperand(0), TD);
      }
    }
    
    // icmp eq (or x, y), 0 -> (icmp eq x, 0) & (icmp eq y, 0)
    // icmp ne (or x, y), 0 -> (icmp ne x, 0) | (icmp ne y, 0)
    if ((Predicate == ICmpInst::ICMP_EQ || Predicate == ICmpInst::ICMP_NE) &&
        CE0->getOpcode() == Instruction::Or && Ops1->isNullValue()) {
      Constant *LHS = 
        ConstantFoldCompareInstOperands(Predicate, CE0->getOperand(0), Ops1,TD);
      Constant *RHS = 
        ConstantFoldCompareInstOperands(Predicate, CE0->getOperand(1), Ops1,TD);
      unsigned OpC = 
        Predicate == ICmpInst::ICMP_EQ ? Instruction::And : Instruction::Or;
      Constant *Ops[] = { LHS, RHS };
      return ConstantFoldInstOperands(OpC, LHS->getType(), Ops, 2, TD);
    }
  }
  
  return ConstantExpr::getCompare(Predicate, Ops0, Ops1);
}


/// ConstantFoldLoadThroughGEPConstantExpr - Given a constant and a
/// getelementptr constantexpr, return the constant value being addressed by the
/// constant expression, or null if something is funny and we can't decide.
Constant *llvm::ConstantFoldLoadThroughGEPConstantExpr(Constant *C, 
                                                       ConstantExpr *CE) {
  if (CE->getOperand(1) != Constant::getNullValue(CE->getOperand(1)->getType()))
    return 0;  // Do not allow stepping over the value!
  
  // Loop over all of the operands, tracking down which value we are
  // addressing...
  gep_type_iterator I = gep_type_begin(CE), E = gep_type_end(CE);
  for (++I; I != E; ++I)
    if (const StructType *STy = dyn_cast<StructType>(*I)) {
      ConstantInt *CU = cast<ConstantInt>(I.getOperand());
      assert(CU->getZExtValue() < STy->getNumElements() &&
             "Struct index out of range!");
      unsigned El = (unsigned)CU->getZExtValue();
      if (ConstantStruct *CS = dyn_cast<ConstantStruct>(C)) {
        C = CS->getOperand(El);
      } else if (isa<ConstantAggregateZero>(C)) {
        C = Constant::getNullValue(STy->getElementType(El));
      } else if (isa<UndefValue>(C)) {
        C = UndefValue::get(STy->getElementType(El));
      } else {
        return 0;
      }
    } else if (ConstantInt *CI = dyn_cast<ConstantInt>(I.getOperand())) {
      if (const ArrayType *ATy = dyn_cast<ArrayType>(*I)) {
        if (CI->getZExtValue() >= ATy->getNumElements())
         return 0;
        if (ConstantArray *CA = dyn_cast<ConstantArray>(C))
          C = CA->getOperand(CI->getZExtValue());
        else if (isa<ConstantAggregateZero>(C))
          C = Constant::getNullValue(ATy->getElementType());
        else if (isa<UndefValue>(C))
          C = UndefValue::get(ATy->getElementType());
        else
          return 0;
      } else if (const VectorType *VTy = dyn_cast<VectorType>(*I)) {
        if (CI->getZExtValue() >= VTy->getNumElements())
          return 0;
        if (ConstantVector *CP = dyn_cast<ConstantVector>(C))
          C = CP->getOperand(CI->getZExtValue());
        else if (isa<ConstantAggregateZero>(C))
          C = Constant::getNullValue(VTy->getElementType());
        else if (isa<UndefValue>(C))
          C = UndefValue::get(VTy->getElementType());
        else
          return 0;
      } else {
        return 0;
      }
    } else {
      return 0;
    }
  return C;
}


//===----------------------------------------------------------------------===//
//  Constant Folding for Calls
//

/// canConstantFoldCallTo - Return true if its even possible to fold a call to
/// the specified function.
bool
llvm::canConstantFoldCallTo(const Function *F) {
  switch (F->getIntrinsicID()) {
  case Intrinsic::sqrt:
  case Intrinsic::powi:
  case Intrinsic::bswap:
  case Intrinsic::ctpop:
  case Intrinsic::ctlz:
  case Intrinsic::cttz:
  case Intrinsic::uadd_with_overflow:
  case Intrinsic::usub_with_overflow:
  case Intrinsic::sadd_with_overflow:
  case Intrinsic::ssub_with_overflow:
  case Intrinsic::convert_from_fp16:
  case Intrinsic::convert_to_fp16:
    return true;
  default:
    return false;
  case 0: break;
  }

  if (!F->hasName()) return false;
  StringRef Name = F->getName();
  
  // In these cases, the check of the length is required.  We don't want to
  // return true for a name like "cos\0blah" which strcmp would return equal to
  // "cos", but has length 8.
  switch (Name[0]) {
  default: return false;
  case 'a':
    return Name == "acos" || Name == "asin" || 
      Name == "atan" || Name == "atan2";
  case 'c':
    return Name == "cos" || Name == "ceil" || Name == "cosf" || Name == "cosh";
  case 'e':
    return Name == "exp";
  case 'f':
    return Name == "fabs" || Name == "fmod" || Name == "floor";
  case 'l':
    return Name == "log" || Name == "log10";
  case 'p':
    return Name == "pow";
  case 's':
    return Name == "sin" || Name == "sinh" || Name == "sqrt" ||
      Name == "sinf" || Name == "sqrtf";
  case 't':
    return Name == "tan" || Name == "tanh";
  }
}

static Constant *ConstantFoldFP(double (*NativeFP)(double), double V, 
                                const Type *Ty) {
  errno = 0;
  V = NativeFP(V);
  if (errno != 0) {
    errno = 0;
    return 0;
  }
  
  if (Ty->isFloatTy())
    return ConstantFP::get(Ty->getContext(), APFloat((float)V));
  if (Ty->isDoubleTy())
    return ConstantFP::get(Ty->getContext(), APFloat(V));
  llvm_unreachable("Can only constant fold float/double");
  return 0; // dummy return to suppress warning
}

static Constant *ConstantFoldBinaryFP(double (*NativeFP)(double, double),
                                      double V, double W, const Type *Ty) {
  errno = 0;
  V = NativeFP(V, W);
  if (errno != 0) {
    errno = 0;
    return 0;
  }
  
  if (Ty->isFloatTy())
    return ConstantFP::get(Ty->getContext(), APFloat((float)V));
  if (Ty->isDoubleTy())
    return ConstantFP::get(Ty->getContext(), APFloat(V));
  llvm_unreachable("Can only constant fold float/double");
  return 0; // dummy return to suppress warning
}

/// ConstantFoldCall - Attempt to constant fold a call to the specified function
/// with the specified arguments, returning null if unsuccessful.
Constant *
llvm::ConstantFoldCall(Function *F, 
                       Constant *const *Operands, unsigned NumOperands) {
  if (!F->hasName()) return 0;
  StringRef Name = F->getName();

  const Type *Ty = F->getReturnType();
  if (NumOperands == 1) {
    if (ConstantFP *Op = dyn_cast<ConstantFP>(Operands[0])) {
      if (Name == "llvm.convert.to.fp16") {
        APFloat Val(Op->getValueAPF());

        bool lost = false;
        Val.convert(APFloat::IEEEhalf, APFloat::rmNearestTiesToEven, &lost);

        return ConstantInt::get(F->getContext(), Val.bitcastToAPInt());
      }

      if (!Ty->isFloatTy() && !Ty->isDoubleTy())
        return 0;
      /// Currently APFloat versions of these functions do not exist, so we use
      /// the host native double versions.  Float versions are not called
      /// directly but for all these it is true (float)(f((double)arg)) ==
      /// f(arg).  Long double not supported yet.
      double V = Ty->isFloatTy() ? (double)Op->getValueAPF().convertToFloat() :
                                     Op->getValueAPF().convertToDouble();
      switch (Name[0]) {
      case 'a':
        if (Name == "acos")
          return ConstantFoldFP(acos, V, Ty);
        else if (Name == "asin")
          return ConstantFoldFP(asin, V, Ty);
        else if (Name == "atan")
          return ConstantFoldFP(atan, V, Ty);
        break;
      case 'c':
        if (Name == "ceil")
          return ConstantFoldFP(ceil, V, Ty);
        else if (Name == "cos")
          return ConstantFoldFP(cos, V, Ty);
        else if (Name == "cosh")
          return ConstantFoldFP(cosh, V, Ty);
        else if (Name == "cosf")
          return ConstantFoldFP(cos, V, Ty);
        break;
      case 'e':
        if (Name == "exp")
          return ConstantFoldFP(exp, V, Ty);
        break;
      case 'f':
        if (Name == "fabs")
          return ConstantFoldFP(fabs, V, Ty);
        else if (Name == "floor")
          return ConstantFoldFP(floor, V, Ty);
        break;
      case 'l':
        if (Name == "log" && V > 0)
          return ConstantFoldFP(log, V, Ty);
        else if (Name == "log10" && V > 0)
          return ConstantFoldFP(log10, V, Ty);
        else if (Name == "llvm.sqrt.f32" ||
                 Name == "llvm.sqrt.f64") {
          if (V >= -0.0)
            return ConstantFoldFP(sqrt, V, Ty);
          else // Undefined
            return Constant::getNullValue(Ty);
        }
        break;
      case 's':
        if (Name == "sin")
          return ConstantFoldFP(sin, V, Ty);
        else if (Name == "sinh")
          return ConstantFoldFP(sinh, V, Ty);
        else if (Name == "sqrt" && V >= 0)
          return ConstantFoldFP(sqrt, V, Ty);
        else if (Name == "sqrtf" && V >= 0)
          return ConstantFoldFP(sqrt, V, Ty);
        else if (Name == "sinf")
          return ConstantFoldFP(sin, V, Ty);
        break;
      case 't':
        if (Name == "tan")
          return ConstantFoldFP(tan, V, Ty);
        else if (Name == "tanh")
          return ConstantFoldFP(tanh, V, Ty);
        break;
      default:
        break;
      }
      return 0;
    }
    
    
    if (ConstantInt *Op = dyn_cast<ConstantInt>(Operands[0])) {
      if (Name.startswith("llvm.bswap"))
        return ConstantInt::get(F->getContext(), Op->getValue().byteSwap());
      else if (Name.startswith("llvm.ctpop"))
        return ConstantInt::get(Ty, Op->getValue().countPopulation());
      else if (Name.startswith("llvm.cttz"))
        return ConstantInt::get(Ty, Op->getValue().countTrailingZeros());
      else if (Name.startswith("llvm.ctlz"))
        return ConstantInt::get(Ty, Op->getValue().countLeadingZeros());
      else if (Name == "llvm.convert.from.fp16") {
        APFloat Val(Op->getValue());

        bool lost = false;
        APFloat::opStatus status =
          Val.convert(APFloat::IEEEsingle, APFloat::rmNearestTiesToEven, &lost);

        // Conversion is always precise.
        status = status;
        assert(status == APFloat::opOK && !lost &&
               "Precision lost during fp16 constfolding");

        return ConstantFP::get(F->getContext(), Val);
      }
      return 0;
    }
    
    if (isa<UndefValue>(Operands[0])) {
      if (Name.startswith("llvm.bswap"))
        return Operands[0];
      return 0;
    }

    return 0;
  }
  
  if (NumOperands == 2) {
    if (ConstantFP *Op1 = dyn_cast<ConstantFP>(Operands[0])) {
      if (!Ty->isFloatTy() && !Ty->isDoubleTy())
        return 0;
      double Op1V = Ty->isFloatTy() ? 
                      (double)Op1->getValueAPF().convertToFloat() :
                      Op1->getValueAPF().convertToDouble();
      if (ConstantFP *Op2 = dyn_cast<ConstantFP>(Operands[1])) {
        if (Op2->getType() != Op1->getType())
          return 0;
        
        double Op2V = Ty->isFloatTy() ? 
                      (double)Op2->getValueAPF().convertToFloat():
                      Op2->getValueAPF().convertToDouble();

        if (Name == "pow")
          return ConstantFoldBinaryFP(pow, Op1V, Op2V, Ty);
        if (Name == "fmod")
          return ConstantFoldBinaryFP(fmod, Op1V, Op2V, Ty);
        if (Name == "atan2")
          return ConstantFoldBinaryFP(atan2, Op1V, Op2V, Ty);
      } else if (ConstantInt *Op2C = dyn_cast<ConstantInt>(Operands[1])) {
        if (Name == "llvm.powi.f32")
          return ConstantFP::get(F->getContext(),
                                 APFloat((float)std::pow((float)Op1V,
                                                 (int)Op2C->getZExtValue())));
        if (Name == "llvm.powi.f64")
          return ConstantFP::get(F->getContext(),
                                 APFloat((double)std::pow((double)Op1V,
                                                   (int)Op2C->getZExtValue())));
      }
      return 0;
    }
    
    
    if (ConstantInt *Op1 = dyn_cast<ConstantInt>(Operands[0])) {
      if (ConstantInt *Op2 = dyn_cast<ConstantInt>(Operands[1])) {
        switch (F->getIntrinsicID()) {
        default: break;
        case Intrinsic::uadd_with_overflow: {
          Constant *Res = ConstantExpr::getAdd(Op1, Op2);           // result.
          Constant *Ops[] = {
            Res, ConstantExpr::getICmp(CmpInst::ICMP_ULT, Res, Op1) // overflow.
          };
          return ConstantStruct::get(F->getContext(), Ops, 2, false);
        }
        case Intrinsic::usub_with_overflow: {
          Constant *Res = ConstantExpr::getSub(Op1, Op2);           // result.
          Constant *Ops[] = {
            Res, ConstantExpr::getICmp(CmpInst::ICMP_UGT, Res, Op1) // overflow.
          };
          return ConstantStruct::get(F->getContext(), Ops, 2, false);
        }
        case Intrinsic::sadd_with_overflow: {
          Constant *Res = ConstantExpr::getAdd(Op1, Op2);           // result.
          Constant *Overflow = ConstantExpr::getSelect(
              ConstantExpr::getICmp(CmpInst::ICMP_SGT,
                ConstantInt::get(Op1->getType(), 0), Op1),
              ConstantExpr::getICmp(CmpInst::ICMP_SGT, Res, Op2), 
              ConstantExpr::getICmp(CmpInst::ICMP_SLT, Res, Op2)); // overflow.

          Constant *Ops[] = { Res, Overflow };
          return ConstantStruct::get(F->getContext(), Ops, 2, false);
        }
        case Intrinsic::ssub_with_overflow: {
          Constant *Res = ConstantExpr::getSub(Op1, Op2);           // result.
          Constant *Overflow = ConstantExpr::getSelect(
              ConstantExpr::getICmp(CmpInst::ICMP_SGT,
                ConstantInt::get(Op2->getType(), 0), Op2),
              ConstantExpr::getICmp(CmpInst::ICMP_SLT, Res, Op1), 
              ConstantExpr::getICmp(CmpInst::ICMP_SGT, Res, Op1)); // overflow.

          Constant *Ops[] = { Res, Overflow };
          return ConstantStruct::get(F->getContext(), Ops, 2, false);
        }
        }
      }
      
      return 0;
    }
    return 0;
  }
  return 0;
}