llvm.org GIT mirror llvm / d0e93f2 lib / Target / X86 / X86InstrCompiler.td
d0e93f2

Tree @d0e93f2 (Download .tar.gz)

X86InstrCompiler.td @d0e93f2raw · history · blame

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
//===- X86InstrCompiler.td - Compiler Pseudos and Patterns -*- tablegen -*-===//
//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file describes the various pseudo instructions used by the compiler,
// as well as Pat patterns used during instruction selection.
//
//===----------------------------------------------------------------------===//

//===----------------------------------------------------------------------===//
// Pattern Matching Support

def GetLo32XForm : SDNodeXForm<imm, [{
  // Transformation function: get the low 32 bits.
  return getI32Imm((unsigned)N->getZExtValue());
}]>;

def GetLo8XForm : SDNodeXForm<imm, [{
  // Transformation function: get the low 8 bits.
  return getI8Imm((uint8_t)N->getZExtValue());
}]>;


//===----------------------------------------------------------------------===//
// Random Pseudo Instructions.

// PIC base construction.  This expands to code that looks like this:
//     call  $next_inst
//     popl %destreg"
let neverHasSideEffects = 1, isNotDuplicable = 1, Uses = [ESP] in
  def MOVPC32r : Ii32<0xE8, Pseudo, (outs GR32:$reg), (ins i32imm:$label),
                      "", []>;


// ADJCALLSTACKDOWN/UP implicitly use/def ESP because they may be expanded into
// a stack adjustment and the codegen must know that they may modify the stack
// pointer before prolog-epilog rewriting occurs.
// Pessimistically assume ADJCALLSTACKDOWN / ADJCALLSTACKUP will become
// sub / add which can clobber EFLAGS.
let Defs = [ESP, EFLAGS], Uses = [ESP] in {
def ADJCALLSTACKDOWN32 : I<0, Pseudo, (outs), (ins i32imm:$amt),
                           "#ADJCALLSTACKDOWN",
                           [(X86callseq_start timm:$amt)]>,
                          Requires<[Not64BitMode]>;
def ADJCALLSTACKUP32   : I<0, Pseudo, (outs), (ins i32imm:$amt1, i32imm:$amt2),
                           "#ADJCALLSTACKUP",
                           [(X86callseq_end timm:$amt1, timm:$amt2)]>,
                          Requires<[Not64BitMode]>;
}

// ADJCALLSTACKDOWN/UP implicitly use/def RSP because they may be expanded into
// a stack adjustment and the codegen must know that they may modify the stack
// pointer before prolog-epilog rewriting occurs.
// Pessimistically assume ADJCALLSTACKDOWN / ADJCALLSTACKUP will become
// sub / add which can clobber EFLAGS.
let Defs = [RSP, EFLAGS], Uses = [RSP] in {
def ADJCALLSTACKDOWN64 : I<0, Pseudo, (outs), (ins i32imm:$amt),
                           "#ADJCALLSTACKDOWN",
                           [(X86callseq_start timm:$amt)]>,
                          Requires<[In64BitMode]>;
def ADJCALLSTACKUP64   : I<0, Pseudo, (outs), (ins i32imm:$amt1, i32imm:$amt2),
                           "#ADJCALLSTACKUP",
                           [(X86callseq_end timm:$amt1, timm:$amt2)]>,
                          Requires<[In64BitMode]>;
}



// x86-64 va_start lowering magic.
let usesCustomInserter = 1, Defs = [EFLAGS] in {
def VASTART_SAVE_XMM_REGS : I<0, Pseudo,
                              (outs),
                              (ins GR8:$al,
                                   i64imm:$regsavefi, i64imm:$offset,
                                   variable_ops),
                              "#VASTART_SAVE_XMM_REGS $al, $regsavefi, $offset",
                              [(X86vastart_save_xmm_regs GR8:$al,
                                                         imm:$regsavefi,
                                                         imm:$offset),
                               (implicit EFLAGS)]>;

// The VAARG_64 pseudo-instruction takes the address of the va_list,
// and places the address of the next argument into a register.
let Defs = [EFLAGS] in
def VAARG_64 : I<0, Pseudo,
                 (outs GR64:$dst),
                 (ins i8mem:$ap, i32imm:$size, i8imm:$mode, i32imm:$align),
                 "#VAARG_64 $dst, $ap, $size, $mode, $align",
                 [(set GR64:$dst,
                    (X86vaarg64 addr:$ap, imm:$size, imm:$mode, imm:$align)),
                  (implicit EFLAGS)]>;

// Dynamic stack allocation yields a _chkstk or _alloca call for all Windows
// targets.  These calls are needed to probe the stack when allocating more than
// 4k bytes in one go. Touching the stack at 4K increments is necessary to
// ensure that the guard pages used by the OS virtual memory manager are
// allocated in correct sequence.
// The main point of having separate instruction are extra unmodelled effects
// (compared to ordinary calls) like stack pointer change.

let Defs = [EAX, ESP, EFLAGS], Uses = [ESP] in
  def WIN_ALLOCA : I<0, Pseudo, (outs), (ins),
                     "# dynamic stack allocation",
                     [(X86WinAlloca)]>;

// When using segmented stacks these are lowered into instructions which first
// check if the current stacklet has enough free memory. If it does, memory is
// allocated by bumping the stack pointer. Otherwise memory is allocated from 
// the heap.

let Defs = [EAX, ESP, EFLAGS], Uses = [ESP] in
def SEG_ALLOCA_32 : I<0, Pseudo, (outs GR32:$dst), (ins GR32:$size),
                      "# variable sized alloca for segmented stacks",
                      [(set GR32:$dst,
                         (X86SegAlloca GR32:$size))]>,
                    Requires<[Not64BitMode]>;

let Defs = [RAX, RSP, EFLAGS], Uses = [RSP] in
def SEG_ALLOCA_64 : I<0, Pseudo, (outs GR64:$dst), (ins GR64:$size),
                      "# variable sized alloca for segmented stacks",
                      [(set GR64:$dst,
                         (X86SegAlloca GR64:$size))]>,
                    Requires<[In64BitMode]>;
}

// The MSVC runtime contains an _ftol2 routine for converting floating-point
// to integer values. It has a strange calling convention: the input is
// popped from the x87 stack, and the return value is given in EDX:EAX. ECX is
// used as a temporary register. No other registers (aside from flags) are
// touched.
// Microsoft toolchains do not support 80-bit precision, so a WIN_FTOL_80
// variant is unnecessary.

let Defs = [EAX, EDX, ECX, EFLAGS], FPForm = SpecialFP in {
  def WIN_FTOL_32 : I<0, Pseudo, (outs), (ins RFP32:$src),
                      "# win32 fptoui",
                      [(X86WinFTOL RFP32:$src)]>,
                    Requires<[Not64BitMode]>;

  def WIN_FTOL_64 : I<0, Pseudo, (outs), (ins RFP64:$src),
                      "# win32 fptoui",
                      [(X86WinFTOL RFP64:$src)]>,
                    Requires<[Not64BitMode]>;
}

//===----------------------------------------------------------------------===//
// EH Pseudo Instructions
//
let SchedRW = [WriteSystem] in {
let isTerminator = 1, isReturn = 1, isBarrier = 1,
    hasCtrlDep = 1, isCodeGenOnly = 1 in {
def EH_RETURN   : I<0xC3, RawFrm, (outs), (ins GR32:$addr),
                    "ret\t#eh_return, addr: $addr",
                    [(X86ehret GR32:$addr)], IIC_RET>, Sched<[WriteJumpLd]>;

}

let isTerminator = 1, isReturn = 1, isBarrier = 1,
    hasCtrlDep = 1, isCodeGenOnly = 1 in {
def EH_RETURN64   : I<0xC3, RawFrm, (outs), (ins GR64:$addr),
                     "ret\t#eh_return, addr: $addr",
                     [(X86ehret GR64:$addr)], IIC_RET>, Sched<[WriteJumpLd]>;

}

let hasSideEffects = 1, isBarrier = 1, isCodeGenOnly = 1,
    usesCustomInserter = 1 in {
  def EH_SjLj_SetJmp32  : I<0, Pseudo, (outs GR32:$dst), (ins i32mem:$buf),
                            "#EH_SJLJ_SETJMP32",
                            [(set GR32:$dst, (X86eh_sjlj_setjmp addr:$buf))]>,
                          Requires<[Not64BitMode]>;
  def EH_SjLj_SetJmp64  : I<0, Pseudo, (outs GR32:$dst), (ins i64mem:$buf),
                            "#EH_SJLJ_SETJMP64",
                            [(set GR32:$dst, (X86eh_sjlj_setjmp addr:$buf))]>,
                          Requires<[In64BitMode]>;
  let isTerminator = 1 in {
  def EH_SjLj_LongJmp32 : I<0, Pseudo, (outs), (ins i32mem:$buf),
                            "#EH_SJLJ_LONGJMP32",
                            [(X86eh_sjlj_longjmp addr:$buf)]>,
                          Requires<[Not64BitMode]>;
  def EH_SjLj_LongJmp64 : I<0, Pseudo, (outs), (ins i64mem:$buf),
                            "#EH_SJLJ_LONGJMP64",
                            [(X86eh_sjlj_longjmp addr:$buf)]>,
                          Requires<[In64BitMode]>;
  }
}
} // SchedRW

let isBranch = 1, isTerminator = 1, isCodeGenOnly = 1 in {
  def EH_SjLj_Setup : I<0, Pseudo, (outs), (ins brtarget:$dst),
                        "#EH_SjLj_Setup\t$dst", []>;
}

//===----------------------------------------------------------------------===//
// Pseudo instructions used by segmented stacks.
//

// This is lowered into a RET instruction by MCInstLower.  We need
// this so that we don't have to have a MachineBasicBlock which ends
// with a RET and also has successors.
let isPseudo = 1 in {
def MORESTACK_RET: I<0, Pseudo, (outs), (ins),
                          "", []>;

// This instruction is lowered to a RET followed by a MOV.  The two
// instructions are not generated on a higher level since then the
// verifier sees a MachineBasicBlock ending with a non-terminator.
def MORESTACK_RET_RESTORE_R10 : I<0, Pseudo, (outs), (ins),
                                  "", []>;
}

//===----------------------------------------------------------------------===//
// Alias Instructions
//===----------------------------------------------------------------------===//

// Alias instruction mapping movr0 to xor.
// FIXME: remove when we can teach regalloc that xor reg, reg is ok.
let Defs = [EFLAGS], isReMaterializable = 1, isAsCheapAsAMove = 1,
    isPseudo = 1 in
def MOV32r0  : I<0, Pseudo, (outs GR32:$dst), (ins), "",
                 [(set GR32:$dst, 0)], IIC_ALU_NONMEM>, Sched<[WriteZero]>;

// Other widths can also make use of the 32-bit xor, which may have a smaller
// encoding and avoid partial register updates.
def : Pat<(i8 0), (EXTRACT_SUBREG (MOV32r0), sub_8bit)>;
def : Pat<(i16 0), (EXTRACT_SUBREG (MOV32r0), sub_16bit)>;
def : Pat<(i64 0), (SUBREG_TO_REG (i64 0), (MOV32r0), sub_32bit)> {
  let AddedComplexity = 20;
}

// Materialize i64 constant where top 32-bits are zero. This could theoretically
// use MOV32ri with a SUBREG_TO_REG to represent the zero-extension, however
// that would make it more difficult to rematerialize.
let AddedComplexity = 1, isReMaterializable = 1, isAsCheapAsAMove = 1,
    isCodeGenOnly = 1, neverHasSideEffects = 1 in
def MOV32ri64 : Ii32<0xb8, AddRegFrm, (outs GR32:$dst), (ins i64i32imm:$src),
                     "", [], IIC_ALU_NONMEM>, Sched<[WriteALU]>;

// This 64-bit pseudo-move can be used for both a 64-bit constant that is
// actually the zero-extension of a 32-bit constant, and for labels in the
// x86-64 small code model.
def mov64imm32 : ComplexPattern<i64, 1, "SelectMOV64Imm32", [imm, X86Wrapper]>;

let AddedComplexity = 1 in
def : Pat<(i64 mov64imm32:$src),
          (SUBREG_TO_REG (i64 0), (MOV32ri64 mov64imm32:$src), sub_32bit)>;

// Use sbb to materialize carry bit.
let Uses = [EFLAGS], Defs = [EFLAGS], isPseudo = 1, SchedRW = [WriteALU] in {
// FIXME: These are pseudo ops that should be replaced with Pat<> patterns.
// However, Pat<> can't replicate the destination reg into the inputs of the
// result.
def SETB_C8r : I<0, Pseudo, (outs GR8:$dst), (ins), "",
                 [(set GR8:$dst, (X86setcc_c X86_COND_B, EFLAGS))]>;
def SETB_C16r : I<0, Pseudo, (outs GR16:$dst), (ins), "",
                 [(set GR16:$dst, (X86setcc_c X86_COND_B, EFLAGS))]>;
def SETB_C32r : I<0, Pseudo, (outs GR32:$dst), (ins), "",
                 [(set GR32:$dst, (X86setcc_c X86_COND_B, EFLAGS))]>;
def SETB_C64r : I<0, Pseudo, (outs GR64:$dst), (ins), "",
                 [(set GR64:$dst, (X86setcc_c X86_COND_B, EFLAGS))]>;
} // isCodeGenOnly


def : Pat<(i16 (anyext (i8 (X86setcc_c X86_COND_B, EFLAGS)))),
          (SETB_C16r)>;
def : Pat<(i32 (anyext (i8 (X86setcc_c X86_COND_B, EFLAGS)))),
          (SETB_C32r)>;
def : Pat<(i64 (anyext (i8 (X86setcc_c X86_COND_B, EFLAGS)))),
          (SETB_C64r)>;

def : Pat<(i16 (sext (i8 (X86setcc_c X86_COND_B, EFLAGS)))),
          (SETB_C16r)>;
def : Pat<(i32 (sext (i8 (X86setcc_c X86_COND_B, EFLAGS)))),
          (SETB_C32r)>;
def : Pat<(i64 (sext (i8 (X86setcc_c X86_COND_B, EFLAGS)))),
          (SETB_C64r)>;

// We canonicalize 'setb' to "(and (sbb reg,reg), 1)" on the hope that the and
// will be eliminated and that the sbb can be extended up to a wider type.  When
// this happens, it is great.  However, if we are left with an 8-bit sbb and an
// and, we might as well just match it as a setb.
def : Pat<(and (i8 (X86setcc_c X86_COND_B, EFLAGS)), 1),
          (SETBr)>;

// (add OP, SETB) -> (adc OP, 0)
def : Pat<(add (and (i8 (X86setcc_c X86_COND_B, EFLAGS)), 1), GR8:$op),
          (ADC8ri GR8:$op, 0)>;
def : Pat<(add (and (i32 (X86setcc_c X86_COND_B, EFLAGS)), 1), GR32:$op),
          (ADC32ri8 GR32:$op, 0)>;
def : Pat<(add (and (i64 (X86setcc_c X86_COND_B, EFLAGS)), 1), GR64:$op),
          (ADC64ri8 GR64:$op, 0)>;

// (sub OP, SETB) -> (sbb OP, 0)
def : Pat<(sub GR8:$op, (and (i8 (X86setcc_c X86_COND_B, EFLAGS)), 1)),
          (SBB8ri GR8:$op, 0)>;
def : Pat<(sub GR32:$op, (and (i32 (X86setcc_c X86_COND_B, EFLAGS)), 1)),
          (SBB32ri8 GR32:$op, 0)>;
def : Pat<(sub GR64:$op, (and (i64 (X86setcc_c X86_COND_B, EFLAGS)), 1)),
          (SBB64ri8 GR64:$op, 0)>;

// (sub OP, SETCC_CARRY) -> (adc OP, 0)
def : Pat<(sub GR8:$op, (i8 (X86setcc_c X86_COND_B, EFLAGS))),
          (ADC8ri GR8:$op, 0)>;
def : Pat<(sub GR32:$op, (i32 (X86setcc_c X86_COND_B, EFLAGS))),
          (ADC32ri8 GR32:$op, 0)>;
def : Pat<(sub GR64:$op, (i64 (X86setcc_c X86_COND_B, EFLAGS))),
          (ADC64ri8 GR64:$op, 0)>;

//===----------------------------------------------------------------------===//
// String Pseudo Instructions
//
let SchedRW = [WriteMicrocoded] in {
let Defs = [ECX,EDI,ESI], Uses = [ECX,EDI,ESI], isCodeGenOnly = 1 in {
def REP_MOVSB_32 : I<0xA4, RawFrm, (outs), (ins), "{rep;movsb|rep movsb}",
                    [(X86rep_movs i8)], IIC_REP_MOVS>, REP,
                   Requires<[Not64BitMode]>;
def REP_MOVSW_32 : I<0xA5, RawFrm, (outs), (ins), "{rep;movsw|rep movsw}",
                    [(X86rep_movs i16)], IIC_REP_MOVS>, REP, OpSize16,
                   Requires<[Not64BitMode]>;
def REP_MOVSD_32 : I<0xA5, RawFrm, (outs), (ins), "{rep;movsl|rep movsd}",
                    [(X86rep_movs i32)], IIC_REP_MOVS>, REP, OpSize32,
                   Requires<[Not64BitMode]>;
}

let Defs = [RCX,RDI,RSI], Uses = [RCX,RDI,RSI], isCodeGenOnly = 1 in {
def REP_MOVSB_64 : I<0xA4, RawFrm, (outs), (ins), "{rep;movsb|rep movsb}",
                    [(X86rep_movs i8)], IIC_REP_MOVS>, REP,
                   Requires<[In64BitMode]>;
def REP_MOVSW_64 : I<0xA5, RawFrm, (outs), (ins), "{rep;movsw|rep movsw}",
                    [(X86rep_movs i16)], IIC_REP_MOVS>, REP, OpSize16,
                   Requires<[In64BitMode]>;
def REP_MOVSD_64 : I<0xA5, RawFrm, (outs), (ins), "{rep;movsl|rep movsd}",
                    [(X86rep_movs i32)], IIC_REP_MOVS>, REP, OpSize32,
                   Requires<[In64BitMode]>;
def REP_MOVSQ_64 : RI<0xA5, RawFrm, (outs), (ins), "{rep;movsq|rep movsq}",
                    [(X86rep_movs i64)], IIC_REP_MOVS>, REP,
                   Requires<[In64BitMode]>;
}

// FIXME: Should use "(X86rep_stos AL)" as the pattern.
let Defs = [ECX,EDI], isCodeGenOnly = 1 in {
  let Uses = [AL,ECX,EDI] in
  def REP_STOSB_32 : I<0xAA, RawFrm, (outs), (ins), "{rep;stosb|rep stosb}",
                      [(X86rep_stos i8)], IIC_REP_STOS>, REP,
                     Requires<[Not64BitMode]>;
  let Uses = [AX,ECX,EDI] in
  def REP_STOSW_32 : I<0xAB, RawFrm, (outs), (ins), "{rep;stosw|rep stosw}",
                      [(X86rep_stos i16)], IIC_REP_STOS>, REP, OpSize16,
                     Requires<[Not64BitMode]>;
  let Uses = [EAX,ECX,EDI] in
  def REP_STOSD_32 : I<0xAB, RawFrm, (outs), (ins), "{rep;stosl|rep stosd}",
                      [(X86rep_stos i32)], IIC_REP_STOS>, REP, OpSize32,
                     Requires<[Not64BitMode]>;
}

let Defs = [RCX,RDI], isCodeGenOnly = 1 in {
  let Uses = [AL,RCX,RDI] in
  def REP_STOSB_64 : I<0xAA, RawFrm, (outs), (ins), "{rep;stosb|rep stosb}",
                      [(X86rep_stos i8)], IIC_REP_STOS>, REP,
                     Requires<[In64BitMode]>;
  let Uses = [AX,RCX,RDI] in
  def REP_STOSW_64 : I<0xAB, RawFrm, (outs), (ins), "{rep;stosw|rep stosw}",
                      [(X86rep_stos i16)], IIC_REP_STOS>, REP, OpSize16,
                     Requires<[In64BitMode]>;
  let Uses = [RAX,RCX,RDI] in
  def REP_STOSD_64 : I<0xAB, RawFrm, (outs), (ins), "{rep;stosl|rep stosd}",
                      [(X86rep_stos i32)], IIC_REP_STOS>, REP, OpSize32,
                     Requires<[In64BitMode]>;
 
  let Uses = [RAX,RCX,RDI] in
  def REP_STOSQ_64 : RI<0xAB, RawFrm, (outs), (ins), "{rep;stosq|rep stosq}",
                      [(X86rep_stos i64)], IIC_REP_STOS>, REP,
                     Requires<[In64BitMode]>;
}
} // SchedRW

//===----------------------------------------------------------------------===//
// Thread Local Storage Instructions
//

// ELF TLS Support
// All calls clobber the non-callee saved registers. ESP is marked as
// a use to prevent stack-pointer assignments that appear immediately
// before calls from potentially appearing dead.
let Defs = [EAX, ECX, EDX, FP0, FP1, FP2, FP3, FP4, FP5, FP6, ST0,
            MM0, MM1, MM2, MM3, MM4, MM5, MM6, MM7,
            XMM0, XMM1, XMM2, XMM3, XMM4, XMM5, XMM6, XMM7,
            XMM8, XMM9, XMM10, XMM11, XMM12, XMM13, XMM14, XMM15, EFLAGS],
    Uses = [ESP] in {
def TLS_addr32 : I<0, Pseudo, (outs), (ins i32mem:$sym),
                  "# TLS_addr32",
                  [(X86tlsaddr tls32addr:$sym)]>,
                  Requires<[Not64BitMode]>;
def TLS_base_addr32 : I<0, Pseudo, (outs), (ins i32mem:$sym),
                  "# TLS_base_addr32",
                  [(X86tlsbaseaddr tls32baseaddr:$sym)]>,
                  Requires<[Not64BitMode]>;
}

// All calls clobber the non-callee saved registers. RSP is marked as
// a use to prevent stack-pointer assignments that appear immediately
// before calls from potentially appearing dead.
let Defs = [RAX, RCX, RDX, RSI, RDI, R8, R9, R10, R11,
            FP0, FP1, FP2, FP3, FP4, FP5, FP6, ST0, ST1,
            MM0, MM1, MM2, MM3, MM4, MM5, MM6, MM7,
            XMM0, XMM1, XMM2, XMM3, XMM4, XMM5, XMM6, XMM7,
            XMM8, XMM9, XMM10, XMM11, XMM12, XMM13, XMM14, XMM15, EFLAGS],
    Uses = [RSP] in {
def TLS_addr64 : I<0, Pseudo, (outs), (ins i64mem:$sym),
                   "# TLS_addr64",
                  [(X86tlsaddr tls64addr:$sym)]>,
                  Requires<[In64BitMode]>;
def TLS_base_addr64 : I<0, Pseudo, (outs), (ins i64mem:$sym),
                   "# TLS_base_addr64",
                  [(X86tlsbaseaddr tls64baseaddr:$sym)]>,
                  Requires<[In64BitMode]>;
}

// Darwin TLS Support
// For i386, the address of the thunk is passed on the stack, on return the
// address of the variable is in %eax.  %ecx is trashed during the function
// call.  All other registers are preserved.
let Defs = [EAX, ECX, EFLAGS],
    Uses = [ESP],
    usesCustomInserter = 1 in
def TLSCall_32 : I<0, Pseudo, (outs), (ins i32mem:$sym),
                "# TLSCall_32",
                [(X86TLSCall addr:$sym)]>,
                Requires<[Not64BitMode]>;

// For x86_64, the address of the thunk is passed in %rdi, on return
// the address of the variable is in %rax.  All other registers are preserved.
let Defs = [RAX, EFLAGS],
    Uses = [RSP, RDI],
    usesCustomInserter = 1 in
def TLSCall_64 : I<0, Pseudo, (outs), (ins i64mem:$sym),
                  "# TLSCall_64",
                  [(X86TLSCall addr:$sym)]>,
                  Requires<[In64BitMode]>;


//===----------------------------------------------------------------------===//
// Conditional Move Pseudo Instructions

// X86 doesn't have 8-bit conditional moves. Use a customInserter to
// emit control flow. An alternative to this is to mark i8 SELECT as Promote,
// however that requires promoting the operands, and can induce additional
// i8 register pressure.
let usesCustomInserter = 1, Uses = [EFLAGS] in {
def CMOV_GR8 : I<0, Pseudo,
                 (outs GR8:$dst), (ins GR8:$src1, GR8:$src2, i8imm:$cond),
                 "#CMOV_GR8 PSEUDO!",
                 [(set GR8:$dst, (X86cmov GR8:$src1, GR8:$src2,
                                          imm:$cond, EFLAGS))]>;

let Predicates = [NoCMov] in {
def CMOV_GR32 : I<0, Pseudo,
                    (outs GR32:$dst), (ins GR32:$src1, GR32:$src2, i8imm:$cond),
                    "#CMOV_GR32* PSEUDO!",
                    [(set GR32:$dst,
                      (X86cmov GR32:$src1, GR32:$src2, imm:$cond, EFLAGS))]>;
def CMOV_GR16 : I<0, Pseudo,
                    (outs GR16:$dst), (ins GR16:$src1, GR16:$src2, i8imm:$cond),
                    "#CMOV_GR16* PSEUDO!",
                    [(set GR16:$dst,
                      (X86cmov GR16:$src1, GR16:$src2, imm:$cond, EFLAGS))]>;
} // Predicates = [NoCMov]

// fcmov doesn't handle all possible EFLAGS, provide a fallback if there is no
// SSE1.
let Predicates = [FPStackf32] in
def CMOV_RFP32 : I<0, Pseudo,
                    (outs RFP32:$dst),
                    (ins RFP32:$src1, RFP32:$src2, i8imm:$cond),
                    "#CMOV_RFP32 PSEUDO!",
                    [(set RFP32:$dst,
                      (X86cmov RFP32:$src1, RFP32:$src2, imm:$cond,
                                                  EFLAGS))]>;
// fcmov doesn't handle all possible EFLAGS, provide a fallback if there is no
// SSE2.
let Predicates = [FPStackf64] in
def CMOV_RFP64 : I<0, Pseudo,
                    (outs RFP64:$dst),
                    (ins RFP64:$src1, RFP64:$src2, i8imm:$cond),
                    "#CMOV_RFP64 PSEUDO!",
                    [(set RFP64:$dst,
                      (X86cmov RFP64:$src1, RFP64:$src2, imm:$cond,
                                                  EFLAGS))]>;
def CMOV_RFP80 : I<0, Pseudo,
                    (outs RFP80:$dst),
                    (ins RFP80:$src1, RFP80:$src2, i8imm:$cond),
                    "#CMOV_RFP80 PSEUDO!",
                    [(set RFP80:$dst,
                      (X86cmov RFP80:$src1, RFP80:$src2, imm:$cond,
                                                  EFLAGS))]>;
} // UsesCustomInserter = 1, Uses = [EFLAGS]


//===----------------------------------------------------------------------===//
// Atomic Instruction Pseudo Instructions
//===----------------------------------------------------------------------===//

// Pseudo atomic instructions

multiclass PSEUDO_ATOMIC_LOAD_BINOP<string mnemonic> {
  let usesCustomInserter = 1, mayLoad = 1, mayStore = 1 in {
    let Defs = [EFLAGS, AL] in
    def NAME#8  : I<0, Pseudo, (outs GR8:$dst),
                    (ins i8mem:$ptr, GR8:$val),
                    !strconcat(mnemonic, "8 PSEUDO!"), []>;
    let Defs = [EFLAGS, AX] in
    def NAME#16 : I<0, Pseudo,(outs GR16:$dst),
                    (ins i16mem:$ptr, GR16:$val),
                    !strconcat(mnemonic, "16 PSEUDO!"), []>;
    let Defs = [EFLAGS, EAX] in
    def NAME#32 : I<0, Pseudo, (outs GR32:$dst),
                    (ins i32mem:$ptr, GR32:$val),
                    !strconcat(mnemonic, "32 PSEUDO!"), []>;
    let Defs = [EFLAGS, RAX] in
    def NAME#64 : I<0, Pseudo, (outs GR64:$dst),
                    (ins i64mem:$ptr, GR64:$val),
                    !strconcat(mnemonic, "64 PSEUDO!"), []>;
  }
}

multiclass PSEUDO_ATOMIC_LOAD_BINOP_PATS<string name, string frag> {
  def : Pat<(!cast<PatFrag>(frag # "_8") addr:$ptr, GR8:$val),
            (!cast<Instruction>(name # "8") addr:$ptr, GR8:$val)>;
  def : Pat<(!cast<PatFrag>(frag # "_16") addr:$ptr, GR16:$val),
            (!cast<Instruction>(name # "16") addr:$ptr, GR16:$val)>;
  def : Pat<(!cast<PatFrag>(frag # "_32") addr:$ptr, GR32:$val),
            (!cast<Instruction>(name # "32") addr:$ptr, GR32:$val)>;
  def : Pat<(!cast<PatFrag>(frag # "_64") addr:$ptr, GR64:$val),
            (!cast<Instruction>(name # "64") addr:$ptr, GR64:$val)>;
}

// Atomic exchange, and, or, xor
defm ATOMAND  : PSEUDO_ATOMIC_LOAD_BINOP<"#ATOMAND">;
defm ATOMOR   : PSEUDO_ATOMIC_LOAD_BINOP<"#ATOMOR">;
defm ATOMXOR  : PSEUDO_ATOMIC_LOAD_BINOP<"#ATOMXOR">;
defm ATOMNAND : PSEUDO_ATOMIC_LOAD_BINOP<"#ATOMNAND">;
defm ATOMMAX  : PSEUDO_ATOMIC_LOAD_BINOP<"#ATOMMAX">;
defm ATOMMIN  : PSEUDO_ATOMIC_LOAD_BINOP<"#ATOMMIN">;
defm ATOMUMAX : PSEUDO_ATOMIC_LOAD_BINOP<"#ATOMUMAX">;
defm ATOMUMIN : PSEUDO_ATOMIC_LOAD_BINOP<"#ATOMUMIN">;

defm : PSEUDO_ATOMIC_LOAD_BINOP_PATS<"ATOMAND",  "atomic_load_and">;
defm : PSEUDO_ATOMIC_LOAD_BINOP_PATS<"ATOMOR",   "atomic_load_or">;
defm : PSEUDO_ATOMIC_LOAD_BINOP_PATS<"ATOMXOR",  "atomic_load_xor">;
defm : PSEUDO_ATOMIC_LOAD_BINOP_PATS<"ATOMNAND", "atomic_load_nand">;
defm : PSEUDO_ATOMIC_LOAD_BINOP_PATS<"ATOMMAX",  "atomic_load_max">;
defm : PSEUDO_ATOMIC_LOAD_BINOP_PATS<"ATOMMIN",  "atomic_load_min">;
defm : PSEUDO_ATOMIC_LOAD_BINOP_PATS<"ATOMUMAX", "atomic_load_umax">;
defm : PSEUDO_ATOMIC_LOAD_BINOP_PATS<"ATOMUMIN", "atomic_load_umin">;

multiclass PSEUDO_ATOMIC_LOAD_BINOP6432<string mnemonic> {
  let usesCustomInserter = 1, Defs = [EFLAGS, EAX, EDX],
      mayLoad = 1, mayStore = 1, hasSideEffects = 0 in
    def NAME#6432 : I<0, Pseudo, (outs GR32:$dst1, GR32:$dst2),
                      (ins i64mem:$ptr, GR32:$val1, GR32:$val2),
                      !strconcat(mnemonic, "6432 PSEUDO!"), []>;
}

defm ATOMAND  : PSEUDO_ATOMIC_LOAD_BINOP6432<"#ATOMAND">;
defm ATOMOR   : PSEUDO_ATOMIC_LOAD_BINOP6432<"#ATOMOR">;
defm ATOMXOR  : PSEUDO_ATOMIC_LOAD_BINOP6432<"#ATOMXOR">;
defm ATOMNAND : PSEUDO_ATOMIC_LOAD_BINOP6432<"#ATOMNAND">;
defm ATOMADD  : PSEUDO_ATOMIC_LOAD_BINOP6432<"#ATOMADD">;
defm ATOMSUB  : PSEUDO_ATOMIC_LOAD_BINOP6432<"#ATOMSUB">;
defm ATOMMAX  : PSEUDO_ATOMIC_LOAD_BINOP6432<"#ATOMMAX">;
defm ATOMMIN  : PSEUDO_ATOMIC_LOAD_BINOP6432<"#ATOMMIN">;
defm ATOMUMAX : PSEUDO_ATOMIC_LOAD_BINOP6432<"#ATOMUMAX">;
defm ATOMUMIN : PSEUDO_ATOMIC_LOAD_BINOP6432<"#ATOMUMIN">;
defm ATOMSWAP : PSEUDO_ATOMIC_LOAD_BINOP6432<"#ATOMSWAP">;

//===----------------------------------------------------------------------===//
// Normal-Instructions-With-Lock-Prefix Pseudo Instructions
//===----------------------------------------------------------------------===//

// FIXME: Use normal instructions and add lock prefix dynamically.

// Memory barriers

// TODO: Get this to fold the constant into the instruction.
let isCodeGenOnly = 1, Defs = [EFLAGS] in
def OR32mrLocked  : I<0x09, MRMDestMem, (outs), (ins i32mem:$dst, GR32:$zero),
                      "or{l}\t{$zero, $dst|$dst, $zero}",
                      [], IIC_ALU_MEM>, Requires<[Not64BitMode]>, LOCK,
                    Sched<[WriteALULd, WriteRMW]>;

let hasSideEffects = 1 in
def Int_MemBarrier : I<0, Pseudo, (outs), (ins),
                     "#MEMBARRIER",
                     [(X86MemBarrier)]>, Sched<[WriteLoad]>;

// RegOpc corresponds to the mr version of the instruction
// ImmOpc corresponds to the mi version of the instruction
// ImmOpc8 corresponds to the mi8 version of the instruction
// ImmMod corresponds to the instruction format of the mi and mi8 versions
multiclass LOCK_ArithBinOp<bits<8> RegOpc, bits<8> ImmOpc, bits<8> ImmOpc8,
                           Format ImmMod, string mnemonic> {
let Defs = [EFLAGS], mayLoad = 1, mayStore = 1, isCodeGenOnly = 1,
    SchedRW = [WriteALULd, WriteRMW] in {

def NAME#8mr : I<{RegOpc{7}, RegOpc{6}, RegOpc{5}, RegOpc{4},
                  RegOpc{3}, RegOpc{2}, RegOpc{1}, 0 },
                  MRMDestMem, (outs), (ins i8mem:$dst, GR8:$src2),
                  !strconcat(mnemonic, "{b}\t",
                             "{$src2, $dst|$dst, $src2}"),
                  [], IIC_ALU_NONMEM>, LOCK;
def NAME#16mr : I<{RegOpc{7}, RegOpc{6}, RegOpc{5}, RegOpc{4},
                   RegOpc{3}, RegOpc{2}, RegOpc{1}, 1 },
                   MRMDestMem, (outs), (ins i16mem:$dst, GR16:$src2),
                   !strconcat(mnemonic, "{w}\t",
                              "{$src2, $dst|$dst, $src2}"),
                   [], IIC_ALU_NONMEM>, OpSize16, LOCK;
def NAME#32mr : I<{RegOpc{7}, RegOpc{6}, RegOpc{5}, RegOpc{4},
                   RegOpc{3}, RegOpc{2}, RegOpc{1}, 1 },
                   MRMDestMem, (outs), (ins i32mem:$dst, GR32:$src2),
                   !strconcat(mnemonic, "{l}\t",
                              "{$src2, $dst|$dst, $src2}"),
                   [], IIC_ALU_NONMEM>, OpSize32, LOCK;
def NAME#64mr : RI<{RegOpc{7}, RegOpc{6}, RegOpc{5}, RegOpc{4},
                    RegOpc{3}, RegOpc{2}, RegOpc{1}, 1 },
                    MRMDestMem, (outs), (ins i64mem:$dst, GR64:$src2),
                    !strconcat(mnemonic, "{q}\t",
                               "{$src2, $dst|$dst, $src2}"),
                    [], IIC_ALU_NONMEM>, LOCK;

def NAME#8mi : Ii8<{ImmOpc{7}, ImmOpc{6}, ImmOpc{5}, ImmOpc{4},
                    ImmOpc{3}, ImmOpc{2}, ImmOpc{1}, 0 },
                    ImmMod, (outs), (ins i8mem :$dst, i8imm :$src2),
                    !strconcat(mnemonic, "{b}\t",
                               "{$src2, $dst|$dst, $src2}"),
                    [], IIC_ALU_MEM>, LOCK;

def NAME#16mi : Ii16<{ImmOpc{7}, ImmOpc{6}, ImmOpc{5}, ImmOpc{4},
                      ImmOpc{3}, ImmOpc{2}, ImmOpc{1}, 1 },
                      ImmMod, (outs), (ins i16mem :$dst, i16imm :$src2),
                      !strconcat(mnemonic, "{w}\t",
                                 "{$src2, $dst|$dst, $src2}"),
                      [], IIC_ALU_MEM>, OpSize16, LOCK;

def NAME#32mi : Ii32<{ImmOpc{7}, ImmOpc{6}, ImmOpc{5}, ImmOpc{4},
                      ImmOpc{3}, ImmOpc{2}, ImmOpc{1}, 1 },
                      ImmMod, (outs), (ins i32mem :$dst, i32imm :$src2),
                      !strconcat(mnemonic, "{l}\t",
                                 "{$src2, $dst|$dst, $src2}"),
                      [], IIC_ALU_MEM>, OpSize32, LOCK;

def NAME#64mi32 : RIi32<{ImmOpc{7}, ImmOpc{6}, ImmOpc{5}, ImmOpc{4},
                         ImmOpc{3}, ImmOpc{2}, ImmOpc{1}, 1 },
                         ImmMod, (outs), (ins i64mem :$dst, i64i32imm :$src2),
                         !strconcat(mnemonic, "{q}\t",
                                    "{$src2, $dst|$dst, $src2}"),
                         [], IIC_ALU_MEM>, LOCK;

def NAME#16mi8 : Ii8<{ImmOpc8{7}, ImmOpc8{6}, ImmOpc8{5}, ImmOpc8{4},
                      ImmOpc8{3}, ImmOpc8{2}, ImmOpc8{1}, 1 },
                      ImmMod, (outs), (ins i16mem :$dst, i16i8imm :$src2),
                      !strconcat(mnemonic, "{w}\t",
                                 "{$src2, $dst|$dst, $src2}"),
                      [], IIC_ALU_MEM>, OpSize16, LOCK;
def NAME#32mi8 : Ii8<{ImmOpc8{7}, ImmOpc8{6}, ImmOpc8{5}, ImmOpc8{4},
                      ImmOpc8{3}, ImmOpc8{2}, ImmOpc8{1}, 1 },
                      ImmMod, (outs), (ins i32mem :$dst, i32i8imm :$src2),
                      !strconcat(mnemonic, "{l}\t",
                                 "{$src2, $dst|$dst, $src2}"),
                      [], IIC_ALU_MEM>, OpSize32, LOCK;
def NAME#64mi8 : RIi8<{ImmOpc8{7}, ImmOpc8{6}, ImmOpc8{5}, ImmOpc8{4},
                       ImmOpc8{3}, ImmOpc8{2}, ImmOpc8{1}, 1 },
                       ImmMod, (outs), (ins i64mem :$dst, i64i8imm :$src2),
                       !strconcat(mnemonic, "{q}\t",
                                  "{$src2, $dst|$dst, $src2}"),
                       [], IIC_ALU_MEM>, LOCK;

}

}

defm LOCK_ADD : LOCK_ArithBinOp<0x00, 0x80, 0x83, MRM0m, "add">;
defm LOCK_SUB : LOCK_ArithBinOp<0x28, 0x80, 0x83, MRM5m, "sub">;
defm LOCK_OR  : LOCK_ArithBinOp<0x08, 0x80, 0x83, MRM1m, "or">;
defm LOCK_AND : LOCK_ArithBinOp<0x20, 0x80, 0x83, MRM4m, "and">;
defm LOCK_XOR : LOCK_ArithBinOp<0x30, 0x80, 0x83, MRM6m, "xor">;

// Optimized codegen when the non-memory output is not used.
multiclass LOCK_ArithUnOp<bits<8> Opc8, bits<8> Opc, Format Form,
                          string mnemonic> {
let Defs = [EFLAGS], mayLoad = 1, mayStore = 1, isCodeGenOnly = 1,
    SchedRW = [WriteALULd, WriteRMW] in {

def NAME#8m  : I<Opc8, Form, (outs), (ins i8mem :$dst),
                 !strconcat(mnemonic, "{b}\t$dst"),
                 [], IIC_UNARY_MEM>, LOCK;
def NAME#16m : I<Opc, Form, (outs), (ins i16mem:$dst),
                 !strconcat(mnemonic, "{w}\t$dst"),
                 [], IIC_UNARY_MEM>, OpSize16, LOCK;
def NAME#32m : I<Opc, Form, (outs), (ins i32mem:$dst),
                 !strconcat(mnemonic, "{l}\t$dst"),
                 [], IIC_UNARY_MEM>, OpSize32, LOCK;
def NAME#64m : RI<Opc, Form, (outs), (ins i64mem:$dst),
                  !strconcat(mnemonic, "{q}\t$dst"),
                  [], IIC_UNARY_MEM>, LOCK;
}
}

defm LOCK_INC    : LOCK_ArithUnOp<0xFE, 0xFF, MRM0m, "inc">;
defm LOCK_DEC    : LOCK_ArithUnOp<0xFE, 0xFF, MRM1m, "dec">;

// Atomic compare and swap.
multiclass LCMPXCHG_UnOp<bits<8> Opc, Format Form, string mnemonic,
                         SDPatternOperator frag, X86MemOperand x86memop,
                         InstrItinClass itin> {
let isCodeGenOnly = 1 in {
  def NAME : I<Opc, Form, (outs), (ins x86memop:$ptr),
               !strconcat(mnemonic, "\t$ptr"),
               [(frag addr:$ptr)], itin>, TB, LOCK;
}
}

multiclass LCMPXCHG_BinOp<bits<8> Opc8, bits<8> Opc, Format Form,
                          string mnemonic, SDPatternOperator frag,
                          InstrItinClass itin8, InstrItinClass itin> {
let isCodeGenOnly = 1, SchedRW = [WriteALULd, WriteRMW] in {
  let Defs = [AL, EFLAGS], Uses = [AL] in
  def NAME#8  : I<Opc8, Form, (outs), (ins i8mem:$ptr, GR8:$swap),
                  !strconcat(mnemonic, "{b}\t{$swap, $ptr|$ptr, $swap}"),
                  [(frag addr:$ptr, GR8:$swap, 1)], itin8>, TB, LOCK;
  let Defs = [AX, EFLAGS], Uses = [AX] in
  def NAME#16 : I<Opc, Form, (outs), (ins i16mem:$ptr, GR16:$swap),
                  !strconcat(mnemonic, "{w}\t{$swap, $ptr|$ptr, $swap}"),
                  [(frag addr:$ptr, GR16:$swap, 2)], itin>, TB, OpSize16, LOCK;
  let Defs = [EAX, EFLAGS], Uses = [EAX] in
  def NAME#32 : I<Opc, Form, (outs), (ins i32mem:$ptr, GR32:$swap),
                  !strconcat(mnemonic, "{l}\t{$swap, $ptr|$ptr, $swap}"),
                  [(frag addr:$ptr, GR32:$swap, 4)], itin>, TB, OpSize32, LOCK;
  let Defs = [RAX, EFLAGS], Uses = [RAX] in
  def NAME#64 : RI<Opc, Form, (outs), (ins i64mem:$ptr, GR64:$swap),
                   !strconcat(mnemonic, "{q}\t{$swap, $ptr|$ptr, $swap}"),
                   [(frag addr:$ptr, GR64:$swap, 8)], itin>, TB, LOCK;
}
}

let Defs = [EAX, EDX, EFLAGS], Uses = [EAX, EBX, ECX, EDX],
    SchedRW = [WriteALULd, WriteRMW] in {
defm LCMPXCHG8B : LCMPXCHG_UnOp<0xC7, MRM1m, "cmpxchg8b",
                                X86cas8, i64mem,
                                IIC_CMPX_LOCK_8B>;
}

let Defs = [RAX, RDX, EFLAGS], Uses = [RAX, RBX, RCX, RDX],
    Predicates = [HasCmpxchg16b], SchedRW = [WriteALULd, WriteRMW] in {
defm LCMPXCHG16B : LCMPXCHG_UnOp<0xC7, MRM1m, "cmpxchg16b",
                                 X86cas16, i128mem,
                                 IIC_CMPX_LOCK_16B>, REX_W;
}

defm LCMPXCHG : LCMPXCHG_BinOp<0xB0, 0xB1, MRMDestMem, "cmpxchg",
                               X86cas, IIC_CMPX_LOCK_8, IIC_CMPX_LOCK>;

// Atomic exchange and add
multiclass ATOMIC_LOAD_BINOP<bits<8> opc8, bits<8> opc, string mnemonic,
                             string frag,
                             InstrItinClass itin8, InstrItinClass itin> {
  let Constraints = "$val = $dst", Defs = [EFLAGS], isCodeGenOnly = 1,
      SchedRW = [WriteALULd, WriteRMW] in {
    def NAME#8  : I<opc8, MRMSrcMem, (outs GR8:$dst),
                    (ins GR8:$val, i8mem:$ptr),
                    !strconcat(mnemonic, "{b}\t{$val, $ptr|$ptr, $val}"),
                    [(set GR8:$dst,
                          (!cast<PatFrag>(frag # "_8") addr:$ptr, GR8:$val))],
                    itin8>;
    def NAME#16 : I<opc, MRMSrcMem, (outs GR16:$dst),
                    (ins GR16:$val, i16mem:$ptr),
                    !strconcat(mnemonic, "{w}\t{$val, $ptr|$ptr, $val}"),
                    [(set
                       GR16:$dst,
                       (!cast<PatFrag>(frag # "_16") addr:$ptr, GR16:$val))],
                    itin>, OpSize16;
    def NAME#32 : I<opc, MRMSrcMem, (outs GR32:$dst),
                    (ins GR32:$val, i32mem:$ptr),
                    !strconcat(mnemonic, "{l}\t{$val, $ptr|$ptr, $val}"),
                    [(set
                       GR32:$dst,
                       (!cast<PatFrag>(frag # "_32") addr:$ptr, GR32:$val))],
                    itin>, OpSize32;
    def NAME#64 : RI<opc, MRMSrcMem, (outs GR64:$dst),
                     (ins GR64:$val, i64mem:$ptr),
                     !strconcat(mnemonic, "{q}\t{$val, $ptr|$ptr, $val}"),
                     [(set
                        GR64:$dst,
                        (!cast<PatFrag>(frag # "_64") addr:$ptr, GR64:$val))],
                     itin>;
  }
}

defm LXADD : ATOMIC_LOAD_BINOP<0xc0, 0xc1, "xadd", "atomic_load_add",
                               IIC_XADD_LOCK_MEM8, IIC_XADD_LOCK_MEM>,
             TB, LOCK;

def ACQUIRE_MOV8rm  : I<0, Pseudo, (outs GR8 :$dst), (ins i8mem :$src),
                      "#ACQUIRE_MOV PSEUDO!",
                      [(set GR8:$dst,  (atomic_load_8  addr:$src))]>;
def ACQUIRE_MOV16rm : I<0, Pseudo, (outs GR16:$dst), (ins i16mem:$src),
                      "#ACQUIRE_MOV PSEUDO!",
                      [(set GR16:$dst, (atomic_load_16 addr:$src))]>;
def ACQUIRE_MOV32rm : I<0, Pseudo, (outs GR32:$dst), (ins i32mem:$src),
                      "#ACQUIRE_MOV PSEUDO!",
                      [(set GR32:$dst, (atomic_load_32 addr:$src))]>;
def ACQUIRE_MOV64rm : I<0, Pseudo, (outs GR64:$dst), (ins i64mem:$src),
                      "#ACQUIRE_MOV PSEUDO!",
                      [(set GR64:$dst, (atomic_load_64 addr:$src))]>;

def RELEASE_MOV8mr  : I<0, Pseudo, (outs), (ins i8mem :$dst, GR8 :$src),
                        "#RELEASE_MOV PSEUDO!",
                        [(atomic_store_8  addr:$dst, GR8 :$src)]>;
def RELEASE_MOV16mr : I<0, Pseudo, (outs), (ins i16mem:$dst, GR16:$src),
                        "#RELEASE_MOV PSEUDO!",
                        [(atomic_store_16 addr:$dst, GR16:$src)]>;
def RELEASE_MOV32mr : I<0, Pseudo, (outs), (ins i32mem:$dst, GR32:$src),
                        "#RELEASE_MOV PSEUDO!",
                        [(atomic_store_32 addr:$dst, GR32:$src)]>;
def RELEASE_MOV64mr : I<0, Pseudo, (outs), (ins i64mem:$dst, GR64:$src),
                        "#RELEASE_MOV PSEUDO!",
                        [(atomic_store_64 addr:$dst, GR64:$src)]>;

//===----------------------------------------------------------------------===//
// Conditional Move Pseudo Instructions.
//===----------------------------------------------------------------------===//


// CMOV* - Used to implement the SSE SELECT DAG operation.  Expanded after
// instruction selection into a branch sequence.
let Uses = [EFLAGS], usesCustomInserter = 1 in {
  def CMOV_FR32 : I<0, Pseudo,
                    (outs FR32:$dst), (ins FR32:$t, FR32:$f, i8imm:$cond),
                    "#CMOV_FR32 PSEUDO!",
                    [(set FR32:$dst, (X86cmov FR32:$t, FR32:$f, imm:$cond,
                                                  EFLAGS))]>;
  def CMOV_FR64 : I<0, Pseudo,
                    (outs FR64:$dst), (ins FR64:$t, FR64:$f, i8imm:$cond),
                    "#CMOV_FR64 PSEUDO!",
                    [(set FR64:$dst, (X86cmov FR64:$t, FR64:$f, imm:$cond,
                                                  EFLAGS))]>;
  def CMOV_V4F32 : I<0, Pseudo,
                    (outs VR128:$dst), (ins VR128:$t, VR128:$f, i8imm:$cond),
                    "#CMOV_V4F32 PSEUDO!",
                    [(set VR128:$dst,
                      (v4f32 (X86cmov VR128:$t, VR128:$f, imm:$cond,
                                          EFLAGS)))]>;
  def CMOV_V2F64 : I<0, Pseudo,
                    (outs VR128:$dst), (ins VR128:$t, VR128:$f, i8imm:$cond),
                    "#CMOV_V2F64 PSEUDO!",
                    [(set VR128:$dst,
                      (v2f64 (X86cmov VR128:$t, VR128:$f, imm:$cond,
                                          EFLAGS)))]>;
  def CMOV_V2I64 : I<0, Pseudo,
                    (outs VR128:$dst), (ins VR128:$t, VR128:$f, i8imm:$cond),
                    "#CMOV_V2I64 PSEUDO!",
                    [(set VR128:$dst,
                      (v2i64 (X86cmov VR128:$t, VR128:$f, imm:$cond,
                                          EFLAGS)))]>;
  def CMOV_V8F32 : I<0, Pseudo,
                    (outs VR256:$dst), (ins VR256:$t, VR256:$f, i8imm:$cond),
                    "#CMOV_V8F32 PSEUDO!",
                    [(set VR256:$dst,
                      (v8f32 (X86cmov VR256:$t, VR256:$f, imm:$cond,
                                          EFLAGS)))]>;
  def CMOV_V4F64 : I<0, Pseudo,
                    (outs VR256:$dst), (ins VR256:$t, VR256:$f, i8imm:$cond),
                    "#CMOV_V4F64 PSEUDO!",
                    [(set VR256:$dst,
                      (v4f64 (X86cmov VR256:$t, VR256:$f, imm:$cond,
                                          EFLAGS)))]>;
  def CMOV_V4I64 : I<0, Pseudo,
                    (outs VR256:$dst), (ins VR256:$t, VR256:$f, i8imm:$cond),
                    "#CMOV_V4I64 PSEUDO!",
                    [(set VR256:$dst,
                      (v4i64 (X86cmov VR256:$t, VR256:$f, imm:$cond,
                                          EFLAGS)))]>;
  def CMOV_V8I64 : I<0, Pseudo,
                    (outs VR512:$dst), (ins VR512:$t, VR512:$f, i8imm:$cond),
                    "#CMOV_V8I64 PSEUDO!",
                    [(set VR512:$dst,
                      (v8i64 (X86cmov VR512:$t, VR512:$f, imm:$cond,
                                          EFLAGS)))]>;
  def CMOV_V8F64 : I<0, Pseudo,
                    (outs VR512:$dst), (ins VR512:$t, VR512:$f, i8imm:$cond),
                    "#CMOV_V8F64 PSEUDO!",
                    [(set VR512:$dst,
                      (v8f64 (X86cmov VR512:$t, VR512:$f, imm:$cond,
                                          EFLAGS)))]>;
  def CMOV_V16F32 : I<0, Pseudo,
                    (outs VR512:$dst), (ins VR512:$t, VR512:$f, i8imm:$cond),
                    "#CMOV_V16F32 PSEUDO!",
                    [(set VR512:$dst,
                      (v16f32 (X86cmov VR512:$t, VR512:$f, imm:$cond,
                                          EFLAGS)))]>;
}


//===----------------------------------------------------------------------===//
// DAG Pattern Matching Rules
//===----------------------------------------------------------------------===//

// ConstantPool GlobalAddress, ExternalSymbol, and JumpTable
def : Pat<(i32 (X86Wrapper tconstpool  :$dst)), (MOV32ri tconstpool  :$dst)>;
def : Pat<(i32 (X86Wrapper tjumptable  :$dst)), (MOV32ri tjumptable  :$dst)>;
def : Pat<(i32 (X86Wrapper tglobaltlsaddr:$dst)),(MOV32ri tglobaltlsaddr:$dst)>;
def : Pat<(i32 (X86Wrapper tglobaladdr :$dst)), (MOV32ri tglobaladdr :$dst)>;
def : Pat<(i32 (X86Wrapper texternalsym:$dst)), (MOV32ri texternalsym:$dst)>;
def : Pat<(i32 (X86Wrapper tblockaddress:$dst)), (MOV32ri tblockaddress:$dst)>;

def : Pat<(add GR32:$src1, (X86Wrapper tconstpool:$src2)),
          (ADD32ri GR32:$src1, tconstpool:$src2)>;
def : Pat<(add GR32:$src1, (X86Wrapper tjumptable:$src2)),
          (ADD32ri GR32:$src1, tjumptable:$src2)>;
def : Pat<(add GR32:$src1, (X86Wrapper tglobaladdr :$src2)),
          (ADD32ri GR32:$src1, tglobaladdr:$src2)>;
def : Pat<(add GR32:$src1, (X86Wrapper texternalsym:$src2)),
          (ADD32ri GR32:$src1, texternalsym:$src2)>;
def : Pat<(add GR32:$src1, (X86Wrapper tblockaddress:$src2)),
          (ADD32ri GR32:$src1, tblockaddress:$src2)>;

def : Pat<(store (i32 (X86Wrapper tglobaladdr:$src)), addr:$dst),
          (MOV32mi addr:$dst, tglobaladdr:$src)>;
def : Pat<(store (i32 (X86Wrapper texternalsym:$src)), addr:$dst),
          (MOV32mi addr:$dst, texternalsym:$src)>;
def : Pat<(store (i32 (X86Wrapper tblockaddress:$src)), addr:$dst),
          (MOV32mi addr:$dst, tblockaddress:$src)>;

// ConstantPool GlobalAddress, ExternalSymbol, and JumpTable when not in small
// code model mode, should use 'movabs'.  FIXME: This is really a hack, the
//  'movabs' predicate should handle this sort of thing.
def : Pat<(i64 (X86Wrapper tconstpool  :$dst)),
          (MOV64ri tconstpool  :$dst)>, Requires<[FarData]>;
def : Pat<(i64 (X86Wrapper tjumptable  :$dst)),
          (MOV64ri tjumptable  :$dst)>, Requires<[FarData]>;
def : Pat<(i64 (X86Wrapper tglobaladdr :$dst)),
          (MOV64ri tglobaladdr :$dst)>, Requires<[FarData]>;
def : Pat<(i64 (X86Wrapper texternalsym:$dst)),
          (MOV64ri texternalsym:$dst)>, Requires<[FarData]>;
def : Pat<(i64 (X86Wrapper tblockaddress:$dst)),
          (MOV64ri tblockaddress:$dst)>, Requires<[FarData]>;

// In kernel code model, we can get the address of a label
// into a register with 'movq'.  FIXME: This is a hack, the 'imm' predicate of
// the MOV64ri32 should accept these.
def : Pat<(i64 (X86Wrapper tconstpool  :$dst)),
          (MOV64ri32 tconstpool  :$dst)>, Requires<[KernelCode]>;
def : Pat<(i64 (X86Wrapper tjumptable  :$dst)),
          (MOV64ri32 tjumptable  :$dst)>, Requires<[KernelCode]>;
def : Pat<(i64 (X86Wrapper tglobaladdr :$dst)),
          (MOV64ri32 tglobaladdr :$dst)>, Requires<[KernelCode]>;
def : Pat<(i64 (X86Wrapper texternalsym:$dst)),
          (MOV64ri32 texternalsym:$dst)>, Requires<[KernelCode]>;
def : Pat<(i64 (X86Wrapper tblockaddress:$dst)),
          (MOV64ri32 tblockaddress:$dst)>, Requires<[KernelCode]>;

// If we have small model and -static mode, it is safe to store global addresses
// directly as immediates.  FIXME: This is really a hack, the 'imm' predicate
// for MOV64mi32 should handle this sort of thing.
def : Pat<(store (i64 (X86Wrapper tconstpool:$src)), addr:$dst),
          (MOV64mi32 addr:$dst, tconstpool:$src)>,
          Requires<[NearData, IsStatic]>;
def : Pat<(store (i64 (X86Wrapper tjumptable:$src)), addr:$dst),
          (MOV64mi32 addr:$dst, tjumptable:$src)>,
          Requires<[NearData, IsStatic]>;
def : Pat<(store (i64 (X86Wrapper tglobaladdr:$src)), addr:$dst),
          (MOV64mi32 addr:$dst, tglobaladdr:$src)>,
          Requires<[NearData, IsStatic]>;
def : Pat<(store (i64 (X86Wrapper texternalsym:$src)), addr:$dst),
          (MOV64mi32 addr:$dst, texternalsym:$src)>,
          Requires<[NearData, IsStatic]>;
def : Pat<(store (i64 (X86Wrapper tblockaddress:$src)), addr:$dst),
          (MOV64mi32 addr:$dst, tblockaddress:$src)>,
          Requires<[NearData, IsStatic]>;

// Calls

// tls has some funny stuff here...
// This corresponds to movabs $foo@tpoff, %rax
def : Pat<(i64 (X86Wrapper tglobaltlsaddr :$dst)),
          (MOV64ri32 tglobaltlsaddr :$dst)>;
// This corresponds to add $foo@tpoff, %rax
def : Pat<(add GR64:$src1, (X86Wrapper tglobaltlsaddr :$dst)),
          (ADD64ri32 GR64:$src1, tglobaltlsaddr :$dst)>;


// Direct PC relative function call for small code model. 32-bit displacement
// sign extended to 64-bit.
def : Pat<(X86call (i64 tglobaladdr:$dst)),
          (CALL64pcrel32 tglobaladdr:$dst)>;
def : Pat<(X86call (i64 texternalsym:$dst)),
          (CALL64pcrel32 texternalsym:$dst)>;

// Tailcall stuff. The TCRETURN instructions execute after the epilog, so they
// can never use callee-saved registers. That is the purpose of the GR64_TC
// register classes.
//
// The only volatile register that is never used by the calling convention is
// %r11. This happens when calling a vararg function with 6 arguments.
//
// Match an X86tcret that uses less than 7 volatile registers.
def X86tcret_6regs : PatFrag<(ops node:$ptr, node:$off),
                             (X86tcret node:$ptr, node:$off), [{
  // X86tcret args: (*chain, ptr, imm, regs..., glue)
  unsigned NumRegs = 0;
  for (unsigned i = 3, e = N->getNumOperands(); i != e; ++i)
    if (isa<RegisterSDNode>(N->getOperand(i)) && ++NumRegs > 6)
      return false;
  return true;
}]>;

def : Pat<(X86tcret ptr_rc_tailcall:$dst, imm:$off),
          (TCRETURNri ptr_rc_tailcall:$dst, imm:$off)>,
          Requires<[Not64BitMode]>;

// FIXME: This is disabled for 32-bit PIC mode because the global base
// register which is part of the address mode may be assigned a
// callee-saved register.
def : Pat<(X86tcret (load addr:$dst), imm:$off),
          (TCRETURNmi addr:$dst, imm:$off)>,
          Requires<[Not64BitMode, IsNotPIC]>;

def : Pat<(X86tcret (i32 tglobaladdr:$dst), imm:$off),
          (TCRETURNdi texternalsym:$dst, imm:$off)>,
          Requires<[Not64BitMode]>;

def : Pat<(X86tcret (i32 texternalsym:$dst), imm:$off),
          (TCRETURNdi texternalsym:$dst, imm:$off)>,
          Requires<[Not64BitMode]>;

def : Pat<(X86tcret ptr_rc_tailcall:$dst, imm:$off),
          (TCRETURNri64 ptr_rc_tailcall:$dst, imm:$off)>,
          Requires<[In64BitMode]>;

// Don't fold loads into X86tcret requiring more than 6 regs.
// There wouldn't be enough scratch registers for base+index.
def : Pat<(X86tcret_6regs (load addr:$dst), imm:$off),
          (TCRETURNmi64 addr:$dst, imm:$off)>,
          Requires<[In64BitMode]>;

def : Pat<(X86tcret (i64 tglobaladdr:$dst), imm:$off),
          (TCRETURNdi64 tglobaladdr:$dst, imm:$off)>,
          Requires<[In64BitMode]>;

def : Pat<(X86tcret (i64 texternalsym:$dst), imm:$off),
          (TCRETURNdi64 texternalsym:$dst, imm:$off)>,
          Requires<[In64BitMode]>;

// Normal calls, with various flavors of addresses.
def : Pat<(X86call (i32 tglobaladdr:$dst)),
          (CALLpcrel32 tglobaladdr:$dst)>;
def : Pat<(X86call (i32 texternalsym:$dst)),
          (CALLpcrel32 texternalsym:$dst)>;
def : Pat<(X86call (i32 imm:$dst)),
          (CALLpcrel32 imm:$dst)>, Requires<[CallImmAddr]>;

// Comparisons.

// TEST R,R is smaller than CMP R,0
def : Pat<(X86cmp GR8:$src1, 0),
          (TEST8rr GR8:$src1, GR8:$src1)>;
def : Pat<(X86cmp GR16:$src1, 0),
          (TEST16rr GR16:$src1, GR16:$src1)>;
def : Pat<(X86cmp GR32:$src1, 0),
          (TEST32rr GR32:$src1, GR32:$src1)>;
def : Pat<(X86cmp GR64:$src1, 0),
          (TEST64rr GR64:$src1, GR64:$src1)>;

// Conditional moves with folded loads with operands swapped and conditions
// inverted.
multiclass CMOVmr<PatLeaf InvertedCond, Instruction Inst16, Instruction Inst32,
                  Instruction Inst64> {
  let Predicates = [HasCMov] in {
    def : Pat<(X86cmov (loadi16 addr:$src1), GR16:$src2, InvertedCond, EFLAGS),
              (Inst16 GR16:$src2, addr:$src1)>;
    def : Pat<(X86cmov (loadi32 addr:$src1), GR32:$src2, InvertedCond, EFLAGS),
              (Inst32 GR32:$src2, addr:$src1)>;
    def : Pat<(X86cmov (loadi64 addr:$src1), GR64:$src2, InvertedCond, EFLAGS),
              (Inst64 GR64:$src2, addr:$src1)>;
  }
}

defm : CMOVmr<X86_COND_B , CMOVAE16rm, CMOVAE32rm, CMOVAE64rm>;
defm : CMOVmr<X86_COND_AE, CMOVB16rm , CMOVB32rm , CMOVB64rm>;
defm : CMOVmr<X86_COND_E , CMOVNE16rm, CMOVNE32rm, CMOVNE64rm>;
defm : CMOVmr<X86_COND_NE, CMOVE16rm , CMOVE32rm , CMOVE64rm>;
defm : CMOVmr<X86_COND_BE, CMOVA16rm , CMOVA32rm , CMOVA64rm>;
defm : CMOVmr<X86_COND_A , CMOVBE16rm, CMOVBE32rm, CMOVBE64rm>;
defm : CMOVmr<X86_COND_L , CMOVGE16rm, CMOVGE32rm, CMOVGE64rm>;
defm : CMOVmr<X86_COND_GE, CMOVL16rm , CMOVL32rm , CMOVL64rm>;
defm : CMOVmr<X86_COND_LE, CMOVG16rm , CMOVG32rm , CMOVG64rm>;
defm : CMOVmr<X86_COND_G , CMOVLE16rm, CMOVLE32rm, CMOVLE64rm>;
defm : CMOVmr<X86_COND_P , CMOVNP16rm, CMOVNP32rm, CMOVNP64rm>;
defm : CMOVmr<X86_COND_NP, CMOVP16rm , CMOVP32rm , CMOVP64rm>;
defm : CMOVmr<X86_COND_S , CMOVNS16rm, CMOVNS32rm, CMOVNS64rm>;
defm : CMOVmr<X86_COND_NS, CMOVS16rm , CMOVS32rm , CMOVS64rm>;
defm : CMOVmr<X86_COND_O , CMOVNO16rm, CMOVNO32rm, CMOVNO64rm>;
defm : CMOVmr<X86_COND_NO, CMOVO16rm , CMOVO32rm , CMOVO64rm>;

// zextload bool -> zextload byte
def : Pat<(zextloadi8i1  addr:$src), (MOV8rm     addr:$src)>;
def : Pat<(zextloadi16i1 addr:$src), (MOVZX16rm8 addr:$src)>;
def : Pat<(zextloadi32i1 addr:$src), (MOVZX32rm8 addr:$src)>;
def : Pat<(zextloadi64i1 addr:$src),
          (SUBREG_TO_REG (i64 0), (MOVZX32rm8 addr:$src), sub_32bit)>;

// extload bool -> extload byte
// When extloading from 16-bit and smaller memory locations into 64-bit
// registers, use zero-extending loads so that the entire 64-bit register is
// defined, avoiding partial-register updates.

def : Pat<(extloadi8i1 addr:$src),   (MOV8rm      addr:$src)>;
def : Pat<(extloadi16i1 addr:$src),  (MOVZX16rm8  addr:$src)>;
def : Pat<(extloadi32i1 addr:$src),  (MOVZX32rm8  addr:$src)>;
def : Pat<(extloadi16i8 addr:$src),  (MOVZX16rm8  addr:$src)>;
def : Pat<(extloadi32i8 addr:$src),  (MOVZX32rm8  addr:$src)>;
def : Pat<(extloadi32i16 addr:$src), (MOVZX32rm16 addr:$src)>;

// For other extloads, use subregs, since the high contents of the register are
// defined after an extload.
def : Pat<(extloadi64i1 addr:$src),
          (SUBREG_TO_REG (i64 0), (MOVZX32rm8 addr:$src), sub_32bit)>;
def : Pat<(extloadi64i8 addr:$src),
          (SUBREG_TO_REG (i64 0), (MOVZX32rm8 addr:$src), sub_32bit)>;
def : Pat<(extloadi64i16 addr:$src),
          (SUBREG_TO_REG (i64 0), (MOVZX32rm16 addr:$src), sub_32bit)>;
def : Pat<(extloadi64i32 addr:$src),
          (SUBREG_TO_REG (i64 0), (MOV32rm addr:$src), sub_32bit)>;

// anyext. Define these to do an explicit zero-extend to
// avoid partial-register updates.
def : Pat<(i16 (anyext GR8 :$src)), (EXTRACT_SUBREG
                                     (MOVZX32rr8 GR8 :$src), sub_16bit)>;
def : Pat<(i32 (anyext GR8 :$src)), (MOVZX32rr8  GR8 :$src)>;

// Except for i16 -> i32 since isel expect i16 ops to be promoted to i32.
def : Pat<(i32 (anyext GR16:$src)),
          (INSERT_SUBREG (i32 (IMPLICIT_DEF)), GR16:$src, sub_16bit)>;

def : Pat<(i64 (anyext GR8 :$src)),
          (SUBREG_TO_REG (i64 0), (MOVZX32rr8  GR8  :$src), sub_32bit)>;
def : Pat<(i64 (anyext GR16:$src)),
          (SUBREG_TO_REG (i64 0), (MOVZX32rr16 GR16 :$src), sub_32bit)>;
def : Pat<(i64 (anyext GR32:$src)),
          (SUBREG_TO_REG (i64 0), GR32:$src, sub_32bit)>;


// Any instruction that defines a 32-bit result leaves the high half of the
// register. Truncate can be lowered to EXTRACT_SUBREG. CopyFromReg may
// be copying from a truncate. And x86's cmov doesn't do anything if the
// condition is false. But any other 32-bit operation will zero-extend
// up to 64 bits.
def def32 : PatLeaf<(i32 GR32:$src), [{
  return N->getOpcode() != ISD::TRUNCATE &&
         N->getOpcode() != TargetOpcode::EXTRACT_SUBREG &&
         N->getOpcode() != ISD::CopyFromReg &&
         N->getOpcode() != X86ISD::CMOV;
}]>;

// In the case of a 32-bit def that is known to implicitly zero-extend,
// we can use a SUBREG_TO_REG.
def : Pat<(i64 (zext def32:$src)),
          (SUBREG_TO_REG (i64 0), GR32:$src, sub_32bit)>;

//===----------------------------------------------------------------------===//
// Pattern match OR as ADD
//===----------------------------------------------------------------------===//

// If safe, we prefer to pattern match OR as ADD at isel time. ADD can be
// 3-addressified into an LEA instruction to avoid copies.  However, we also
// want to finally emit these instructions as an or at the end of the code
// generator to make the generated code easier to read.  To do this, we select
// into "disjoint bits" pseudo ops.

// Treat an 'or' node is as an 'add' if the or'ed bits are known to be zero.
def or_is_add : PatFrag<(ops node:$lhs, node:$rhs), (or node:$lhs, node:$rhs),[{
  if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N->getOperand(1)))
    return CurDAG->MaskedValueIsZero(N->getOperand(0), CN->getAPIntValue());

  APInt KnownZero0, KnownOne0;
  CurDAG->computeKnownBits(N->getOperand(0), KnownZero0, KnownOne0, 0);
  APInt KnownZero1, KnownOne1;
  CurDAG->computeKnownBits(N->getOperand(1), KnownZero1, KnownOne1, 0);
  return (~KnownZero0 & ~KnownZero1) == 0;
}]>;


// (or x1, x2) -> (add x1, x2) if two operands are known not to share bits.
// Try this before the selecting to OR.
let AddedComplexity = 5, SchedRW = [WriteALU] in {

let isConvertibleToThreeAddress = 1,
    Constraints = "$src1 = $dst", Defs = [EFLAGS] in {
let isCommutable = 1 in {
def ADD16rr_DB  : I<0, Pseudo, (outs GR16:$dst), (ins GR16:$src1, GR16:$src2),
                    "", // orw/addw REG, REG
                    [(set GR16:$dst, (or_is_add GR16:$src1, GR16:$src2))]>;
def ADD32rr_DB  : I<0, Pseudo, (outs GR32:$dst), (ins GR32:$src1, GR32:$src2),
                    "", // orl/addl REG, REG
                    [(set GR32:$dst, (or_is_add GR32:$src1, GR32:$src2))]>;
def ADD64rr_DB  : I<0, Pseudo, (outs GR64:$dst), (ins GR64:$src1, GR64:$src2),
                    "", // orq/addq REG, REG
                    [(set GR64:$dst, (or_is_add GR64:$src1, GR64:$src2))]>;
} // isCommutable

// NOTE: These are order specific, we want the ri8 forms to be listed
// first so that they are slightly preferred to the ri forms.

def ADD16ri8_DB : I<0, Pseudo,
                    (outs GR16:$dst), (ins GR16:$src1, i16i8imm:$src2),
                    "", // orw/addw REG, imm8
                    [(set GR16:$dst,(or_is_add GR16:$src1,i16immSExt8:$src2))]>;
def ADD16ri_DB  : I<0, Pseudo, (outs GR16:$dst), (ins GR16:$src1, i16imm:$src2),
                    "", // orw/addw REG, imm
                    [(set GR16:$dst, (or_is_add GR16:$src1, imm:$src2))]>;

def ADD32ri8_DB : I<0, Pseudo,
                    (outs GR32:$dst), (ins GR32:$src1, i32i8imm:$src2),
                    "", // orl/addl REG, imm8
                    [(set GR32:$dst,(or_is_add GR32:$src1,i32immSExt8:$src2))]>;
def ADD32ri_DB  : I<0, Pseudo, (outs GR32:$dst), (ins GR32:$src1, i32imm:$src2),
                    "", // orl/addl REG, imm
                    [(set GR32:$dst, (or_is_add GR32:$src1, imm:$src2))]>;


def ADD64ri8_DB : I<0, Pseudo,
                    (outs GR64:$dst), (ins GR64:$src1, i64i8imm:$src2),
                    "", // orq/addq REG, imm8
                    [(set GR64:$dst, (or_is_add GR64:$src1,
                                                i64immSExt8:$src2))]>;
def ADD64ri32_DB : I<0, Pseudo,
                     (outs GR64:$dst), (ins GR64:$src1, i64i32imm:$src2),
                      "", // orq/addq REG, imm
                      [(set GR64:$dst, (or_is_add GR64:$src1,
                                                  i64immSExt32:$src2))]>;
}
} // AddedComplexity, SchedRW


//===----------------------------------------------------------------------===//
// Some peepholes
//===----------------------------------------------------------------------===//

// Odd encoding trick: -128 fits into an 8-bit immediate field while
// +128 doesn't, so in this special case use a sub instead of an add.
def : Pat<(add GR16:$src1, 128),
          (SUB16ri8 GR16:$src1, -128)>;
def : Pat<(store (add (loadi16 addr:$dst), 128), addr:$dst),
          (SUB16mi8 addr:$dst, -128)>;

def : Pat<(add GR32:$src1, 128),
          (SUB32ri8 GR32:$src1, -128)>;
def : Pat<(store (add (loadi32 addr:$dst), 128), addr:$dst),
          (SUB32mi8 addr:$dst, -128)>;

def : Pat<(add GR64:$src1, 128),
          (SUB64ri8 GR64:$src1, -128)>;
def : Pat<(store (add (loadi64 addr:$dst), 128), addr:$dst),
          (SUB64mi8 addr:$dst, -128)>;

// The same trick applies for 32-bit immediate fields in 64-bit
// instructions.
def : Pat<(add GR64:$src1, 0x0000000080000000),
          (SUB64ri32 GR64:$src1, 0xffffffff80000000)>;
def : Pat<(store (add (loadi64 addr:$dst), 0x00000000800000000), addr:$dst),
          (SUB64mi32 addr:$dst, 0xffffffff80000000)>;

// To avoid needing to materialize an immediate in a register, use a 32-bit and
// with implicit zero-extension instead of a 64-bit and if the immediate has at
// least 32 bits of leading zeros. If in addition the last 32 bits can be
// represented with a sign extension of a 8 bit constant, use that.

def : Pat<(and GR64:$src, i64immZExt32SExt8:$imm),
          (SUBREG_TO_REG
            (i64 0),
            (AND32ri8
              (EXTRACT_SUBREG GR64:$src, sub_32bit),
              (i32 (GetLo8XForm imm:$imm))),
            sub_32bit)>;

def : Pat<(and GR64:$src, i64immZExt32:$imm),
          (SUBREG_TO_REG
            (i64 0),
            (AND32ri
              (EXTRACT_SUBREG GR64:$src, sub_32bit),
              (i32 (GetLo32XForm imm:$imm))),
            sub_32bit)>;


// r & (2^16-1) ==> movz
def : Pat<(and GR32:$src1, 0xffff),
          (MOVZX32rr16 (EXTRACT_SUBREG GR32:$src1, sub_16bit))>;
// r & (2^8-1) ==> movz
def : Pat<(and GR32:$src1, 0xff),
          (MOVZX32rr8 (EXTRACT_SUBREG (i32 (COPY_TO_REGCLASS GR32:$src1,
                                                             GR32_ABCD)),
                                      sub_8bit))>,
      Requires<[Not64BitMode]>;
// r & (2^8-1) ==> movz
def : Pat<(and GR16:$src1, 0xff),
           (EXTRACT_SUBREG (MOVZX32rr8 (EXTRACT_SUBREG
            (i16 (COPY_TO_REGCLASS GR16:$src1, GR16_ABCD)), sub_8bit)),
             sub_16bit)>,
      Requires<[Not64BitMode]>;

// r & (2^32-1) ==> movz
def : Pat<(and GR64:$src, 0x00000000FFFFFFFF),
          (SUBREG_TO_REG (i64 0),
                         (MOV32rr (EXTRACT_SUBREG GR64:$src, sub_32bit)),
                         sub_32bit)>;
// r & (2^16-1) ==> movz
def : Pat<(and GR64:$src, 0xffff),
          (SUBREG_TO_REG (i64 0),
                      (MOVZX32rr16 (i16 (EXTRACT_SUBREG GR64:$src, sub_16bit))),
                      sub_32bit)>;
// r & (2^8-1) ==> movz
def : Pat<(and GR64:$src, 0xff),
          (SUBREG_TO_REG (i64 0),
                         (MOVZX32rr8 (i8 (EXTRACT_SUBREG GR64:$src, sub_8bit))),
                         sub_32bit)>;
// r & (2^8-1) ==> movz
def : Pat<(and GR32:$src1, 0xff),
           (MOVZX32rr8 (EXTRACT_SUBREG GR32:$src1, sub_8bit))>,
      Requires<[In64BitMode]>;
// r & (2^8-1) ==> movz
def : Pat<(and GR16:$src1, 0xff),
           (EXTRACT_SUBREG (MOVZX32rr8 (i8
            (EXTRACT_SUBREG GR16:$src1, sub_8bit))), sub_16bit)>,
      Requires<[In64BitMode]>;


// sext_inreg patterns
def : Pat<(sext_inreg GR32:$src, i16),
          (MOVSX32rr16 (EXTRACT_SUBREG GR32:$src, sub_16bit))>;
def : Pat<(sext_inreg GR32:$src, i8),
          (MOVSX32rr8 (EXTRACT_SUBREG (i32 (COPY_TO_REGCLASS GR32:$src,
                                                             GR32_ABCD)),
                                      sub_8bit))>,
      Requires<[Not64BitMode]>;

def : Pat<(sext_inreg GR16:$src, i8),
           (EXTRACT_SUBREG (i32 (MOVSX32rr8 (EXTRACT_SUBREG
            (i32 (COPY_TO_REGCLASS GR16:$src, GR16_ABCD)), sub_8bit))),
             sub_16bit)>,
      Requires<[Not64BitMode]>;

def : Pat<(sext_inreg GR64:$src, i32),
          (MOVSX64rr32 (EXTRACT_SUBREG GR64:$src, sub_32bit))>;
def : Pat<(sext_inreg GR64:$src, i16),
          (MOVSX64rr16 (EXTRACT_SUBREG GR64:$src, sub_16bit))>;
def : Pat<(sext_inreg GR64:$src, i8),
          (MOVSX64rr8 (EXTRACT_SUBREG GR64:$src, sub_8bit))>;
def : Pat<(sext_inreg GR32:$src, i8),
          (MOVSX32rr8 (EXTRACT_SUBREG GR32:$src, sub_8bit))>,
      Requires<[In64BitMode]>;
def : Pat<(sext_inreg GR16:$src, i8),
           (EXTRACT_SUBREG (MOVSX32rr8
            (EXTRACT_SUBREG GR16:$src, sub_8bit)), sub_16bit)>,
      Requires<[In64BitMode]>;

// sext, sext_load, zext, zext_load
def: Pat<(i16 (sext GR8:$src)),
          (EXTRACT_SUBREG (MOVSX32rr8 GR8:$src), sub_16bit)>;
def: Pat<(sextloadi16i8 addr:$src),
          (EXTRACT_SUBREG (MOVSX32rm8 addr:$src), sub_16bit)>;
def: Pat<(i16 (zext GR8:$src)),
          (EXTRACT_SUBREG (MOVZX32rr8 GR8:$src), sub_16bit)>;
def: Pat<(zextloadi16i8 addr:$src),
          (EXTRACT_SUBREG (MOVZX32rm8 addr:$src), sub_16bit)>;

// trunc patterns
def : Pat<(i16 (trunc GR32:$src)),
          (EXTRACT_SUBREG GR32:$src, sub_16bit)>;
def : Pat<(i8 (trunc GR32:$src)),
          (EXTRACT_SUBREG (i32 (COPY_TO_REGCLASS GR32:$src, GR32_ABCD)),
                          sub_8bit)>,
      Requires<[Not64BitMode]>;
def : Pat<(i8 (trunc GR16:$src)),
          (EXTRACT_SUBREG (i16 (COPY_TO_REGCLASS GR16:$src, GR16_ABCD)),
                          sub_8bit)>,
      Requires<[Not64BitMode]>;
def : Pat<(i32 (trunc GR64:$src)),
          (EXTRACT_SUBREG GR64:$src, sub_32bit)>;
def : Pat<(i16 (trunc GR64:$src)),
          (EXTRACT_SUBREG GR64:$src, sub_16bit)>;
def : Pat<(i8 (trunc GR64:$src)),
          (EXTRACT_SUBREG GR64:$src, sub_8bit)>;
def : Pat<(i8 (trunc GR32:$src)),
          (EXTRACT_SUBREG GR32:$src, sub_8bit)>,
      Requires<[In64BitMode]>;
def : Pat<(i8 (trunc GR16:$src)),
          (EXTRACT_SUBREG GR16:$src, sub_8bit)>,
      Requires<[In64BitMode]>;

// h-register tricks
def : Pat<(i8 (trunc (srl_su GR16:$src, (i8 8)))),
          (EXTRACT_SUBREG (i16 (COPY_TO_REGCLASS GR16:$src, GR16_ABCD)),
                          sub_8bit_hi)>,
      Requires<[Not64BitMode]>;
def : Pat<(i8 (trunc (srl_su GR32:$src, (i8 8)))),
          (EXTRACT_SUBREG (i32 (COPY_TO_REGCLASS GR32:$src, GR32_ABCD)),
                          sub_8bit_hi)>,
      Requires<[Not64BitMode]>;
def : Pat<(srl GR16:$src, (i8 8)),
          (EXTRACT_SUBREG
            (MOVZX32rr8
              (EXTRACT_SUBREG (i16 (COPY_TO_REGCLASS GR16:$src, GR16_ABCD)),
                              sub_8bit_hi)),
            sub_16bit)>,
      Requires<[Not64BitMode]>;
def : Pat<(i32 (zext (srl_su GR16:$src, (i8 8)))),
          (MOVZX32rr8 (EXTRACT_SUBREG (i16 (COPY_TO_REGCLASS GR16:$src,
                                                             GR16_ABCD)),
                                      sub_8bit_hi))>,
      Requires<[Not64BitMode]>;
def : Pat<(i32 (anyext (srl_su GR16:$src, (i8 8)))),
          (MOVZX32rr8 (EXTRACT_SUBREG (i16 (COPY_TO_REGCLASS GR16:$src,
                                                             GR16_ABCD)),
                                      sub_8bit_hi))>,
      Requires<[Not64BitMode]>;
def : Pat<(and (srl_su GR32:$src, (i8 8)), (i32 255)),
          (MOVZX32rr8 (EXTRACT_SUBREG (i32 (COPY_TO_REGCLASS GR32:$src,
                                                             GR32_ABCD)),
                                      sub_8bit_hi))>,
      Requires<[Not64BitMode]>;
def : Pat<(srl (and_su GR32:$src, 0xff00), (i8 8)),
          (MOVZX32rr8 (EXTRACT_SUBREG (i32 (COPY_TO_REGCLASS GR32:$src,
                                                             GR32_ABCD)),
                                      sub_8bit_hi))>,
      Requires<[Not64BitMode]>;

// h-register tricks.
// For now, be conservative on x86-64 and use an h-register extract only if the
// value is immediately zero-extended or stored, which are somewhat common
// cases. This uses a bunch of code to prevent a register requiring a REX prefix
// from being allocated in the same instruction as the h register, as there's
// currently no way to describe this requirement to the register allocator.

// h-register extract and zero-extend.
def : Pat<(and (srl_su GR64:$src, (i8 8)), (i64 255)),
          (SUBREG_TO_REG
            (i64 0),
            (MOVZX32_NOREXrr8
              (EXTRACT_SUBREG (i64 (COPY_TO_REGCLASS GR64:$src, GR64_ABCD)),
                              sub_8bit_hi)),
            sub_32bit)>;
def : Pat<(and (srl_su GR32:$src, (i8 8)), (i32 255)),
          (MOVZX32_NOREXrr8
            (EXTRACT_SUBREG (i32 (COPY_TO_REGCLASS GR32:$src, GR32_ABCD)),
                            sub_8bit_hi))>,
      Requires<[In64BitMode]>;
def : Pat<(srl (and_su GR32:$src, 0xff00), (i8 8)),
          (MOVZX32_NOREXrr8 (EXTRACT_SUBREG (i32 (COPY_TO_REGCLASS GR32:$src,
                                                                   GR32_ABCD)),
                                             sub_8bit_hi))>,
      Requires<[In64BitMode]>;
def : Pat<(srl GR16:$src, (i8 8)),
          (EXTRACT_SUBREG
            (MOVZX32_NOREXrr8
              (EXTRACT_SUBREG (i16 (COPY_TO_REGCLASS GR16:$src, GR16_ABCD)),
                              sub_8bit_hi)),
            sub_16bit)>,
      Requires<[In64BitMode]>;
def : Pat<(i32 (zext (srl_su GR16:$src, (i8 8)))),
          (MOVZX32_NOREXrr8
            (EXTRACT_SUBREG (i16 (COPY_TO_REGCLASS GR16:$src, GR16_ABCD)),
                            sub_8bit_hi))>,
      Requires<[In64BitMode]>;
def : Pat<(i32 (anyext (srl_su GR16:$src, (i8 8)))),
          (MOVZX32_NOREXrr8
            (EXTRACT_SUBREG (i16 (COPY_TO_REGCLASS GR16:$src, GR16_ABCD)),
                            sub_8bit_hi))>,
      Requires<[In64BitMode]>;
def : Pat<(i64 (zext (srl_su GR16:$src, (i8 8)))),
          (SUBREG_TO_REG
            (i64 0),
            (MOVZX32_NOREXrr8
              (EXTRACT_SUBREG (i16 (COPY_TO_REGCLASS GR16:$src, GR16_ABCD)),
                              sub_8bit_hi)),
            sub_32bit)>;
def : Pat<(i64 (anyext (srl_su GR16:$src, (i8 8)))),
          (SUBREG_TO_REG
            (i64 0),
            (MOVZX32_NOREXrr8
              (EXTRACT_SUBREG (i16 (COPY_TO_REGCLASS GR16:$src, GR16_ABCD)),
                              sub_8bit_hi)),
            sub_32bit)>;

// h-register extract and store.
def : Pat<(store (i8 (trunc_su (srl_su GR64:$src, (i8 8)))), addr:$dst),
          (MOV8mr_NOREX
            addr:$dst,
            (EXTRACT_SUBREG (i64 (COPY_TO_REGCLASS GR64:$src, GR64_ABCD)),
                            sub_8bit_hi))>;
def : Pat<(store (i8 (trunc_su (srl_su GR32:$src, (i8 8)))), addr:$dst),
          (MOV8mr_NOREX
            addr:$dst,
            (EXTRACT_SUBREG (i32 (COPY_TO_REGCLASS GR32:$src, GR32_ABCD)),
                            sub_8bit_hi))>,
      Requires<[In64BitMode]>;
def : Pat<(store (i8 (trunc_su (srl_su GR16:$src, (i8 8)))), addr:$dst),
          (MOV8mr_NOREX
            addr:$dst,
            (EXTRACT_SUBREG (i16 (COPY_TO_REGCLASS GR16:$src, GR16_ABCD)),
                            sub_8bit_hi))>,
      Requires<[In64BitMode]>;


// (shl x, 1) ==> (add x, x)
// Note that if x is undef (immediate or otherwise), we could theoretically
// end up with the two uses of x getting different values, producing a result
// where the least significant bit is not 0. However, the probability of this
// happening is considered low enough that this is officially not a
// "real problem".
def : Pat<(shl GR8 :$src1, (i8 1)), (ADD8rr  GR8 :$src1, GR8 :$src1)>;
def : Pat<(shl GR16:$src1, (i8 1)), (ADD16rr GR16:$src1, GR16:$src1)>;
def : Pat<(shl GR32:$src1, (i8 1)), (ADD32rr GR32:$src1, GR32:$src1)>;
def : Pat<(shl GR64:$src1, (i8 1)), (ADD64rr GR64:$src1, GR64:$src1)>;

// Helper imms that check if a mask doesn't change significant shift bits.
def immShift32 : ImmLeaf<i8, [{ return CountTrailingOnes_32(Imm) >= 5; }]>;
def immShift64 : ImmLeaf<i8, [{ return CountTrailingOnes_32(Imm) >= 6; }]>;

// Shift amount is implicitly masked.
multiclass MaskedShiftAmountPats<SDNode frag, string name> {
  // (shift x (and y, 31)) ==> (shift x, y)
  def : Pat<(frag GR8:$src1, (and CL, immShift32)),
            (!cast<Instruction>(name # "8rCL") GR8:$src1)>;
  def : Pat<(frag GR16:$src1, (and CL, immShift32)),
            (!cast<Instruction>(name # "16rCL") GR16:$src1)>;
  def : Pat<(frag GR32:$src1, (and CL, immShift32)),
            (!cast<Instruction>(name # "32rCL") GR32:$src1)>;
  def : Pat<(store (frag (loadi8 addr:$dst), (and CL, immShift32)), addr:$dst),
            (!cast<Instruction>(name # "8mCL") addr:$dst)>;
  def : Pat<(store (frag (loadi16 addr:$dst), (and CL, immShift32)), addr:$dst),
            (!cast<Instruction>(name # "16mCL") addr:$dst)>;
  def : Pat<(store (frag (loadi32 addr:$dst), (and CL, immShift32)), addr:$dst),
            (!cast<Instruction>(name # "32mCL") addr:$dst)>;

  // (shift x (and y, 63)) ==> (shift x, y)
  def : Pat<(frag GR64:$src1, (and CL, immShift64)),
            (!cast<Instruction>(name # "64rCL") GR64:$src1)>;
  def : Pat<(store (frag (loadi64 addr:$dst), (and CL, 63)), addr:$dst),
            (!cast<Instruction>(name # "64mCL") addr:$dst)>;
}

defm : MaskedShiftAmountPats<shl, "SHL">;
defm : MaskedShiftAmountPats<srl, "SHR">;
defm : MaskedShiftAmountPats<sra, "SAR">;
defm : MaskedShiftAmountPats<rotl, "ROL">;
defm : MaskedShiftAmountPats<rotr, "ROR">;

// (anyext (setcc_carry)) -> (setcc_carry)
def : Pat<(i16 (anyext (i8 (X86setcc_c X86_COND_B, EFLAGS)))),
          (SETB_C16r)>;
def : Pat<(i32 (anyext (i8 (X86setcc_c X86_COND_B, EFLAGS)))),
          (SETB_C32r)>;
def : Pat<(i32 (anyext (i16 (X86setcc_c X86_COND_B, EFLAGS)))),
          (SETB_C32r)>;




//===----------------------------------------------------------------------===//
// EFLAGS-defining Patterns
//===----------------------------------------------------------------------===//

// add reg, reg
def : Pat<(add GR8 :$src1, GR8 :$src2), (ADD8rr  GR8 :$src1, GR8 :$src2)>;
def : Pat<(add GR16:$src1, GR16:$src2), (ADD16rr GR16:$src1, GR16:$src2)>;
def : Pat<(add GR32:$src1, GR32:$src2), (ADD32rr GR32:$src1, GR32:$src2)>;

// add reg, mem
def : Pat<(add GR8:$src1, (loadi8 addr:$src2)),
          (ADD8rm GR8:$src1, addr:$src2)>;
def : Pat<(add GR16:$src1, (loadi16 addr:$src2)),
          (ADD16rm GR16:$src1, addr:$src2)>;
def : Pat<(add GR32:$src1, (loadi32 addr:$src2)),
          (ADD32rm GR32:$src1, addr:$src2)>;

// add reg, imm
def : Pat<(add GR8 :$src1, imm:$src2), (ADD8ri  GR8:$src1 , imm:$src2)>;
def : Pat<(add GR16:$src1, imm:$src2), (ADD16ri GR16:$src1, imm:$src2)>;
def : Pat<(add GR32:$src1, imm:$src2), (ADD32ri GR32:$src1, imm:$src2)>;
def : Pat<(add GR16:$src1, i16immSExt8:$src2),
          (ADD16ri8 GR16:$src1, i16immSExt8:$src2)>;
def : Pat<(add GR32:$src1, i32immSExt8:$src2),
          (ADD32ri8 GR32:$src1, i32immSExt8:$src2)>;

// sub reg, reg
def : Pat<(sub GR8 :$src1, GR8 :$src2), (SUB8rr  GR8 :$src1, GR8 :$src2)>;
def : Pat<(sub GR16:$src1, GR16:$src2), (SUB16rr GR16:$src1, GR16:$src2)>;
def : Pat<(sub GR32:$src1, GR32:$src2), (SUB32rr GR32:$src1, GR32:$src2)>;

// sub reg, mem
def : Pat<(sub GR8:$src1, (loadi8 addr:$src2)),
          (SUB8rm GR8:$src1, addr:$src2)>;
def : Pat<(sub GR16:$src1, (loadi16 addr:$src2)),
          (SUB16rm GR16:$src1, addr:$src2)>;
def : Pat<(sub GR32:$src1, (loadi32 addr:$src2)),
          (SUB32rm GR32:$src1, addr:$src2)>;

// sub reg, imm
def : Pat<(sub GR8:$src1, imm:$src2),
          (SUB8ri GR8:$src1, imm:$src2)>;
def : Pat<(sub GR16:$src1, imm:$src2),
          (SUB16ri GR16:$src1, imm:$src2)>;
def : Pat<(sub GR32:$src1, imm:$src2),
          (SUB32ri GR32:$src1, imm:$src2)>;
def : Pat<(sub GR16:$src1, i16immSExt8:$src2),
          (SUB16ri8 GR16:$src1, i16immSExt8:$src2)>;
def : Pat<(sub GR32:$src1, i32immSExt8:$src2),
          (SUB32ri8 GR32:$src1, i32immSExt8:$src2)>;

// sub 0, reg
def : Pat<(X86sub_flag 0, GR8 :$src), (NEG8r  GR8 :$src)>;
def : Pat<(X86sub_flag 0, GR16:$src), (NEG16r GR16:$src)>;
def : Pat<(X86sub_flag 0, GR32:$src), (NEG32r GR32:$src)>;
def : Pat<(X86sub_flag 0, GR64:$src), (NEG64r GR64:$src)>;

// mul reg, reg
def : Pat<(mul GR16:$src1, GR16:$src2),
          (IMUL16rr GR16:$src1, GR16:$src2)>;
def : Pat<(mul GR32:$src1, GR32:$src2),
          (IMUL32rr GR32:$src1, GR32:$src2)>;

// mul reg, mem
def : Pat<(mul GR16:$src1, (loadi16 addr:$src2)),
          (IMUL16rm GR16:$src1, addr:$src2)>;
def : Pat<(mul GR32:$src1, (loadi32 addr:$src2)),
          (IMUL32rm GR32:$src1, addr:$src2)>;

// mul reg, imm
def : Pat<(mul GR16:$src1, imm:$src2),
          (IMUL16rri GR16:$src1, imm:$src2)>;
def : Pat<(mul GR32:$src1, imm:$src2),
          (IMUL32rri GR32:$src1, imm:$src2)>;
def : Pat<(mul GR16:$src1, i16immSExt8:$src2),
          (IMUL16rri8 GR16:$src1, i16immSExt8:$src2)>;
def : Pat<(mul GR32:$src1, i32immSExt8:$src2),
          (IMUL32rri8 GR32:$src1, i32immSExt8:$src2)>;

// reg = mul mem, imm
def : Pat<(mul (loadi16 addr:$src1), imm:$src2),
          (IMUL16rmi addr:$src1, imm:$src2)>;
def : Pat<(mul (loadi32 addr:$src1), imm:$src2),
          (IMUL32rmi addr:$src1, imm:$src2)>;
def : Pat<(mul (loadi16 addr:$src1), i16immSExt8:$src2),
          (IMUL16rmi8 addr:$src1, i16immSExt8:$src2)>;
def : Pat<(mul (loadi32 addr:$src1), i32immSExt8:$src2),
          (IMUL32rmi8 addr:$src1, i32immSExt8:$src2)>;

// Patterns for nodes that do not produce flags, for instructions that do.

// addition
def : Pat<(add GR64:$src1, GR64:$src2),
          (ADD64rr GR64:$src1, GR64:$src2)>;
def : Pat<(add GR64:$src1, i64immSExt8:$src2),
          (ADD64ri8 GR64:$src1, i64immSExt8:$src2)>;
def : Pat<(add GR64:$src1, i64immSExt32:$src2),
          (ADD64ri32 GR64:$src1, i64immSExt32:$src2)>;
def : Pat<(add GR64:$src1, (loadi64 addr:$src2)),
          (ADD64rm GR64:$src1, addr:$src2)>;

// subtraction
def : Pat<(sub GR64:$src1, GR64:$src2),
          (SUB64rr GR64:$src1, GR64:$src2)>;
def : Pat<(sub GR64:$src1, (loadi64 addr:$src2)),
          (SUB64rm GR64:$src1, addr:$src2)>;
def : Pat<(sub GR64:$src1, i64immSExt8:$src2),
          (SUB64ri8 GR64:$src1, i64immSExt8:$src2)>;
def : Pat<(sub GR64:$src1, i64immSExt32:$src2),
          (SUB64ri32 GR64:$src1, i64immSExt32:$src2)>;

// Multiply
def : Pat<(mul GR64:$src1, GR64:$src2),
          (IMUL64rr GR64:$src1, GR64:$src2)>;
def : Pat<(mul GR64:$src1, (loadi64 addr:$src2)),
          (IMUL64rm GR64:$src1, addr:$src2)>;
def : Pat<(mul GR64:$src1, i64immSExt8:$src2),
          (IMUL64rri8 GR64:$src1, i64immSExt8:$src2)>;
def : Pat<(mul GR64:$src1, i64immSExt32:$src2),
          (IMUL64rri32 GR64:$src1, i64immSExt32:$src2)>;
def : Pat<(mul (loadi64 addr:$src1), i64immSExt8:$src2),
          (IMUL64rmi8 addr:$src1, i64immSExt8:$src2)>;
def : Pat<(mul (loadi64 addr:$src1), i64immSExt32:$src2),
          (IMUL64rmi32 addr:$src1, i64immSExt32:$src2)>;

// Increment reg.
def : Pat<(add GR8 :$src, 1), (INC8r     GR8 :$src)>;
def : Pat<(add GR16:$src, 1), (INC16r    GR16:$src)>, Requires<[Not64BitMode]>;
def : Pat<(add GR16:$src, 1), (INC64_16r GR16:$src)>, Requires<[In64BitMode]>;
def : Pat<(add GR32:$src, 1), (INC32r    GR32:$src)>, Requires<[Not64BitMode]>;
def : Pat<(add GR32:$src, 1), (INC64_32r GR32:$src)>, Requires<[In64BitMode]>;
def : Pat<(add GR64:$src, 1), (INC64r    GR64:$src)>;

// Decrement reg.
def : Pat<(add GR8 :$src, -1), (DEC8r     GR8 :$src)>;
def : Pat<(add GR16:$src, -1), (DEC16r    GR16:$src)>, Requires<[Not64BitMode]>;
def : Pat<(add GR16:$src, -1), (DEC64_16r GR16:$src)>, Requires<[In64BitMode]>;
def : Pat<(add GR32:$src, -1), (DEC32r    GR32:$src)>, Requires<[Not64BitMode]>;
def : Pat<(add GR32:$src, -1), (DEC64_32r GR32:$src)>, Requires<[In64BitMode]>;
def : Pat<(add GR64:$src, -1), (DEC64r    GR64:$src)>;

// or reg/reg.
def : Pat<(or GR8 :$src1, GR8 :$src2), (OR8rr  GR8 :$src1, GR8 :$src2)>;
def : Pat<(or GR16:$src1, GR16:$src2), (OR16rr GR16:$src1, GR16:$src2)>;
def : Pat<(or GR32:$src1, GR32:$src2), (OR32rr GR32:$src1, GR32:$src2)>;
def : Pat<(or GR64:$src1, GR64:$src2), (OR64rr GR64:$src1, GR64:$src2)>;

// or reg/mem
def : Pat<(or GR8:$src1, (loadi8 addr:$src2)),
          (OR8rm GR8:$src1, addr:$src2)>;
def : Pat<(or GR16:$src1, (loadi16 addr:$src2)),
          (OR16rm GR16:$src1, addr:$src2)>;
def : Pat<(or GR32:$src1, (loadi32 addr:$src2)),
          (OR32rm GR32:$src1, addr:$src2)>;
def : Pat<(or GR64:$src1, (loadi64 addr:$src2)),
          (OR64rm GR64:$src1, addr:$src2)>;

// or reg/imm
def : Pat<(or GR8:$src1 , imm:$src2), (OR8ri  GR8 :$src1, imm:$src2)>;
def : Pat<(or GR16:$src1, imm:$src2), (OR16ri GR16:$src1, imm:$src2)>;
def : Pat<(or GR32:$src1, imm:$src2), (OR32ri GR32:$src1, imm:$src2)>;
def : Pat<(or GR16:$src1, i16immSExt8:$src2),
          (OR16ri8 GR16:$src1, i16immSExt8:$src2)>;
def : Pat<(or GR32:$src1, i32immSExt8:$src2),
          (OR32ri8 GR32:$src1, i32immSExt8:$src2)>;
def : Pat<(or GR64:$src1, i64immSExt8:$src2),
          (OR64ri8 GR64:$src1, i64immSExt8:$src2)>;
def : Pat<(or GR64:$src1, i64immSExt32:$src2),
          (OR64ri32 GR64:$src1, i64immSExt32:$src2)>;

// xor reg/reg
def : Pat<(xor GR8 :$src1, GR8 :$src2), (XOR8rr  GR8 :$src1, GR8 :$src2)>;
def : Pat<(xor GR16:$src1, GR16:$src2), (XOR16rr GR16:$src1, GR16:$src2)>;
def : Pat<(xor GR32:$src1, GR32:$src2), (XOR32rr GR32:$src1, GR32:$src2)>;
def : Pat<(xor GR64:$src1, GR64:$src2), (XOR64rr GR64:$src1, GR64:$src2)>;

// xor reg/mem
def : Pat<(xor GR8:$src1, (loadi8 addr:$src2)),
          (XOR8rm GR8:$src1, addr:$src2)>;
def : Pat<(xor GR16:$src1, (loadi16 addr:$src2)),
          (XOR16rm GR16:$src1, addr:$src2)>;
def : Pat<(xor GR32:$src1, (loadi32 addr:$src2)),
          (XOR32rm GR32:$src1, addr:$src2)>;
def : Pat<(xor GR64:$src1, (loadi64 addr:$src2)),
          (XOR64rm GR64:$src1, addr:$src2)>;

// xor reg/imm
def : Pat<(xor GR8:$src1, imm:$src2),
          (XOR8ri GR8:$src1, imm:$src2)>;
def : Pat<(xor GR16:$src1, imm:$src2),
          (XOR16ri GR16:$src1, imm:$src2)>;
def : Pat<(xor GR32:$src1, imm:$src2),
          (XOR32ri GR32:$src1, imm:$src2)>;
def : Pat<(xor GR16:$src1, i16immSExt8:$src2),
          (XOR16ri8 GR16:$src1, i16immSExt8:$src2)>;
def : Pat<(xor GR32:$src1, i32immSExt8:$src2),
          (XOR32ri8 GR32:$src1, i32immSExt8:$src2)>;
def : Pat<(xor GR64:$src1, i64immSExt8:$src2),
          (XOR64ri8 GR64:$src1, i64immSExt8:$src2)>;
def : Pat<(xor GR64:$src1, i64immSExt32:$src2),
          (XOR64ri32 GR64:$src1, i64immSExt32:$src2)>;

// and reg/reg
def : Pat<(and GR8 :$src1, GR8 :$src2), (AND8rr  GR8 :$src1, GR8 :$src2)>;
def : Pat<(and GR16:$src1, GR16:$src2), (AND16rr GR16:$src1, GR16:$src2)>;
def : Pat<(and GR32:$src1, GR32:$src2), (AND32rr GR32:$src1, GR32:$src2)>;
def : Pat<(and GR64:$src1, GR64:$src2), (AND64rr GR64:$src1, GR64:$src2)>;

// and reg/mem
def : Pat<(and GR8:$src1, (loadi8 addr:$src2)),
          (AND8rm GR8:$src1, addr:$src2)>;
def : Pat<(and GR16:$src1, (loadi16 addr:$src2)),
          (AND16rm GR16:$src1, addr:$src2)>;
def : Pat<(and GR32:$src1, (loadi32 addr:$src2)),
          (AND32rm GR32:$src1, addr:$src2)>;
def : Pat<(and GR64:$src1, (loadi64 addr:$src2)),
          (AND64rm GR64:$src1, addr:$src2)>;

// and reg/imm
def : Pat<(and GR8:$src1, imm:$src2),
          (AND8ri GR8:$src1, imm:$src2)>;
def : Pat<(and GR16:$src1, imm:$src2),
          (AND16ri GR16:$src1, imm:$src2)>;
def : Pat<(and GR32:$src1, imm:$src2),
          (AND32ri GR32:$src1, imm:$src2)>;
def : Pat<(and GR16:$src1, i16immSExt8:$src2),
          (AND16ri8 GR16:$src1, i16immSExt8:$src2)>;
def : Pat<(and GR32:$src1, i32immSExt8:$src2),
          (AND32ri8 GR32:$src1, i32immSExt8:$src2)>;
def : Pat<(and GR64:$src1, i64immSExt8:$src2),
          (AND64ri8 GR64:$src1, i64immSExt8:$src2)>;
def : Pat<(and GR64:$src1, i64immSExt32:$src2),
          (AND64ri32 GR64:$src1, i64immSExt32:$src2)>;

// Bit scan instruction patterns to match explicit zero-undef behavior.
def : Pat<(cttz_zero_undef GR16:$src), (BSF16rr GR16:$src)>;
def : Pat<(cttz_zero_undef GR32:$src), (BSF32rr GR32:$src)>;
def : Pat<(cttz_zero_undef GR64:$src), (BSF64rr GR64:$src)>;
def : Pat<(cttz_zero_undef (loadi16 addr:$src)), (BSF16rm addr:$src)>;
def : Pat<(cttz_zero_undef (loadi32 addr:$src)), (BSF32rm addr:$src)>;
def : Pat<(cttz_zero_undef (loadi64 addr:$src)), (BSF64rm addr:$src)>;

// When HasMOVBE is enabled it is possible to get a non-legalized
// register-register 16 bit bswap. This maps it to a ROL instruction.
let Predicates = [HasMOVBE] in {
 def : Pat<(bswap GR16:$src), (ROL16ri GR16:$src, (i8 8))>;
}