llvm.org GIT mirror llvm / d0c8980 lib / Fuzzer / FuzzerLoop.cpp
d0c8980

Tree @d0c8980 (Download .tar.gz)

FuzzerLoop.cpp @d0c8980raw · history · blame

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
//===- FuzzerLoop.cpp - Fuzzer's main loop --------------------------------===//
//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
// Fuzzer's main loop.
//===----------------------------------------------------------------------===//

#include "FuzzerCorpus.h"
#include "FuzzerInternal.h"
#include "FuzzerIO.h"
#include "FuzzerMutate.h"
#include "FuzzerRandom.h"
#include "FuzzerTracePC.h"

#include <algorithm>
#include <cstring>
#include <memory>
#include <set>

#if defined(__has_include)
#if __has_include(<sanitizer / coverage_interface.h>)
#include <sanitizer/coverage_interface.h>
#endif
#if __has_include(<sanitizer / lsan_interface.h>)
#include <sanitizer/lsan_interface.h>
#endif
#endif

#define NO_SANITIZE_MEMORY
#if defined(__has_feature)
#if __has_feature(memory_sanitizer)
#undef NO_SANITIZE_MEMORY
#define NO_SANITIZE_MEMORY __attribute__((no_sanitize_memory))
#endif
#endif

namespace fuzzer {
static const size_t kMaxUnitSizeToPrint = 256;

thread_local bool Fuzzer::IsMyThread;

static void MissingExternalApiFunction(const char *FnName) {
  Printf("ERROR: %s is not defined. Exiting.\n"
         "Did you use -fsanitize-coverage=... to build your code?\n",
         FnName);
  exit(1);
}

#define CHECK_EXTERNAL_FUNCTION(fn)                                            \
  do {                                                                         \
    if (!(EF->fn))                                                             \
      MissingExternalApiFunction(#fn);                                         \
  } while (false)

// Only one Fuzzer per process.
static Fuzzer *F;

void Fuzzer::ResetEdgeCoverage() {
  CHECK_EXTERNAL_FUNCTION(__sanitizer_reset_coverage);
  EF->__sanitizer_reset_coverage();
}

void Fuzzer::ResetCounters() {
  if (Options.UseCounters)
    EF->__sanitizer_update_counter_bitset_and_clear_counters(0);
}

void Fuzzer::PrepareCounters(Fuzzer::Coverage *C) {
  if (Options.UseCounters) {
    size_t NumCounters = EF->__sanitizer_get_number_of_counters();
    C->CounterBitmap.resize(NumCounters);
  }
}

// Records data to a maximum coverage tracker. Returns true if additional
// coverage was discovered.
bool Fuzzer::RecordMaxCoverage(Fuzzer::Coverage *C) {
  bool Res = false;

  uint64_t NewBlockCoverage = EF->__sanitizer_get_total_unique_coverage();
  if (NewBlockCoverage > C->BlockCoverage) {
    Res = true;
    C->BlockCoverage = NewBlockCoverage;
  }

  if (Options.UseIndirCalls &&
      EF->__sanitizer_get_total_unique_caller_callee_pairs) {
    uint64_t NewCallerCalleeCoverage =
        EF->__sanitizer_get_total_unique_caller_callee_pairs();
    if (NewCallerCalleeCoverage > C->CallerCalleeCoverage) {
      Res = true;
      C->CallerCalleeCoverage = NewCallerCalleeCoverage;
    }
  }

  if (Options.UseCounters) {
    uint64_t CounterDelta =
        EF->__sanitizer_update_counter_bitset_and_clear_counters(
            C->CounterBitmap.data());
    if (CounterDelta > 0) {
      Res = true;
      C->CounterBitmapBits += CounterDelta;
    }
  }

  return Res;
}

// Leak detection is expensive, so we first check if there were more mallocs
// than frees (using the sanitizer malloc hooks) and only then try to call lsan.
struct MallocFreeTracer {
  void Start(int TraceLevel) {
    this->TraceLevel = TraceLevel;
    if (TraceLevel)
      Printf("MallocFreeTracer: START\n");
    Mallocs = 0;
    Frees = 0;
  }
  // Returns true if there were more mallocs than frees.
  bool Stop() {
    if (TraceLevel)
      Printf("MallocFreeTracer: STOP %zd %zd (%s)\n", Mallocs.load(),
             Frees.load(), Mallocs == Frees ? "same" : "DIFFERENT");
    bool Result = Mallocs > Frees;
    Mallocs = 0;
    Frees = 0;
    TraceLevel = 0;
    return Result;
  }
  std::atomic<size_t> Mallocs;
  std::atomic<size_t> Frees;
  int TraceLevel = 0;
};

static MallocFreeTracer AllocTracer;

void MallocHook(const volatile void *ptr, size_t size) {
  size_t N = AllocTracer.Mallocs++;
  F->HandleMalloc(size);
  if (int TraceLevel = AllocTracer.TraceLevel) {
    Printf("MALLOC[%zd] %p %zd\n", N, ptr, size);
    if (TraceLevel >= 2 && EF)
      EF->__sanitizer_print_stack_trace();
  }
}
void FreeHook(const volatile void *ptr) {
  size_t N = AllocTracer.Frees++;
  if (int TraceLevel = AllocTracer.TraceLevel) {
    Printf("FREE[%zd]   %p\n", N, ptr);
    if (TraceLevel >= 2 && EF)
      EF->__sanitizer_print_stack_trace();
  }
}

// Crash on a single malloc that exceeds the rss limit.
void Fuzzer::HandleMalloc(size_t Size) {
  if (!Options.RssLimitMb || (Size >> 20) < (size_t)Options.RssLimitMb)
    return;
  Printf("==%d== ERROR: libFuzzer: out-of-memory (malloc(%zd))\n", GetPid(),
         Size);
  Printf("   To change the out-of-memory limit use -rss_limit_mb=<N>\n\n");
  if (EF->__sanitizer_print_stack_trace)
    EF->__sanitizer_print_stack_trace();
  DumpCurrentUnit("oom-");
  Printf("SUMMARY: libFuzzer: out-of-memory\n");
  PrintFinalStats();
  _Exit(Options.ErrorExitCode); // Stop right now.
}

Fuzzer::Fuzzer(UserCallback CB, InputCorpus &Corpus, MutationDispatcher &MD,
               FuzzingOptions Options)
    : CB(CB), Corpus(Corpus), MD(MD), Options(Options) {
  SetDeathCallback();
  InitializeTraceState();
  assert(!F);
  F = this;
  TPC.ResetMaps();
  ResetCoverage();
  IsMyThread = true;
  if (Options.DetectLeaks && EF->__sanitizer_install_malloc_and_free_hooks)
    EF->__sanitizer_install_malloc_and_free_hooks(MallocHook, FreeHook);
  TPC.SetUseCounters(Options.UseCounters);
  TPC.SetUseValueProfile(Options.UseValueProfile);
  TPC.SetPrintNewPCs(Options.PrintNewCovPcs);

  if (Options.Verbosity)
    TPC.PrintModuleInfo();
  if (!Options.OutputCorpus.empty() && Options.ReloadIntervalSec)
    EpochOfLastReadOfOutputCorpus = GetEpoch(Options.OutputCorpus);
  MaxInputLen = MaxMutationLen = Options.MaxLen;
  AllocateCurrentUnitData();
}

Fuzzer::~Fuzzer() { }

void Fuzzer::AllocateCurrentUnitData() {
  if (CurrentUnitData || MaxInputLen == 0) return;
  CurrentUnitData = new uint8_t[MaxInputLen];
}

void Fuzzer::SetDeathCallback() {
  CHECK_EXTERNAL_FUNCTION(__sanitizer_set_death_callback);
  EF->__sanitizer_set_death_callback(StaticDeathCallback);
}

void Fuzzer::StaticDeathCallback() {
  assert(F);
  F->DeathCallback();
}

static void WarnOnUnsuccessfullMerge(bool DoWarn) {
  if (!DoWarn) return;
  Printf(
   "***\n"
   "***\n"
   "***\n"
   "*** NOTE: merge did not succeed due to a failure on one of the inputs.\n"
   "*** You will need to filter out crashes from the corpus, e.g. like this:\n"
   "***   for f in WITH_CRASHES/*; do ./fuzzer $f && cp $f NO_CRASHES; done\n"
   "*** Future versions may have crash-resistant merge, stay tuned.\n"
   "***\n"
   "***\n"
   "***\n");
}

void Fuzzer::DumpCurrentUnit(const char *Prefix) {
  WarnOnUnsuccessfullMerge(InMergeMode);
  if (!CurrentUnitData) return;  // Happens when running individual inputs.
  MD.PrintMutationSequence();
  Printf("; base unit: %s\n", Sha1ToString(BaseSha1).c_str());
  size_t UnitSize = CurrentUnitSize;
  if (UnitSize <= kMaxUnitSizeToPrint) {
    PrintHexArray(CurrentUnitData, UnitSize, "\n");
    PrintASCII(CurrentUnitData, UnitSize, "\n");
  }
  WriteUnitToFileWithPrefix({CurrentUnitData, CurrentUnitData + UnitSize},
                            Prefix);
}

NO_SANITIZE_MEMORY
void Fuzzer::DeathCallback() {
  DumpCurrentUnit("crash-");
  PrintFinalStats();
}

void Fuzzer::StaticAlarmCallback() {
  assert(F);
  F->AlarmCallback();
}

void Fuzzer::StaticCrashSignalCallback() {
  assert(F);
  F->CrashCallback();
}

void Fuzzer::StaticInterruptCallback() {
  assert(F);
  F->InterruptCallback();
}

void Fuzzer::CrashCallback() {
  Printf("==%d== ERROR: libFuzzer: deadly signal\n", GetPid());
  if (EF->__sanitizer_print_stack_trace)
    EF->__sanitizer_print_stack_trace();
  Printf("NOTE: libFuzzer has rudimentary signal handlers.\n"
         "      Combine libFuzzer with AddressSanitizer or similar for better "
         "crash reports.\n");
  Printf("SUMMARY: libFuzzer: deadly signal\n");
  DumpCurrentUnit("crash-");
  PrintFinalStats();
  exit(Options.ErrorExitCode);
}

void Fuzzer::InterruptCallback() {
  Printf("==%d== libFuzzer: run interrupted; exiting\n", GetPid());
  PrintFinalStats();
  _Exit(0);  // Stop right now, don't perform any at-exit actions.
}

NO_SANITIZE_MEMORY
void Fuzzer::AlarmCallback() {
  assert(Options.UnitTimeoutSec > 0);
  if (!InFuzzingThread()) return;
  if (!CurrentUnitSize)
    return; // We have not started running units yet.
  size_t Seconds =
      duration_cast<seconds>(system_clock::now() - UnitStartTime).count();
  if (Seconds == 0)
    return;
  if (Options.Verbosity >= 2)
    Printf("AlarmCallback %zd\n", Seconds);
  if (Seconds >= (size_t)Options.UnitTimeoutSec) {
    Printf("ALARM: working on the last Unit for %zd seconds\n", Seconds);
    Printf("       and the timeout value is %d (use -timeout=N to change)\n",
           Options.UnitTimeoutSec);
    DumpCurrentUnit("timeout-");
    Printf("==%d== ERROR: libFuzzer: timeout after %d seconds\n", GetPid(),
           Seconds);
    if (EF->__sanitizer_print_stack_trace)
      EF->__sanitizer_print_stack_trace();
    Printf("SUMMARY: libFuzzer: timeout\n");
    PrintFinalStats();
    _Exit(Options.TimeoutExitCode); // Stop right now.
  }
}

void Fuzzer::RssLimitCallback() {
  Printf(
      "==%d== ERROR: libFuzzer: out-of-memory (used: %zdMb; limit: %zdMb)\n",
      GetPid(), GetPeakRSSMb(), Options.RssLimitMb);
  Printf("   To change the out-of-memory limit use -rss_limit_mb=<N>\n\n");
  if (EF->__sanitizer_print_memory_profile)
    EF->__sanitizer_print_memory_profile(95);
  DumpCurrentUnit("oom-");
  Printf("SUMMARY: libFuzzer: out-of-memory\n");
  PrintFinalStats();
  _Exit(Options.ErrorExitCode); // Stop right now.
}

void Fuzzer::PrintStats(const char *Where, const char *End, size_t Units) {
  size_t ExecPerSec = execPerSec();
  if (Options.OutputCSV) {
    static bool csvHeaderPrinted = false;
    if (!csvHeaderPrinted) {
      csvHeaderPrinted = true;
      Printf("runs,block_cov,bits,cc_cov,corpus,execs_per_sec,tbms,reason\n");
    }
    Printf("%zd,%zd,%zd,%zd,%zd,%zd,%s\n", TotalNumberOfRuns,
           MaxCoverage.BlockCoverage, MaxCoverage.CounterBitmapBits,
           MaxCoverage.CallerCalleeCoverage, Corpus.size(), ExecPerSec, Where);
  }

  if (!Options.Verbosity)
    return;
  Printf("#%zd\t%s", TotalNumberOfRuns, Where);
  if (MaxCoverage.BlockCoverage)
    Printf(" cov: %zd", MaxCoverage.BlockCoverage);
  if (size_t N = MaxCoverage.VPMap.GetNumBitsSinceLastMerge())
    Printf(" vp: %zd", N);
  if (size_t N = TPC.GetTotalPCCoverage())
    Printf(" cov: %zd", N);
  if (auto TB = MaxCoverage.CounterBitmapBits)
    Printf(" bits: %zd", TB);
  if (size_t N = Corpus.NumFeatures())
    Printf( " ft: %zd", N);
  if (MaxCoverage.CallerCalleeCoverage)
    Printf(" indir: %zd", MaxCoverage.CallerCalleeCoverage);
  if (!Corpus.empty()) {
    Printf(" corp: %zd", Corpus.NumActiveUnits());
    if (size_t N = Corpus.SizeInBytes()) {
      if (N < (1<<14))
        Printf("/%zdb", N);
      else if (N < (1 << 24))
        Printf("/%zdKb", N >> 10);
      else
        Printf("/%zdMb", N >> 20);
    }
  }
  if (Units)
    Printf(" units: %zd", Units);

  Printf(" exec/s: %zd", ExecPerSec);
  Printf(" rss: %zdMb", GetPeakRSSMb());
  Printf("%s", End);
}

void Fuzzer::PrintFinalStats() {
  if (Options.PrintCoverage)
    TPC.PrintCoverage();
  if (Options.PrintCorpusStats)
    Corpus.PrintStats();
  if (!Options.PrintFinalStats) return;
  size_t ExecPerSec = execPerSec();
  Printf("stat::number_of_executed_units: %zd\n", TotalNumberOfRuns);
  Printf("stat::average_exec_per_sec:     %zd\n", ExecPerSec);
  Printf("stat::new_units_added:          %zd\n", NumberOfNewUnitsAdded);
  Printf("stat::slowest_unit_time_sec:    %zd\n", TimeOfLongestUnitInSeconds);
  Printf("stat::peak_rss_mb:              %zd\n", GetPeakRSSMb());
}

void Fuzzer::SetMaxInputLen(size_t MaxInputLen) {
  assert(this->MaxInputLen == 0); // Can only reset MaxInputLen from 0 to non-0.
  assert(MaxInputLen);
  this->MaxInputLen = MaxInputLen;
  this->MaxMutationLen = MaxInputLen;
  AllocateCurrentUnitData();
  Printf("INFO: -max_len is not provided, using %zd\n", MaxInputLen);
}

void Fuzzer::SetMaxMutationLen(size_t MaxMutationLen) {
  assert(MaxMutationLen && MaxMutationLen <= MaxInputLen);
  this->MaxMutationLen = MaxMutationLen;
}

void Fuzzer::CheckExitOnSrcPosOrItem() {
  if (!Options.ExitOnSrcPos.empty()) {
    static auto *PCsSet = new std::set<uintptr_t>;
    for (size_t i = 1, N = TPC.GetNumPCs(); i < N; i++) {
      uintptr_t PC = TPC.GetPC(i);
      if (!PC) continue;
      if (!PCsSet->insert(PC).second) continue;
      std::string Descr = DescribePC("%L", PC);
      if (Descr.find(Options.ExitOnSrcPos) != std::string::npos) {
        Printf("INFO: found line matching '%s', exiting.\n",
               Options.ExitOnSrcPos.c_str());
        _Exit(0);
      }
    }
  }
  if (!Options.ExitOnItem.empty()) {
    if (Corpus.HasUnit(Options.ExitOnItem)) {
      Printf("INFO: found item with checksum '%s', exiting.\n",
             Options.ExitOnItem.c_str());
      _Exit(0);
    }
  }
}

void Fuzzer::RereadOutputCorpus(size_t MaxSize) {
  if (Options.OutputCorpus.empty() || !Options.ReloadIntervalSec) return;
  std::vector<Unit> AdditionalCorpus;
  ReadDirToVectorOfUnits(Options.OutputCorpus.c_str(), &AdditionalCorpus,
                         &EpochOfLastReadOfOutputCorpus, MaxSize,
                         /*ExitOnError*/ false);
  if (Options.Verbosity >= 2)
    Printf("Reload: read %zd new units.\n", AdditionalCorpus.size());
  bool Reloaded = false;
  for (auto &U : AdditionalCorpus) {
    if (U.size() > MaxSize)
      U.resize(MaxSize);
    if (!Corpus.HasUnit(U)) {
      if (size_t NumFeatures = RunOne(U)) {
        CheckExitOnSrcPosOrItem();
        Corpus.AddToCorpus(U, NumFeatures);
        Reloaded = true;
      }
    }
  }
  if (Reloaded)
    PrintStats("RELOAD");
}

void Fuzzer::ShuffleCorpus(UnitVector *V) {
  std::random_shuffle(V->begin(), V->end(), MD.GetRand());
  if (Options.PreferSmall)
    std::stable_sort(V->begin(), V->end(), [](const Unit &A, const Unit &B) {
      return A.size() < B.size();
    });
}

void Fuzzer::ShuffleAndMinimize(UnitVector *InitialCorpus) {
  Printf("#0\tREAD units: %zd\n", InitialCorpus->size());
  if (Options.ShuffleAtStartUp)
    ShuffleCorpus(InitialCorpus);

  // Test the callback with empty input and never try it again.
  uint8_t dummy;
  ExecuteCallback(&dummy, 0);

  for (const auto &U : *InitialCorpus) {
    if (size_t NumFeatures = RunOne(U)) {
      CheckExitOnSrcPosOrItem();
      Corpus.AddToCorpus(U, NumFeatures);
      if (Options.Verbosity >= 2)
        Printf("NEW0: %zd L %zd\n", MaxCoverage.BlockCoverage, U.size());
    }
    TryDetectingAMemoryLeak(U.data(), U.size(),
                            /*DuringInitialCorpusExecution*/ true);
  }
  PrintStats("INITED");
  if (Corpus.empty()) {
    Printf("ERROR: no interesting inputs were found. "
           "Is the code instrumented for coverage? Exiting.\n");
    exit(1);
  }
}

size_t Fuzzer::RunOne(const uint8_t *Data, size_t Size) {
  if (!Size) return 0;
  TotalNumberOfRuns++;

  ExecuteCallback(Data, Size);

  size_t Res = 0;
  if (size_t NumFeatures = TPC.FinalizeTrace(&Corpus, Size, Options.Shrink))
    Res = NumFeatures;

  if (!TPC.UsingTracePcGuard()) {
    if (TPC.UpdateValueProfileMap(&MaxCoverage.VPMap))
      Res = 1;
    if (!Res && RecordMaxCoverage(&MaxCoverage))
      Res = 1;
  }

  auto TimeOfUnit =
      duration_cast<seconds>(UnitStopTime - UnitStartTime).count();
  if (!(TotalNumberOfRuns & (TotalNumberOfRuns - 1)) &&
      secondsSinceProcessStartUp() >= 2)
    PrintStats("pulse ");
  if (TimeOfUnit > TimeOfLongestUnitInSeconds * 1.1 &&
      TimeOfUnit >= Options.ReportSlowUnits) {
    TimeOfLongestUnitInSeconds = TimeOfUnit;
    Printf("Slowest unit: %zd s:\n", TimeOfLongestUnitInSeconds);
    WriteUnitToFileWithPrefix({Data, Data + Size}, "slow-unit-");
  }
  return Res;
}

size_t Fuzzer::GetCurrentUnitInFuzzingThead(const uint8_t **Data) const {
  assert(InFuzzingThread());
  *Data = CurrentUnitData;
  return CurrentUnitSize;
}

void Fuzzer::ExecuteCallback(const uint8_t *Data, size_t Size) {
  assert(InFuzzingThread());
  // We copy the contents of Unit into a separate heap buffer
  // so that we reliably find buffer overflows in it.
  uint8_t *DataCopy = new uint8_t[Size];
  memcpy(DataCopy, Data, Size);
  if (CurrentUnitData && CurrentUnitData != Data)
    memcpy(CurrentUnitData, Data, Size);
  CurrentUnitSize = Size;
  AllocTracer.Start(Options.TraceMalloc);
  UnitStartTime = system_clock::now();
  ResetCounters();  // Reset coverage right before the callback.
  TPC.ResetMaps();
  int Res = CB(DataCopy, Size);
  UnitStopTime = system_clock::now();
  (void)Res;
  assert(Res == 0);
  HasMoreMallocsThanFrees = AllocTracer.Stop();
  CurrentUnitSize = 0;
  delete[] DataCopy;
}

void Fuzzer::WriteToOutputCorpus(const Unit &U) {
  if (Options.OnlyASCII)
    assert(IsASCII(U));
  if (Options.OutputCorpus.empty())
    return;
  std::string Path = DirPlusFile(Options.OutputCorpus, Hash(U));
  WriteToFile(U, Path);
  if (Options.Verbosity >= 2)
    Printf("Written to %s\n", Path.c_str());
}

void Fuzzer::WriteUnitToFileWithPrefix(const Unit &U, const char *Prefix) {
  if (!Options.SaveArtifacts)
    return;
  std::string Path = Options.ArtifactPrefix + Prefix + Hash(U);
  if (!Options.ExactArtifactPath.empty())
    Path = Options.ExactArtifactPath; // Overrides ArtifactPrefix.
  WriteToFile(U, Path);
  Printf("artifact_prefix='%s'; Test unit written to %s\n",
         Options.ArtifactPrefix.c_str(), Path.c_str());
  if (U.size() <= kMaxUnitSizeToPrint)
    Printf("Base64: %s\n", Base64(U).c_str());
}

void Fuzzer::PrintStatusForNewUnit(const Unit &U) {
  if (!Options.PrintNEW)
    return;
  PrintStats("NEW   ", "");
  if (Options.Verbosity) {
    Printf(" L: %zd ", U.size());
    MD.PrintMutationSequence();
    Printf("\n");
  }
}

void Fuzzer::ReportNewCoverage(InputInfo *II, const Unit &U) {
  II->NumSuccessfullMutations++;
  MD.RecordSuccessfulMutationSequence();
  PrintStatusForNewUnit(U);
  WriteToOutputCorpus(U);
  NumberOfNewUnitsAdded++;
  TPC.PrintNewPCs();
}

// Finds minimal number of units in 'Extra' that add coverage to 'Initial'.
// We do it by actually executing the units, sometimes more than once,
// because we may be using different coverage-like signals and the only
// common thing between them is that we can say "this unit found new stuff".
UnitVector Fuzzer::FindExtraUnits(const UnitVector &Initial,
                                  const UnitVector &Extra) {
  UnitVector Res = Extra;
  UnitVector Tmp;
  size_t OldSize = Res.size();
  for (int Iter = 0; Iter < 10; Iter++) {
    ShuffleCorpus(&Res);
    TPC.ResetMaps();
    Corpus.ResetFeatureSet();
    ResetCoverage();

    for (auto &U : Initial) {
      TPC.ResetMaps();
      RunOne(U);
    }

    Tmp.clear();
    for (auto &U : Res) {
      TPC.ResetMaps();
      if (RunOne(U))
        Tmp.push_back(U);
    }

    char Stat[7] = "MIN   ";
    Stat[3] = '0' + Iter;
    PrintStats(Stat, "\n", Tmp.size());

    size_t NewSize = Tmp.size();
    assert(NewSize <= OldSize);
    Res.swap(Tmp);

    if (NewSize + 5 >= OldSize)
      break;
    OldSize = NewSize;
  }
  return Res;
}

void Fuzzer::Merge(const std::vector<std::string> &Corpora) {
  if (Corpora.size() <= 1) {
    Printf("Merge requires two or more corpus dirs\n");
    return;
  }
  InMergeMode = true;
  std::vector<std::string> ExtraCorpora(Corpora.begin() + 1, Corpora.end());

  assert(MaxInputLen > 0);
  UnitVector Initial, Extra;
  ReadDirToVectorOfUnits(Corpora[0].c_str(), &Initial, nullptr, MaxInputLen, true);
  for (auto &C : ExtraCorpora)
    ReadDirToVectorOfUnits(C.c_str(), &Extra, nullptr, MaxInputLen, true);

  if (!Initial.empty()) {
    Printf("=== Minimizing the initial corpus of %zd units\n", Initial.size());
    Initial = FindExtraUnits({}, Initial);
  }

  Printf("=== Merging extra %zd units\n", Extra.size());
  auto Res = FindExtraUnits(Initial, Extra);

  for (auto &U: Res)
    WriteToOutputCorpus(U);

  Printf("=== Merge: written %zd units\n", Res.size());
}

// Tries detecting a memory leak on the particular input that we have just
// executed before calling this function.
void Fuzzer::TryDetectingAMemoryLeak(const uint8_t *Data, size_t Size,
                                     bool DuringInitialCorpusExecution) {
  if (!HasMoreMallocsThanFrees) return;  // mallocs==frees, a leak is unlikely.
  if (!Options.DetectLeaks) return;
  if (!&(EF->__lsan_enable) || !&(EF->__lsan_disable) ||
      !(EF->__lsan_do_recoverable_leak_check))
    return;  // No lsan.
  // Run the target once again, but with lsan disabled so that if there is
  // a real leak we do not report it twice.
  EF->__lsan_disable();
  ExecuteCallback(Data, Size);
  EF->__lsan_enable();
  if (!HasMoreMallocsThanFrees) return;  // a leak is unlikely.
  if (NumberOfLeakDetectionAttempts++ > 1000) {
    Options.DetectLeaks = false;
    Printf("INFO: libFuzzer disabled leak detection after every mutation.\n"
           "      Most likely the target function accumulates allocated\n"
           "      memory in a global state w/o actually leaking it.\n"
           "      You may try running this binary with -trace_malloc=[12]"
           "      to get a trace of mallocs and frees.\n"
           "      If LeakSanitizer is enabled in this process it will still\n"
           "      run on the process shutdown.\n");
    return;
  }
  // Now perform the actual lsan pass. This is expensive and we must ensure
  // we don't call it too often.
  if (EF->__lsan_do_recoverable_leak_check()) { // Leak is found, report it.
    if (DuringInitialCorpusExecution)
      Printf("\nINFO: a leak has been found in the initial corpus.\n\n");
    Printf("INFO: to ignore leaks on libFuzzer side use -detect_leaks=0.\n\n");
    CurrentUnitSize = Size;
    DumpCurrentUnit("leak-");
    PrintFinalStats();
    _Exit(Options.ErrorExitCode);  // not exit() to disable lsan further on.
  }
}

void Fuzzer::MutateAndTestOne() {
  MD.StartMutationSequence();

  auto &II = Corpus.ChooseUnitToMutate(MD.GetRand());
  const auto &U = II.U;
  memcpy(BaseSha1, II.Sha1, sizeof(BaseSha1));
  assert(CurrentUnitData);
  size_t Size = U.size();
  assert(Size <= MaxInputLen && "Oversized Unit");
  memcpy(CurrentUnitData, U.data(), Size);

  assert(MaxMutationLen > 0);

  for (int i = 0; i < Options.MutateDepth; i++) {
    if (TotalNumberOfRuns >= Options.MaxNumberOfRuns)
      break;
    size_t NewSize = 0;
    NewSize = MD.Mutate(CurrentUnitData, Size, MaxMutationLen);
    assert(NewSize > 0 && "Mutator returned empty unit");
    assert(NewSize <= MaxMutationLen && "Mutator return overisized unit");
    Size = NewSize;
    if (i == 0)
      StartTraceRecording();
    II.NumExecutedMutations++;
    if (size_t NumFeatures = RunOne(CurrentUnitData, Size)) {
      Corpus.AddToCorpus({CurrentUnitData, CurrentUnitData + Size}, NumFeatures,
                         /*MayDeleteFile=*/true);
      ReportNewCoverage(&II, {CurrentUnitData, CurrentUnitData + Size});
      CheckExitOnSrcPosOrItem();
    }
    StopTraceRecording();
    TryDetectingAMemoryLeak(CurrentUnitData, Size,
                            /*DuringInitialCorpusExecution*/ false);
  }
}

void Fuzzer::ResetCoverage() {
  ResetEdgeCoverage();
  MaxCoverage.Reset();
  PrepareCounters(&MaxCoverage);
}

void Fuzzer::Loop() {
  system_clock::time_point LastCorpusReload = system_clock::now();
  if (Options.DoCrossOver)
    MD.SetCorpus(&Corpus);
  while (true) {
    auto Now = system_clock::now();
    if (duration_cast<seconds>(Now - LastCorpusReload).count() >=
        Options.ReloadIntervalSec) {
      RereadOutputCorpus(MaxInputLen);
      LastCorpusReload = system_clock::now();
    }
    if (TotalNumberOfRuns >= Options.MaxNumberOfRuns)
      break;
    if (TimedOut()) break;
    // Perform several mutations and runs.
    MutateAndTestOne();
  }

  PrintStats("DONE  ", "\n");
  MD.PrintRecommendedDictionary();
}

void Fuzzer::MinimizeCrashLoop(const Unit &U) {
  if (U.size() <= 2) return;
  while (!TimedOut() && TotalNumberOfRuns < Options.MaxNumberOfRuns) {
    MD.StartMutationSequence();
    memcpy(CurrentUnitData, U.data(), U.size());
    for (int i = 0; i < Options.MutateDepth; i++) {
      size_t NewSize = MD.Mutate(CurrentUnitData, U.size(), MaxMutationLen);
      assert(NewSize > 0 && NewSize <= MaxMutationLen);
      RunOne(CurrentUnitData, NewSize);
      TryDetectingAMemoryLeak(CurrentUnitData, NewSize,
                              /*DuringInitialCorpusExecution*/ false);
    }
  }
}

} // namespace fuzzer

extern "C" {

size_t LLVMFuzzerMutate(uint8_t *Data, size_t Size, size_t MaxSize) {
  assert(fuzzer::F);
  return fuzzer::F->GetMD().DefaultMutate(Data, Size, MaxSize);
}
}  // extern "C"