llvm.org GIT mirror llvm / cef7527 lib / ExecutionEngine / JIT / JITEmitter.cpp
cef7527

Tree @cef7527 (Download .tar.gz)

JITEmitter.cpp @cef7527raw · history · blame

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
//===-- JITEmitter.cpp - Write machine code to executable memory ----------===//
//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file defines a MachineCodeEmitter object that is used by the JIT to
// write machine code to memory and remember where relocatable values are.
//
//===----------------------------------------------------------------------===//

#define DEBUG_TYPE "jit"
#include "JIT.h"
#include "JITDwarfEmitter.h"
#include "llvm/Constants.h"
#include "llvm/Module.h"
#include "llvm/DerivedTypes.h"
#include "llvm/CodeGen/MachineCodeEmitter.h"
#include "llvm/CodeGen/MachineFunction.h"
#include "llvm/CodeGen/MachineConstantPool.h"
#include "llvm/CodeGen/MachineJumpTableInfo.h"
#include "llvm/CodeGen/MachineModuleInfo.h"
#include "llvm/CodeGen/MachineRelocation.h"
#include "llvm/ExecutionEngine/JITMemoryManager.h"
#include "llvm/ExecutionEngine/GenericValue.h"
#include "llvm/Target/TargetData.h"
#include "llvm/Target/TargetJITInfo.h"
#include "llvm/Target/TargetMachine.h"
#include "llvm/Target/TargetOptions.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/MutexGuard.h"
#include "llvm/System/Disassembler.h"
#include "llvm/System/Memory.h"
#include "llvm/Target/TargetInstrInfo.h"
#include "llvm/ADT/Statistic.h"
#include <algorithm>
#include <set>
using namespace llvm;

STATISTIC(NumBytes, "Number of bytes of machine code compiled");
STATISTIC(NumRelos, "Number of relocations applied");
static JIT *TheJIT = 0;


//===----------------------------------------------------------------------===//
// JIT lazy compilation code.
//
namespace {
  class JITResolverState {
  private:
    /// FunctionToStubMap - Keep track of the stub created for a particular
    /// function so that we can reuse them if necessary.
    std::map<Function*, void*> FunctionToStubMap;

    /// StubToFunctionMap - Keep track of the function that each stub
    /// corresponds to.
    std::map<void*, Function*> StubToFunctionMap;

    /// GlobalToLazyPtrMap - Keep track of the lazy pointer created for a
    /// particular GlobalVariable so that we can reuse them if necessary.
    std::map<GlobalValue*, void*> GlobalToLazyPtrMap;

  public:
    std::map<Function*, void*>& getFunctionToStubMap(const MutexGuard& locked) {
      assert(locked.holds(TheJIT->lock));
      return FunctionToStubMap;
    }

    std::map<void*, Function*>& getStubToFunctionMap(const MutexGuard& locked) {
      assert(locked.holds(TheJIT->lock));
      return StubToFunctionMap;
    }

    std::map<GlobalValue*, void*>&
    getGlobalToLazyPtrMap(const MutexGuard& locked) {
      assert(locked.holds(TheJIT->lock));
      return GlobalToLazyPtrMap;
    }
  };

  /// JITResolver - Keep track of, and resolve, call sites for functions that
  /// have not yet been compiled.
  class JITResolver {
    /// LazyResolverFn - The target lazy resolver function that we actually
    /// rewrite instructions to use.
    TargetJITInfo::LazyResolverFn LazyResolverFn;

    JITResolverState state;

    /// ExternalFnToStubMap - This is the equivalent of FunctionToStubMap for
    /// external functions.
    std::map<void*, void*> ExternalFnToStubMap;

    //map addresses to indexes in the GOT
    std::map<void*, unsigned> revGOTMap;
    unsigned nextGOTIndex;

    static JITResolver *TheJITResolver;
  public:
    explicit JITResolver(JIT &jit) : nextGOTIndex(0) {
      TheJIT = &jit;

      LazyResolverFn = jit.getJITInfo().getLazyResolverFunction(JITCompilerFn);
      assert(TheJITResolver == 0 && "Multiple JIT resolvers?");
      TheJITResolver = this;
    }
    
    ~JITResolver() {
      TheJITResolver = 0;
    }

    /// getFunctionStub - This returns a pointer to a function stub, creating
    /// one on demand as needed.
    void *getFunctionStub(Function *F);

    /// getExternalFunctionStub - Return a stub for the function at the
    /// specified address, created lazily on demand.
    void *getExternalFunctionStub(void *FnAddr);

    /// getGlobalValueLazyPtr - Return a lazy pointer containing the specified
    /// GV address.
    void *getGlobalValueLazyPtr(GlobalValue *V, void *GVAddress);

    /// AddCallbackAtLocation - If the target is capable of rewriting an
    /// instruction without the use of a stub, record the location of the use so
    /// we know which function is being used at the location.
    void *AddCallbackAtLocation(Function *F, void *Location) {
      MutexGuard locked(TheJIT->lock);
      /// Get the target-specific JIT resolver function.
      state.getStubToFunctionMap(locked)[Location] = F;
      return (void*)(intptr_t)LazyResolverFn;
    }

    /// getGOTIndexForAddress - Return a new or existing index in the GOT for
    /// an address.  This function only manages slots, it does not manage the
    /// contents of the slots or the memory associated with the GOT.
    unsigned getGOTIndexForAddr(void *addr);

    /// JITCompilerFn - This function is called to resolve a stub to a compiled
    /// address.  If the LLVM Function corresponding to the stub has not yet
    /// been compiled, this function compiles it first.
    static void *JITCompilerFn(void *Stub);
  };
}

JITResolver *JITResolver::TheJITResolver = 0;

/// getFunctionStub - This returns a pointer to a function stub, creating
/// one on demand as needed.
void *JITResolver::getFunctionStub(Function *F) {
  MutexGuard locked(TheJIT->lock);

  // If we already have a stub for this function, recycle it.
  void *&Stub = state.getFunctionToStubMap(locked)[F];
  if (Stub) return Stub;

  // Call the lazy resolver function unless we already KNOW it is an external
  // function, in which case we just skip the lazy resolution step.
  void *Actual = (void*)(intptr_t)LazyResolverFn;
  if (F->isDeclaration() && !F->hasNotBeenReadFromBitcode())
    Actual = TheJIT->getPointerToFunction(F);

  // Otherwise, codegen a new stub.  For now, the stub will call the lazy
  // resolver function.
  Stub = TheJIT->getJITInfo().emitFunctionStub(F, Actual,
                                               *TheJIT->getCodeEmitter());

  if (Actual != (void*)(intptr_t)LazyResolverFn) {
    // If we are getting the stub for an external function, we really want the
    // address of the stub in the GlobalAddressMap for the JIT, not the address
    // of the external function.
    TheJIT->updateGlobalMapping(F, Stub);
  }

  DOUT << "JIT: Stub emitted at [" << Stub << "] for function '"
       << F->getName() << "'\n";

  // Finally, keep track of the stub-to-Function mapping so that the
  // JITCompilerFn knows which function to compile!
  state.getStubToFunctionMap(locked)[Stub] = F;
  return Stub;
}

/// getGlobalValueLazyPtr - Return a lazy pointer containing the specified
/// GV address.
void *JITResolver::getGlobalValueLazyPtr(GlobalValue *GV, void *GVAddress) {
  MutexGuard locked(TheJIT->lock);

  // If we already have a stub for this global variable, recycle it.
  void *&LazyPtr = state.getGlobalToLazyPtrMap(locked)[GV];
  if (LazyPtr) return LazyPtr;

  // Otherwise, codegen a new lazy pointer.
  LazyPtr = TheJIT->getJITInfo().emitGlobalValueLazyPtr(GV, GVAddress,
                                                    *TheJIT->getCodeEmitter());

  DOUT << "JIT: Stub emitted at [" << LazyPtr << "] for GV '"
       << GV->getName() << "'\n";

  return LazyPtr;
}

/// getExternalFunctionStub - Return a stub for the function at the
/// specified address, created lazily on demand.
void *JITResolver::getExternalFunctionStub(void *FnAddr) {
  // If we already have a stub for this function, recycle it.
  void *&Stub = ExternalFnToStubMap[FnAddr];
  if (Stub) return Stub;

  Stub = TheJIT->getJITInfo().emitFunctionStub(0, FnAddr,
                                               *TheJIT->getCodeEmitter());

  DOUT << "JIT: Stub emitted at [" << Stub
       << "] for external function at '" << FnAddr << "'\n";
  return Stub;
}

unsigned JITResolver::getGOTIndexForAddr(void* addr) {
  unsigned idx = revGOTMap[addr];
  if (!idx) {
    idx = ++nextGOTIndex;
    revGOTMap[addr] = idx;
    DOUT << "Adding GOT entry " << idx << " for addr " << addr << "\n";
  }
  return idx;
}

/// JITCompilerFn - This function is called when a lazy compilation stub has
/// been entered.  It looks up which function this stub corresponds to, compiles
/// it if necessary, then returns the resultant function pointer.
void *JITResolver::JITCompilerFn(void *Stub) {
  JITResolver &JR = *TheJITResolver;
  
  Function* F = 0;
  void* ActualPtr = 0;

  {
    // Only lock for getting the Function. The call getPointerToFunction made
    // in this function might trigger function materializing, which requires
    // JIT lock to be unlocked.
    MutexGuard locked(TheJIT->lock);

    // The address given to us for the stub may not be exactly right, it might be
    // a little bit after the stub.  As such, use upper_bound to find it.
    std::map<void*, Function*>::iterator I =
      JR.state.getStubToFunctionMap(locked).upper_bound(Stub);
    assert(I != JR.state.getStubToFunctionMap(locked).begin() &&
           "This is not a known stub!");
    F = (--I)->second;
    ActualPtr = I->first;
  }

  // If we have already code generated the function, just return the address.
  void *Result = TheJIT->getPointerToGlobalIfAvailable(F);
  
  if (!Result) {
    // Otherwise we don't have it, do lazy compilation now.
    
    // If lazy compilation is disabled, emit a useful error message and abort.
    if (TheJIT->isLazyCompilationDisabled()) {
      cerr << "LLVM JIT requested to do lazy compilation of function '"
      << F->getName() << "' when lazy compiles are disabled!\n";
      abort();
    }
  
    // We might like to remove the stub from the StubToFunction map.
    // We can't do that! Multiple threads could be stuck, waiting to acquire the
    // lock above. As soon as the 1st function finishes compiling the function,
    // the next one will be released, and needs to be able to find the function
    // it needs to call.
    //JR.state.getStubToFunctionMap(locked).erase(I);

    DOUT << "JIT: Lazily resolving function '" << F->getName()
         << "' In stub ptr = " << Stub << " actual ptr = "
         << ActualPtr << "\n";

    Result = TheJIT->getPointerToFunction(F);
  }
  
  // Reacquire the lock to erase the stub in the map.
  MutexGuard locked(TheJIT->lock);

  // We don't need to reuse this stub in the future, as F is now compiled.
  JR.state.getFunctionToStubMap(locked).erase(F);

  // FIXME: We could rewrite all references to this stub if we knew them.

  // What we will do is set the compiled function address to map to the
  // same GOT entry as the stub so that later clients may update the GOT
  // if they see it still using the stub address.
  // Note: this is done so the Resolver doesn't have to manage GOT memory
  // Do this without allocating map space if the target isn't using a GOT
  if(JR.revGOTMap.find(Stub) != JR.revGOTMap.end())
    JR.revGOTMap[Result] = JR.revGOTMap[Stub];

  return Result;
}

//===----------------------------------------------------------------------===//
// Function Index Support

// On MacOS we generate an index of currently JIT'd functions so that
// performance tools can determine a symbol name and accurate code range for a
// PC value.  Because performance tools are generally asynchronous, the code
// below is written with the hope that it could be interrupted at any time and
// have useful answers.  However, we don't go crazy with atomic operations, we
// just do a "reasonable effort".
#ifdef __APPLE__ 
#define ENABLE_JIT_SYMBOL_TABLE 0
#endif

/// JitSymbolEntry - Each function that is JIT compiled results in one of these
/// being added to an array of symbols.  This indicates the name of the function
/// as well as the address range it occupies.  This allows the client to map
/// from a PC value to the name of the function.
struct JitSymbolEntry {
  const char *FnName;   // FnName - a strdup'd string.
  void *FnStart;
  intptr_t FnSize;
};


struct JitSymbolTable {
  /// NextPtr - This forms a linked list of JitSymbolTable entries.  This
  /// pointer is not used right now, but might be used in the future.  Consider
  /// it reserved for future use.
  JitSymbolTable *NextPtr;
  
  /// Symbols - This is an array of JitSymbolEntry entries.  Only the first
  /// 'NumSymbols' symbols are valid.
  JitSymbolEntry *Symbols;
  
  /// NumSymbols - This indicates the number entries in the Symbols array that
  /// are valid.
  unsigned NumSymbols;
  
  /// NumAllocated - This indicates the amount of space we have in the Symbols
  /// array.  This is a private field that should not be read by external tools.
  unsigned NumAllocated;
};

#if ENABLE_JIT_SYMBOL_TABLE 
JitSymbolTable *__jitSymbolTable;
#endif

static void AddFunctionToSymbolTable(const char *FnName, 
                                     void *FnStart, intptr_t FnSize) {
  assert(FnName != 0 && FnStart != 0 && "Bad symbol to add");
  JitSymbolTable **SymTabPtrPtr = 0;
#if !ENABLE_JIT_SYMBOL_TABLE
  return;
#else
  SymTabPtrPtr = &__jitSymbolTable;
#endif
  
  // If this is the first entry in the symbol table, add the JitSymbolTable
  // index.
  if (*SymTabPtrPtr == 0) {
    JitSymbolTable *New = new JitSymbolTable();
    New->NextPtr = 0;
    New->Symbols = 0;
    New->NumSymbols = 0;
    New->NumAllocated = 0;
    *SymTabPtrPtr = New;
  }
  
  JitSymbolTable *SymTabPtr = *SymTabPtrPtr;
  
  // If we have space in the table, reallocate the table.
  if (SymTabPtr->NumSymbols >= SymTabPtr->NumAllocated) {
    // If we don't have space, reallocate the table.
    unsigned NewSize = std::max(64U, SymTabPtr->NumAllocated*2);
    JitSymbolEntry *NewSymbols = new JitSymbolEntry[NewSize];
    JitSymbolEntry *OldSymbols = SymTabPtr->Symbols;
    
    // Copy the old entries over.
    memcpy(NewSymbols, OldSymbols,
           SymTabPtr->NumSymbols*sizeof(OldSymbols[0]));
    
    // Swap the new symbols in, delete the old ones.
    SymTabPtr->Symbols = NewSymbols;
    SymTabPtr->NumAllocated = NewSize;
    delete [] OldSymbols;
  }
  
  // Otherwise, we have enough space, just tack it onto the end of the array.
  JitSymbolEntry &Entry = SymTabPtr->Symbols[SymTabPtr->NumSymbols];
  Entry.FnName = strdup(FnName);
  Entry.FnStart = FnStart;
  Entry.FnSize = FnSize;
  ++SymTabPtr->NumSymbols;
}

static void RemoveFunctionFromSymbolTable(void *FnStart) {
  assert(FnStart && "Invalid function pointer");
  JitSymbolTable **SymTabPtrPtr = 0;
#if !ENABLE_JIT_SYMBOL_TABLE
  return;
#else
  SymTabPtrPtr = &__jitSymbolTable;
#endif
  
  JitSymbolTable *SymTabPtr = *SymTabPtrPtr;
  JitSymbolEntry *Symbols = SymTabPtr->Symbols;
  
  // Scan the table to find its index.  The table is not sorted, so do a linear
  // scan.
  unsigned Index;
  for (Index = 0; Symbols[Index].FnStart != FnStart; ++Index)
    assert(Index != SymTabPtr->NumSymbols && "Didn't find function!");
  
  // Once we have an index, we know to nuke this entry, overwrite it with the
  // entry at the end of the array, making the last entry redundant.
  const char *OldName = Symbols[Index].FnName;
  Symbols[Index] = Symbols[SymTabPtr->NumSymbols-1];
  free((void*)OldName);
  
  // Drop the number of symbols in the table.
  --SymTabPtr->NumSymbols;

  // Finally, if we deleted the final symbol, deallocate the table itself.
  if (SymTabPtr->NumSymbols != 0) 
    return;
  
  *SymTabPtrPtr = 0;
  delete [] Symbols;
  delete SymTabPtr;
}

//===----------------------------------------------------------------------===//
// JITEmitter code.
//
namespace {
  /// JITEmitter - The JIT implementation of the MachineCodeEmitter, which is
  /// used to output functions to memory for execution.
  class JITEmitter : public MachineCodeEmitter {
    JITMemoryManager *MemMgr;

    // When outputting a function stub in the context of some other function, we
    // save BufferBegin/BufferEnd/CurBufferPtr here.
    unsigned char *SavedBufferBegin, *SavedBufferEnd, *SavedCurBufferPtr;

    /// Relocations - These are the relocations that the function needs, as
    /// emitted.
    std::vector<MachineRelocation> Relocations;
    
    /// MBBLocations - This vector is a mapping from MBB ID's to their address.
    /// It is filled in by the StartMachineBasicBlock callback and queried by
    /// the getMachineBasicBlockAddress callback.
    std::vector<intptr_t> MBBLocations;

    /// ConstantPool - The constant pool for the current function.
    ///
    MachineConstantPool *ConstantPool;

    /// ConstantPoolBase - A pointer to the first entry in the constant pool.
    ///
    void *ConstantPoolBase;

    /// JumpTable - The jump tables for the current function.
    ///
    MachineJumpTableInfo *JumpTable;
    
    /// JumpTableBase - A pointer to the first entry in the jump table.
    ///
    void *JumpTableBase;

    /// Resolver - This contains info about the currently resolved functions.
    JITResolver Resolver;
    
    /// DE - The dwarf emitter for the jit.
    JITDwarfEmitter *DE;

    /// LabelLocations - This vector is a mapping from Label ID's to their 
    /// address.
    std::vector<intptr_t> LabelLocations;

    /// MMI - Machine module info for exception informations
    MachineModuleInfo* MMI;

    // GVSet - a set to keep track of which globals have been seen
    std::set<const GlobalVariable*> GVSet;

  public:
    JITEmitter(JIT &jit, JITMemoryManager *JMM) : Resolver(jit) {
      MemMgr = JMM ? JMM : JITMemoryManager::CreateDefaultMemManager();
      if (jit.getJITInfo().needsGOT()) {
        MemMgr->AllocateGOT();
        DOUT << "JIT is managing a GOT\n";
      }

      if (ExceptionHandling) DE = new JITDwarfEmitter(jit);
    }
    ~JITEmitter() { 
      delete MemMgr;
      if (ExceptionHandling) delete DE;
    }

    /// classof - Methods for support type inquiry through isa, cast, and
    /// dyn_cast:
    ///
    static inline bool classof(const JITEmitter*) { return true; }
    static inline bool classof(const MachineCodeEmitter*) { return true; }
    
    JITResolver &getJITResolver() { return Resolver; }

    virtual void startFunction(MachineFunction &F);
    virtual bool finishFunction(MachineFunction &F);
    
    void emitConstantPool(MachineConstantPool *MCP);
    void initJumpTableInfo(MachineJumpTableInfo *MJTI);
    void emitJumpTableInfo(MachineJumpTableInfo *MJTI);
    
    virtual void startFunctionStub(const GlobalValue* F, unsigned StubSize,
                                   unsigned Alignment = 1);
    virtual void* finishFunctionStub(const GlobalValue *F);

    /// allocateSpace - Reserves space in the current block if any, or
    /// allocate a new one of the given size.
    virtual void *allocateSpace(intptr_t Size, unsigned Alignment);

    virtual void addRelocation(const MachineRelocation &MR) {
      Relocations.push_back(MR);
    }
    
    virtual void StartMachineBasicBlock(MachineBasicBlock *MBB) {
      if (MBBLocations.size() <= (unsigned)MBB->getNumber())
        MBBLocations.resize((MBB->getNumber()+1)*2);
      MBBLocations[MBB->getNumber()] = getCurrentPCValue();
    }

    virtual intptr_t getConstantPoolEntryAddress(unsigned Entry) const;
    virtual intptr_t getJumpTableEntryAddress(unsigned Entry) const;

    virtual intptr_t getMachineBasicBlockAddress(MachineBasicBlock *MBB) const {
      assert(MBBLocations.size() > (unsigned)MBB->getNumber() && 
             MBBLocations[MBB->getNumber()] && "MBB not emitted!");
      return MBBLocations[MBB->getNumber()];
    }

    /// deallocateMemForFunction - Deallocate all memory for the specified
    /// function body.
    void deallocateMemForFunction(Function *F) {
      MemMgr->deallocateMemForFunction(F);
    }
    
    virtual void emitLabel(uint64_t LabelID) {
      if (LabelLocations.size() <= LabelID)
        LabelLocations.resize((LabelID+1)*2);
      LabelLocations[LabelID] = getCurrentPCValue();
    }

    virtual intptr_t getLabelAddress(uint64_t LabelID) const {
      assert(LabelLocations.size() > (unsigned)LabelID && 
             LabelLocations[LabelID] && "Label not emitted!");
      return LabelLocations[LabelID];
    }
 
    virtual void setModuleInfo(MachineModuleInfo* Info) {
      MMI = Info;
      if (ExceptionHandling) DE->setModuleInfo(Info);
    }

    void setMemoryExecutable(void) {
      MemMgr->setMemoryExecutable();
    }

  private:
    void *getPointerToGlobal(GlobalValue *GV, void *Reference, bool NoNeedStub);
    void *getPointerToGVLazyPtr(GlobalValue *V, void *Reference,
                                bool NoNeedStub);
    unsigned addSizeOfGlobal(const GlobalVariable *GV, unsigned Size);
    unsigned addSizeOfGlobalsInConstantVal(const Constant *C, unsigned Size);
    unsigned addSizeOfGlobalsInInitializer(const Constant *Init, unsigned Size);
    unsigned GetSizeOfGlobalsInBytes(MachineFunction &MF);
  };
}

void *JITEmitter::getPointerToGlobal(GlobalValue *V, void *Reference,
                                     bool DoesntNeedStub) {
  if (GlobalVariable *GV = dyn_cast<GlobalVariable>(V)) {
    /// FIXME: If we straightened things out, this could actually emit the
    /// global immediately instead of queuing it for codegen later!
    return TheJIT->getOrEmitGlobalVariable(GV);
  }
  if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V))
    return TheJIT->getPointerToGlobal(GA->resolveAliasedGlobal(false));

  // If we have already compiled the function, return a pointer to its body.
  Function *F = cast<Function>(V);
  void *ResultPtr = TheJIT->getPointerToGlobalIfAvailable(F);
  if (ResultPtr) return ResultPtr;

  if (F->isDeclaration() && !F->hasNotBeenReadFromBitcode()) {
    // If this is an external function pointer, we can force the JIT to
    // 'compile' it, which really just adds it to the map.
    if (DoesntNeedStub)
      return TheJIT->getPointerToFunction(F);

    return Resolver.getFunctionStub(F);
  }

  // Okay, the function has not been compiled yet, if the target callback
  // mechanism is capable of rewriting the instruction directly, prefer to do
  // that instead of emitting a stub.
  if (DoesntNeedStub)
    return Resolver.AddCallbackAtLocation(F, Reference);

  // Otherwise, we have to emit a lazy resolving stub.
  return Resolver.getFunctionStub(F);
}

void *JITEmitter::getPointerToGVLazyPtr(GlobalValue *V, void *Reference,
                                        bool DoesntNeedStub) {
  // Make sure GV is emitted first.
  // FIXME: For now, if the GV is an external function we force the JIT to
  // compile it so the lazy pointer will contain the fully resolved address.
  void *GVAddress = getPointerToGlobal(V, Reference, true);
  return Resolver.getGlobalValueLazyPtr(V, GVAddress);
}

static unsigned GetConstantPoolSizeInBytes(MachineConstantPool *MCP) {
  const std::vector<MachineConstantPoolEntry> &Constants = MCP->getConstants();
  if (Constants.empty()) return 0;

  MachineConstantPoolEntry CPE = Constants.back();
  unsigned Size = CPE.Offset;
  const Type *Ty = CPE.isMachineConstantPoolEntry()
    ? CPE.Val.MachineCPVal->getType() : CPE.Val.ConstVal->getType();
  Size += TheJIT->getTargetData()->getABITypeSize(Ty);
  return Size;
}

static unsigned GetJumpTableSizeInBytes(MachineJumpTableInfo *MJTI) {
  const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables();
  if (JT.empty()) return 0;
  
  unsigned NumEntries = 0;
  for (unsigned i = 0, e = JT.size(); i != e; ++i)
    NumEntries += JT[i].MBBs.size();

  unsigned EntrySize = MJTI->getEntrySize();

  return NumEntries * EntrySize;
}

static uintptr_t RoundUpToAlign(uintptr_t Size, unsigned Alignment) {
  if (Alignment == 0) Alignment = 1;
  // Since we do not know where the buffer will be allocated, be pessimistic. 
  return Size + Alignment;
}

/// addSizeOfGlobal - add the size of the global (plus any alignment padding)
/// into the running total Size.

unsigned JITEmitter::addSizeOfGlobal(const GlobalVariable *GV, unsigned Size) {
  const Type *ElTy = GV->getType()->getElementType();
  size_t GVSize = (size_t)TheJIT->getTargetData()->getABITypeSize(ElTy);
  size_t GVAlign = 
      (size_t)TheJIT->getTargetData()->getPreferredAlignment(GV);
  DOUT << "Adding in size " << GVSize << " alignment " << GVAlign;
  DEBUG(GV->dump());
  // Assume code section ends with worst possible alignment, so first
  // variable needs maximal padding.
  if (Size==0)
    Size = 1;
  Size = ((Size+GVAlign-1)/GVAlign)*GVAlign;
  Size += GVSize;
  return Size;
}

/// addSizeOfGlobalsInConstantVal - find any globals that we haven't seen yet
/// but are referenced from the constant; put them in GVSet and add their
/// size into the running total Size.

unsigned JITEmitter::addSizeOfGlobalsInConstantVal(const Constant *C, 
                                              unsigned Size) {
  // If its undefined, return the garbage.
  if (isa<UndefValue>(C))
    return Size;

  // If the value is a ConstantExpr
  if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
    Constant *Op0 = CE->getOperand(0);
    switch (CE->getOpcode()) {
    case Instruction::GetElementPtr:
    case Instruction::Trunc:
    case Instruction::ZExt:
    case Instruction::SExt:
    case Instruction::FPTrunc:
    case Instruction::FPExt:
    case Instruction::UIToFP:
    case Instruction::SIToFP:
    case Instruction::FPToUI:
    case Instruction::FPToSI:
    case Instruction::PtrToInt:
    case Instruction::IntToPtr:
    case Instruction::BitCast: {
      Size = addSizeOfGlobalsInConstantVal(Op0, Size);
      break;
    }
    case Instruction::Add:
    case Instruction::Sub:
    case Instruction::Mul:
    case Instruction::UDiv:
    case Instruction::SDiv:
    case Instruction::URem:
    case Instruction::SRem:
    case Instruction::And:
    case Instruction::Or:
    case Instruction::Xor: {
      Size = addSizeOfGlobalsInConstantVal(Op0, Size);
      Size = addSizeOfGlobalsInConstantVal(CE->getOperand(1), Size);
      break;
    }
    default: {
       cerr << "ConstantExpr not handled: " << *CE << "\n";
      abort();
    }
    }
  }

  if (C->getType()->getTypeID() == Type::PointerTyID)
    if (const GlobalVariable* GV = dyn_cast<GlobalVariable>(C))
      if (GVSet.insert(GV).second)
        Size = addSizeOfGlobal(GV, Size);

  return Size;
}

/// addSizeOfGLobalsInInitializer - handle any globals that we haven't seen yet
/// but are referenced from the given initializer.

unsigned JITEmitter::addSizeOfGlobalsInInitializer(const Constant *Init, 
                                              unsigned Size) {
  if (!isa<UndefValue>(Init) &&
      !isa<ConstantVector>(Init) &&
      !isa<ConstantAggregateZero>(Init) &&
      !isa<ConstantArray>(Init) &&
      !isa<ConstantStruct>(Init) &&
      Init->getType()->isFirstClassType())
    Size = addSizeOfGlobalsInConstantVal(Init, Size);
  return Size;
}

/// GetSizeOfGlobalsInBytes - walk the code for the function, looking for
/// globals; then walk the initializers of those globals looking for more.
/// If their size has not been considered yet, add it into the running total
/// Size.

unsigned JITEmitter::GetSizeOfGlobalsInBytes(MachineFunction &MF) {
  unsigned Size = 0;
  GVSet.clear();

  for (MachineFunction::iterator MBB = MF.begin(), E = MF.end(); 
       MBB != E; ++MBB) {
    for (MachineBasicBlock::const_iterator I = MBB->begin(), E = MBB->end();
         I != E; ++I) {
      const TargetInstrDesc &Desc = I->getDesc();
      const MachineInstr &MI = *I;
      unsigned NumOps = Desc.getNumOperands();
      for (unsigned CurOp = 0; CurOp < NumOps; CurOp++) {
        const MachineOperand &MO = MI.getOperand(CurOp);
        if (MO.isGlobal()) {
          GlobalValue* V = MO.getGlobal();
          const GlobalVariable *GV = dyn_cast<const GlobalVariable>(V);
          if (!GV)
            continue;
          // If seen in previous function, it will have an entry here.
          if (TheJIT->getPointerToGlobalIfAvailable(GV))
            continue;
          // If seen earlier in this function, it will have an entry here.
          // FIXME: it should be possible to combine these tables, by
          // assuming the addresses of the new globals in this module
          // start at 0 (or something) and adjusting them after codegen
          // complete.  Another possibility is to grab a marker bit in GV.
          if (GVSet.insert(GV).second)
            // A variable as yet unseen.  Add in its size.
            Size = addSizeOfGlobal(GV, Size);
        }
      }
    }
  }
  DOUT << "About to look through initializers\n";
  // Look for more globals that are referenced only from initializers.
  // GVSet.end is computed each time because the set can grow as we go.
  for (std::set<const GlobalVariable *>::iterator I = GVSet.begin(); 
       I != GVSet.end(); I++) {
    const GlobalVariable* GV = *I;
    if (GV->hasInitializer())
      Size = addSizeOfGlobalsInInitializer(GV->getInitializer(), Size);
  }

  return Size;
}

void JITEmitter::startFunction(MachineFunction &F) {
  uintptr_t ActualSize = 0;
  // Set the memory writable, if it's not already
  MemMgr->setMemoryWritable();
  if (MemMgr->NeedsExactSize()) {
    DOUT << "ExactSize\n";
    const TargetInstrInfo* TII = F.getTarget().getInstrInfo();
    MachineJumpTableInfo *MJTI = F.getJumpTableInfo();
    MachineConstantPool *MCP = F.getConstantPool();
    
    // Ensure the constant pool/jump table info is at least 4-byte aligned.
    ActualSize = RoundUpToAlign(ActualSize, 16);
    
    // Add the alignment of the constant pool
    ActualSize = RoundUpToAlign(ActualSize, 
                                1 << MCP->getConstantPoolAlignment());

    // Add the constant pool size
    ActualSize += GetConstantPoolSizeInBytes(MCP);

    // Add the aligment of the jump table info
    ActualSize = RoundUpToAlign(ActualSize, MJTI->getAlignment());

    // Add the jump table size
    ActualSize += GetJumpTableSizeInBytes(MJTI);
    
    // Add the alignment for the function
    ActualSize = RoundUpToAlign(ActualSize,
                                std::max(F.getFunction()->getAlignment(), 8U));

    // Add the function size
    ActualSize += TII->GetFunctionSizeInBytes(F);

    DOUT << "ActualSize before globals " << ActualSize << "\n";
    // Add the size of the globals that will be allocated after this function.
    // These are all the ones referenced from this function that were not
    // previously allocated.
    ActualSize += GetSizeOfGlobalsInBytes(F);
    DOUT << "ActualSize after globals " << ActualSize << "\n";
  }

  BufferBegin = CurBufferPtr = MemMgr->startFunctionBody(F.getFunction(),
                                                         ActualSize);
  BufferEnd = BufferBegin+ActualSize;
  
  // Ensure the constant pool/jump table info is at least 4-byte aligned.
  emitAlignment(16);

  emitConstantPool(F.getConstantPool());
  initJumpTableInfo(F.getJumpTableInfo());

  // About to start emitting the machine code for the function.
  emitAlignment(std::max(F.getFunction()->getAlignment(), 8U));
  TheJIT->updateGlobalMapping(F.getFunction(), CurBufferPtr);

  MBBLocations.clear();
}

bool JITEmitter::finishFunction(MachineFunction &F) {
  if (CurBufferPtr == BufferEnd) {
    // FIXME: Allocate more space, then try again.
    cerr << "JIT: Ran out of space for generated machine code!\n";
    abort();
  }
  
  emitJumpTableInfo(F.getJumpTableInfo());
  
  // FnStart is the start of the text, not the start of the constant pool and
  // other per-function data.
  unsigned char *FnStart =
    (unsigned char *)TheJIT->getPointerToGlobalIfAvailable(F.getFunction());

  if (!Relocations.empty()) {
    NumRelos += Relocations.size();

    // Resolve the relocations to concrete pointers.
    for (unsigned i = 0, e = Relocations.size(); i != e; ++i) {
      MachineRelocation &MR = Relocations[i];
      void *ResultPtr;
      if (MR.isString()) {
        ResultPtr = TheJIT->getPointerToNamedFunction(MR.getString());

        // If the target REALLY wants a stub for this function, emit it now.
        if (!MR.doesntNeedStub())
          ResultPtr = Resolver.getExternalFunctionStub(ResultPtr);
      } else if (MR.isGlobalValue()) {
        ResultPtr = getPointerToGlobal(MR.getGlobalValue(),
                                       BufferBegin+MR.getMachineCodeOffset(),
                                       MR.doesntNeedStub());
      } else if (MR.isGlobalValueLazyPtr()) {
        ResultPtr = getPointerToGVLazyPtr(MR.getGlobalValue(),
                                          BufferBegin+MR.getMachineCodeOffset(),
                                          MR.doesntNeedStub());
      } else if (MR.isBasicBlock()) {
        ResultPtr = (void*)getMachineBasicBlockAddress(MR.getBasicBlock());
      } else if (MR.isConstantPoolIndex()) {
        ResultPtr=(void*)getConstantPoolEntryAddress(MR.getConstantPoolIndex());
      } else {
        assert(MR.isJumpTableIndex());
        ResultPtr=(void*)getJumpTableEntryAddress(MR.getJumpTableIndex());
      }

      MR.setResultPointer(ResultPtr);

      // if we are managing the GOT and the relocation wants an index,
      // give it one
      if (MR.isGOTRelative() && MemMgr->isManagingGOT()) {
        unsigned idx = Resolver.getGOTIndexForAddr(ResultPtr);
        MR.setGOTIndex(idx);
        if (((void**)MemMgr->getGOTBase())[idx] != ResultPtr) {
          DOUT << "GOT was out of date for " << ResultPtr
               << " pointing at " << ((void**)MemMgr->getGOTBase())[idx]
               << "\n";
          ((void**)MemMgr->getGOTBase())[idx] = ResultPtr;
        }
      }
    }

    TheJIT->getJITInfo().relocate(BufferBegin, &Relocations[0],
                                  Relocations.size(), MemMgr->getGOTBase());
  }

  // Update the GOT entry for F to point to the new code.
  if (MemMgr->isManagingGOT()) {
    unsigned idx = Resolver.getGOTIndexForAddr((void*)BufferBegin);
    if (((void**)MemMgr->getGOTBase())[idx] != (void*)BufferBegin) {
      DOUT << "GOT was out of date for " << (void*)BufferBegin
           << " pointing at " << ((void**)MemMgr->getGOTBase())[idx] << "\n";
      ((void**)MemMgr->getGOTBase())[idx] = (void*)BufferBegin;
    }
  }

  unsigned char *FnEnd = CurBufferPtr;

  MemMgr->endFunctionBody(F.getFunction(), BufferBegin, FnEnd);
  BufferBegin = CurBufferPtr = 0;
  NumBytes += FnEnd-FnStart;

  // Invalidate the icache if necessary.
  sys::Memory::InvalidateInstructionCache(FnStart, FnEnd-FnStart);
  
  // Add it to the JIT symbol table if the host wants it.
  AddFunctionToSymbolTable(F.getFunction()->getNameStart(),
                           FnStart, FnEnd-FnStart);

  DOUT << "JIT: Finished CodeGen of [" << (void*)FnStart
       << "] Function: " << F.getFunction()->getName()
       << ": " << (FnEnd-FnStart) << " bytes of text, "
       << Relocations.size() << " relocations\n";
  Relocations.clear();

  // Mark code region readable and executable if it's not so already.
  MemMgr->setMemoryExecutable();

#ifndef NDEBUG
  {
  DOUT << std::hex;
  int i;
  unsigned char* q = FnStart;
  for (i=1; q!=FnEnd; q++, i++) {
    if (i%8==1)
      DOUT << "0x" << (long)q << ": ";
    DOUT<< (unsigned short)*q << " ";
    if (i%8==0)
      DOUT<<"\n";
  }
  DOUT << std::dec;
  if (sys::hasDisassembler())
    DOUT << "Disassembled code:\n"
         << sys::disassembleBuffer(FnStart, FnEnd-FnStart, (uintptr_t)FnStart);
  }
#endif
  if (ExceptionHandling) {
    uintptr_t ActualSize = 0;
    SavedBufferBegin = BufferBegin;
    SavedBufferEnd = BufferEnd;
    SavedCurBufferPtr = CurBufferPtr;
    
    if (MemMgr->NeedsExactSize()) {
      ActualSize = DE->GetDwarfTableSizeInBytes(F, *this, FnStart, FnEnd);
    }

    BufferBegin = CurBufferPtr = MemMgr->startExceptionTable(F.getFunction(),
                                                             ActualSize);
    BufferEnd = BufferBegin+ActualSize;
    unsigned char* FrameRegister = DE->EmitDwarfTable(F, *this, FnStart, FnEnd);
    MemMgr->endExceptionTable(F.getFunction(), BufferBegin, CurBufferPtr,
                              FrameRegister);
    BufferBegin = SavedBufferBegin;
    BufferEnd = SavedBufferEnd;
    CurBufferPtr = SavedCurBufferPtr;

    TheJIT->RegisterTable(FrameRegister);
  }

  if (MMI)
    MMI->EndFunction();
 
  return false;
}

void* JITEmitter::allocateSpace(intptr_t Size, unsigned Alignment) {
  if (BufferBegin)
    return MachineCodeEmitter::allocateSpace(Size, Alignment);

  // create a new memory block if there is no active one.
  // care must be taken so that BufferBegin is invalidated when a
  // block is trimmed
  BufferBegin = CurBufferPtr = MemMgr->allocateSpace(Size, Alignment);
  BufferEnd = BufferBegin+Size;
  return CurBufferPtr;
}

void JITEmitter::emitConstantPool(MachineConstantPool *MCP) {
  const std::vector<MachineConstantPoolEntry> &Constants = MCP->getConstants();
  if (Constants.empty()) return;

  MachineConstantPoolEntry CPE = Constants.back();
  unsigned Size = CPE.Offset;
  const Type *Ty = CPE.isMachineConstantPoolEntry()
    ? CPE.Val.MachineCPVal->getType() : CPE.Val.ConstVal->getType();
  Size += TheJIT->getTargetData()->getABITypeSize(Ty);

  unsigned Align = 1 << MCP->getConstantPoolAlignment();
  ConstantPoolBase = allocateSpace(Size, Align);
  ConstantPool = MCP;

  if (ConstantPoolBase == 0) return;  // Buffer overflow.

  DOUT << "JIT: Emitted constant pool at [" << ConstantPoolBase
       << "] (size: " << Size << ", alignment: " << Align << ")\n";

  // Initialize the memory for all of the constant pool entries.
  for (unsigned i = 0, e = Constants.size(); i != e; ++i) {
    void *CAddr = (char*)ConstantPoolBase+Constants[i].Offset;
    if (Constants[i].isMachineConstantPoolEntry()) {
      // FIXME: add support to lower machine constant pool values into bytes!
      cerr << "Initialize memory with machine specific constant pool entry"
           << " has not been implemented!\n";
      abort();
    }
    TheJIT->InitializeMemory(Constants[i].Val.ConstVal, CAddr);
    DOUT << "JIT:   CP" << i << " at [" << CAddr << "]\n";
  }
}

void JITEmitter::initJumpTableInfo(MachineJumpTableInfo *MJTI) {
  const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables();
  if (JT.empty()) return;
  
  unsigned NumEntries = 0;
  for (unsigned i = 0, e = JT.size(); i != e; ++i)
    NumEntries += JT[i].MBBs.size();

  unsigned EntrySize = MJTI->getEntrySize();

  // Just allocate space for all the jump tables now.  We will fix up the actual
  // MBB entries in the tables after we emit the code for each block, since then
  // we will know the final locations of the MBBs in memory.
  JumpTable = MJTI;
  JumpTableBase = allocateSpace(NumEntries * EntrySize, MJTI->getAlignment());
}

void JITEmitter::emitJumpTableInfo(MachineJumpTableInfo *MJTI) {
  const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables();
  if (JT.empty() || JumpTableBase == 0) return;
  
  if (TargetMachine::getRelocationModel() == Reloc::PIC_) {
    assert(MJTI->getEntrySize() == 4 && "Cross JIT'ing?");
    // For each jump table, place the offset from the beginning of the table
    // to the target address.
    int *SlotPtr = (int*)JumpTableBase;

    for (unsigned i = 0, e = JT.size(); i != e; ++i) {
      const std::vector<MachineBasicBlock*> &MBBs = JT[i].MBBs;
      // Store the offset of the basic block for this jump table slot in the
      // memory we allocated for the jump table in 'initJumpTableInfo'
      intptr_t Base = (intptr_t)SlotPtr;
      for (unsigned mi = 0, me = MBBs.size(); mi != me; ++mi) {
        intptr_t MBBAddr = getMachineBasicBlockAddress(MBBs[mi]);
        *SlotPtr++ = TheJIT->getJITInfo().getPICJumpTableEntry(MBBAddr, Base);
      }
    }
  } else {
    assert(MJTI->getEntrySize() == sizeof(void*) && "Cross JIT'ing?");
    
    // For each jump table, map each target in the jump table to the address of 
    // an emitted MachineBasicBlock.
    intptr_t *SlotPtr = (intptr_t*)JumpTableBase;

    for (unsigned i = 0, e = JT.size(); i != e; ++i) {
      const std::vector<MachineBasicBlock*> &MBBs = JT[i].MBBs;
      // Store the address of the basic block for this jump table slot in the
      // memory we allocated for the jump table in 'initJumpTableInfo'
      for (unsigned mi = 0, me = MBBs.size(); mi != me; ++mi)
        *SlotPtr++ = getMachineBasicBlockAddress(MBBs[mi]);
    }
  }
}

void JITEmitter::startFunctionStub(const GlobalValue* F, unsigned StubSize,
                                   unsigned Alignment) {
  SavedBufferBegin = BufferBegin;
  SavedBufferEnd = BufferEnd;
  SavedCurBufferPtr = CurBufferPtr;
  
  BufferBegin = CurBufferPtr = MemMgr->allocateStub(F, StubSize, Alignment);
  BufferEnd = BufferBegin+StubSize+1;
}

void *JITEmitter::finishFunctionStub(const GlobalValue* F) {
  NumBytes += getCurrentPCOffset();

  // Invalidate the icache if necessary.
  sys::Memory::InvalidateInstructionCache(BufferBegin, NumBytes);

  std::swap(SavedBufferBegin, BufferBegin);
  BufferEnd = SavedBufferEnd;
  CurBufferPtr = SavedCurBufferPtr;
  return SavedBufferBegin;
}

// getConstantPoolEntryAddress - Return the address of the 'ConstantNum' entry
// in the constant pool that was last emitted with the 'emitConstantPool'
// method.
//
intptr_t JITEmitter::getConstantPoolEntryAddress(unsigned ConstantNum) const {
  assert(ConstantNum < ConstantPool->getConstants().size() &&
         "Invalid ConstantPoolIndex!");
  return (intptr_t)ConstantPoolBase +
         ConstantPool->getConstants()[ConstantNum].Offset;
}

// getJumpTableEntryAddress - Return the address of the JumpTable with index
// 'Index' in the jumpp table that was last initialized with 'initJumpTableInfo'
//
intptr_t JITEmitter::getJumpTableEntryAddress(unsigned Index) const {
  const std::vector<MachineJumpTableEntry> &JT = JumpTable->getJumpTables();
  assert(Index < JT.size() && "Invalid jump table index!");
  
  unsigned Offset = 0;
  unsigned EntrySize = JumpTable->getEntrySize();
  
  for (unsigned i = 0; i < Index; ++i)
    Offset += JT[i].MBBs.size();
  
   Offset *= EntrySize;
  
  return (intptr_t)((char *)JumpTableBase + Offset);
}

//===----------------------------------------------------------------------===//
//  Public interface to this file
//===----------------------------------------------------------------------===//

MachineCodeEmitter *JIT::createEmitter(JIT &jit, JITMemoryManager *JMM) {
  return new JITEmitter(jit, JMM);
}

// getPointerToNamedFunction - This function is used as a global wrapper to
// JIT::getPointerToNamedFunction for the purpose of resolving symbols when
// bugpoint is debugging the JIT. In that scenario, we are loading an .so and
// need to resolve function(s) that are being mis-codegenerated, so we need to
// resolve their addresses at runtime, and this is the way to do it.
extern "C" {
  void *getPointerToNamedFunction(const char *Name) {
    if (Function *F = TheJIT->FindFunctionNamed(Name))
      return TheJIT->getPointerToFunction(F);
    return TheJIT->getPointerToNamedFunction(Name);
  }
}

// getPointerToFunctionOrStub - If the specified function has been
// code-gen'd, return a pointer to the function.  If not, compile it, or use
// a stub to implement lazy compilation if available.
//
void *JIT::getPointerToFunctionOrStub(Function *F) {
  // If we have already code generated the function, just return the address.
  if (void *Addr = getPointerToGlobalIfAvailable(F))
    return Addr;
  
  // Get a stub if the target supports it.
  assert(isa<JITEmitter>(MCE) && "Unexpected MCE?");
  JITEmitter *JE = cast<JITEmitter>(getCodeEmitter());
  return JE->getJITResolver().getFunctionStub(F);
}

/// freeMachineCodeForFunction - release machine code memory for given Function.
///
void JIT::freeMachineCodeForFunction(Function *F) {

  // Delete translation for this from the ExecutionEngine, so it will get
  // retranslated next time it is used.
  void *OldPtr = updateGlobalMapping(F, 0);

  if (OldPtr)
    RemoveFunctionFromSymbolTable(OldPtr);

  // Free the actual memory for the function body and related stuff.
  assert(isa<JITEmitter>(MCE) && "Unexpected MCE?");
  cast<JITEmitter>(MCE)->deallocateMemForFunction(F);
}