llvm.org GIT mirror llvm / c9e5015 lib / Target / X86 / X86RegisterInfo.cpp
c9e5015

Tree @c9e5015 (Download .tar.gz)

X86RegisterInfo.cpp @c9e5015raw · history · blame

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
//===- X86RegisterInfo.cpp - X86 Register Information -----------*- C++ -*-===//
//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file contains the X86 implementation of the TargetRegisterInfo class.
// This file is responsible for the frame pointer elimination optimization
// on X86.
//
//===----------------------------------------------------------------------===//

#include "X86.h"
#include "X86RegisterInfo.h"
#include "X86InstrBuilder.h"
#include "X86MachineFunctionInfo.h"
#include "X86Subtarget.h"
#include "X86TargetMachine.h"
#include "llvm/Constants.h"
#include "llvm/Function.h"
#include "llvm/Type.h"
#include "llvm/CodeGen/ValueTypes.h"
#include "llvm/CodeGen/MachineInstrBuilder.h"
#include "llvm/CodeGen/MachineFunction.h"
#include "llvm/CodeGen/MachineFunctionPass.h"
#include "llvm/CodeGen/MachineFrameInfo.h"
#include "llvm/CodeGen/MachineLocation.h"
#include "llvm/CodeGen/MachineModuleInfo.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/MC/MCAsmInfo.h"
#include "llvm/Target/TargetFrameLowering.h"
#include "llvm/Target/TargetInstrInfo.h"
#include "llvm/Target/TargetMachine.h"
#include "llvm/Target/TargetOptions.h"
#include "llvm/ADT/BitVector.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/CommandLine.h"
using namespace llvm;

cl::opt<bool>
ForceStackAlign("force-align-stack",
                 cl::desc("Force align the stack to the minimum alignment"
                           " needed for the function."),
                 cl::init(false), cl::Hidden);

X86RegisterInfo::X86RegisterInfo(X86TargetMachine &tm,
                                 const TargetInstrInfo &tii)
  : X86GenRegisterInfo(tm.getSubtarget<X86Subtarget>().is64Bit() ?
                         X86::ADJCALLSTACKDOWN64 :
                         X86::ADJCALLSTACKDOWN32,
                       tm.getSubtarget<X86Subtarget>().is64Bit() ?
                         X86::ADJCALLSTACKUP64 :
                         X86::ADJCALLSTACKUP32),
    TM(tm), TII(tii) {
  // Cache some information.
  const X86Subtarget *Subtarget = &TM.getSubtarget<X86Subtarget>();
  Is64Bit = Subtarget->is64Bit();
  IsWin64 = Subtarget->isTargetWin64();
  StackAlign = TM.getFrameLowering()->getStackAlignment();

  if (Is64Bit) {
    SlotSize = 8;
    StackPtr = X86::RSP;
    FramePtr = X86::RBP;
  } else {
    SlotSize = 4;
    StackPtr = X86::ESP;
    FramePtr = X86::EBP;
  }
}

/// getDwarfRegNum - This function maps LLVM register identifiers to the DWARF
/// specific numbering, used in debug info and exception tables.
int X86RegisterInfo::getDwarfRegNum(unsigned RegNo, bool isEH) const {
  const X86Subtarget *Subtarget = &TM.getSubtarget<X86Subtarget>();
  unsigned Flavour = DWARFFlavour::X86_64;

  if (!Subtarget->is64Bit()) {
    if (Subtarget->isTargetDarwin()) {
      if (isEH)
        Flavour = DWARFFlavour::X86_32_DarwinEH;
      else
        Flavour = DWARFFlavour::X86_32_Generic;
    } else if (Subtarget->isTargetCygMing()) {
      // Unsupported by now, just quick fallback
      Flavour = DWARFFlavour::X86_32_Generic;
    } else {
      Flavour = DWARFFlavour::X86_32_Generic;
    }
  }

  return X86GenRegisterInfo::getDwarfRegNumFull(RegNo, Flavour);
}

/// getX86RegNum - This function maps LLVM register identifiers to their X86
/// specific numbering, which is used in various places encoding instructions.
unsigned X86RegisterInfo::getX86RegNum(unsigned RegNo) {
  switch(RegNo) {
  case X86::RAX: case X86::EAX: case X86::AX: case X86::AL: return N86::EAX;
  case X86::RCX: case X86::ECX: case X86::CX: case X86::CL: return N86::ECX;
  case X86::RDX: case X86::EDX: case X86::DX: case X86::DL: return N86::EDX;
  case X86::RBX: case X86::EBX: case X86::BX: case X86::BL: return N86::EBX;
  case X86::RSP: case X86::ESP: case X86::SP: case X86::SPL: case X86::AH:
    return N86::ESP;
  case X86::RBP: case X86::EBP: case X86::BP: case X86::BPL: case X86::CH:
    return N86::EBP;
  case X86::RSI: case X86::ESI: case X86::SI: case X86::SIL: case X86::DH:
    return N86::ESI;
  case X86::RDI: case X86::EDI: case X86::DI: case X86::DIL: case X86::BH:
    return N86::EDI;

  case X86::R8:  case X86::R8D:  case X86::R8W:  case X86::R8B:
    return N86::EAX;
  case X86::R9:  case X86::R9D:  case X86::R9W:  case X86::R9B:
    return N86::ECX;
  case X86::R10: case X86::R10D: case X86::R10W: case X86::R10B:
    return N86::EDX;
  case X86::R11: case X86::R11D: case X86::R11W: case X86::R11B:
    return N86::EBX;
  case X86::R12: case X86::R12D: case X86::R12W: case X86::R12B:
    return N86::ESP;
  case X86::R13: case X86::R13D: case X86::R13W: case X86::R13B:
    return N86::EBP;
  case X86::R14: case X86::R14D: case X86::R14W: case X86::R14B:
    return N86::ESI;
  case X86::R15: case X86::R15D: case X86::R15W: case X86::R15B:
    return N86::EDI;

  case X86::ST0: case X86::ST1: case X86::ST2: case X86::ST3:
  case X86::ST4: case X86::ST5: case X86::ST6: case X86::ST7:
    return RegNo-X86::ST0;

  case X86::XMM0: case X86::XMM8:
  case X86::YMM0: case X86::YMM8: case X86::MM0:
    return 0;
  case X86::XMM1: case X86::XMM9:
  case X86::YMM1: case X86::YMM9: case X86::MM1:
    return 1;
  case X86::XMM2: case X86::XMM10:
  case X86::YMM2: case X86::YMM10: case X86::MM2:
    return 2;
  case X86::XMM3: case X86::XMM11:
  case X86::YMM3: case X86::YMM11: case X86::MM3:
    return 3;
  case X86::XMM4: case X86::XMM12:
  case X86::YMM4: case X86::YMM12: case X86::MM4:
    return 4;
  case X86::XMM5: case X86::XMM13:
  case X86::YMM5: case X86::YMM13: case X86::MM5:
    return 5;
  case X86::XMM6: case X86::XMM14:
  case X86::YMM6: case X86::YMM14: case X86::MM6:
    return 6;
  case X86::XMM7: case X86::XMM15:
  case X86::YMM7: case X86::YMM15: case X86::MM7:
    return 7;

  case X86::ES: return 0;
  case X86::CS: return 1;
  case X86::SS: return 2;
  case X86::DS: return 3;
  case X86::FS: return 4;
  case X86::GS: return 5;

  case X86::CR0: case X86::CR8 : case X86::DR0: return 0;
  case X86::CR1: case X86::CR9 : case X86::DR1: return 1;
  case X86::CR2: case X86::CR10: case X86::DR2: return 2;
  case X86::CR3: case X86::CR11: case X86::DR3: return 3;
  case X86::CR4: case X86::CR12: case X86::DR4: return 4;
  case X86::CR5: case X86::CR13: case X86::DR5: return 5;
  case X86::CR6: case X86::CR14: case X86::DR6: return 6;
  case X86::CR7: case X86::CR15: case X86::DR7: return 7;

  // Pseudo index registers are equivalent to a "none"
  // scaled index (See Intel Manual 2A, table 2-3)
  case X86::EIZ:
  case X86::RIZ:
    return 4;

  default:
    assert(isVirtualRegister(RegNo) && "Unknown physical register!");
    llvm_unreachable("Register allocator hasn't allocated reg correctly yet!");
    return 0;
  }
}

const TargetRegisterClass *
X86RegisterInfo::getMatchingSuperRegClass(const TargetRegisterClass *A,
                                          const TargetRegisterClass *B,
                                          unsigned SubIdx) const {
  switch (SubIdx) {
  default: return 0;
  case X86::sub_8bit:
    if (B == &X86::GR8RegClass) {
      if (A->getSize() == 2 || A->getSize() == 4 || A->getSize() == 8)
        return A;
    } else if (B == &X86::GR8_ABCD_LRegClass || B == &X86::GR8_ABCD_HRegClass) {
      if (A == &X86::GR64RegClass || A == &X86::GR64_ABCDRegClass ||
          A == &X86::GR64_NOREXRegClass ||
          A == &X86::GR64_NOSPRegClass ||
          A == &X86::GR64_NOREX_NOSPRegClass)
        return &X86::GR64_ABCDRegClass;
      else if (A == &X86::GR32RegClass || A == &X86::GR32_ABCDRegClass ||
               A == &X86::GR32_NOREXRegClass ||
               A == &X86::GR32_NOSPRegClass)
        return &X86::GR32_ABCDRegClass;
      else if (A == &X86::GR16RegClass || A == &X86::GR16_ABCDRegClass ||
               A == &X86::GR16_NOREXRegClass)
        return &X86::GR16_ABCDRegClass;
    } else if (B == &X86::GR8_NOREXRegClass) {
      if (A == &X86::GR64RegClass || A == &X86::GR64_NOREXRegClass ||
          A == &X86::GR64_NOSPRegClass || A == &X86::GR64_NOREX_NOSPRegClass)
        return &X86::GR64_NOREXRegClass;
      else if (A == &X86::GR64_ABCDRegClass)
        return &X86::GR64_ABCDRegClass;
      else if (A == &X86::GR32RegClass || A == &X86::GR32_NOREXRegClass ||
               A == &X86::GR32_NOSPRegClass)
        return &X86::GR32_NOREXRegClass;
      else if (A == &X86::GR32_ABCDRegClass)
        return &X86::GR32_ABCDRegClass;
      else if (A == &X86::GR16RegClass || A == &X86::GR16_NOREXRegClass)
        return &X86::GR16_NOREXRegClass;
      else if (A == &X86::GR16_ABCDRegClass)
        return &X86::GR16_ABCDRegClass;
    }
    break;
  case X86::sub_8bit_hi:
    if (B == &X86::GR8_ABCD_HRegClass) {
      if (A == &X86::GR64RegClass || A == &X86::GR64_ABCDRegClass ||
          A == &X86::GR64_NOREXRegClass ||
          A == &X86::GR64_NOSPRegClass ||
          A == &X86::GR64_NOREX_NOSPRegClass)
        return &X86::GR64_ABCDRegClass;
      else if (A == &X86::GR32RegClass || A == &X86::GR32_ABCDRegClass ||
               A == &X86::GR32_NOREXRegClass || A == &X86::GR32_NOSPRegClass)
        return &X86::GR32_ABCDRegClass;
      else if (A == &X86::GR16RegClass || A == &X86::GR16_ABCDRegClass ||
               A == &X86::GR16_NOREXRegClass)
        return &X86::GR16_ABCDRegClass;
    }
    break;
  case X86::sub_16bit:
    if (B == &X86::GR16RegClass) {
      if (A->getSize() == 4 || A->getSize() == 8)
        return A;
    } else if (B == &X86::GR16_ABCDRegClass) {
      if (A == &X86::GR64RegClass || A == &X86::GR64_ABCDRegClass ||
          A == &X86::GR64_NOREXRegClass ||
          A == &X86::GR64_NOSPRegClass ||
          A == &X86::GR64_NOREX_NOSPRegClass)
        return &X86::GR64_ABCDRegClass;
      else if (A == &X86::GR32RegClass || A == &X86::GR32_ABCDRegClass ||
               A == &X86::GR32_NOREXRegClass || A == &X86::GR32_NOSPRegClass)
        return &X86::GR32_ABCDRegClass;
    } else if (B == &X86::GR16_NOREXRegClass) {
      if (A == &X86::GR64RegClass || A == &X86::GR64_NOREXRegClass ||
          A == &X86::GR64_NOSPRegClass || A == &X86::GR64_NOREX_NOSPRegClass)
        return &X86::GR64_NOREXRegClass;
      else if (A == &X86::GR64_ABCDRegClass)
        return &X86::GR64_ABCDRegClass;
      else if (A == &X86::GR32RegClass || A == &X86::GR32_NOREXRegClass ||
               A == &X86::GR32_NOSPRegClass)
        return &X86::GR32_NOREXRegClass;
      else if (A == &X86::GR32_ABCDRegClass)
        return &X86::GR64_ABCDRegClass;
    }
    break;
  case X86::sub_32bit:
    if (B == &X86::GR32RegClass) {
      if (A->getSize() == 8)
        return A;
    } else if (B == &X86::GR32_NOSPRegClass) {
      if (A == &X86::GR64RegClass || A == &X86::GR64_NOSPRegClass)
        return &X86::GR64_NOSPRegClass;
      if (A->getSize() == 8)
        return getCommonSubClass(A, &X86::GR64_NOSPRegClass);
    } else if (B == &X86::GR32_ABCDRegClass) {
      if (A == &X86::GR64RegClass || A == &X86::GR64_ABCDRegClass ||
          A == &X86::GR64_NOREXRegClass ||
          A == &X86::GR64_NOSPRegClass ||
          A == &X86::GR64_NOREX_NOSPRegClass)
        return &X86::GR64_ABCDRegClass;
    } else if (B == &X86::GR32_NOREXRegClass) {
      if (A == &X86::GR64RegClass || A == &X86::GR64_NOREXRegClass ||
          A == &X86::GR64_NOSPRegClass || A == &X86::GR64_NOREX_NOSPRegClass)
        return &X86::GR64_NOREXRegClass;
      else if (A == &X86::GR64_ABCDRegClass)
        return &X86::GR64_ABCDRegClass;
    }
    break;
  case X86::sub_ss:
    if (B == &X86::FR32RegClass)
      return A;
    break;
  case X86::sub_sd:
    if (B == &X86::FR64RegClass)
      return A;
    break;
  case X86::sub_xmm:
    if (B == &X86::VR128RegClass)
      return A;
    break;
  }
  return 0;
}

const TargetRegisterClass*
X86RegisterInfo::getLargestLegalSuperClass(const TargetRegisterClass *RC) const{
  const TargetRegisterClass *Super = RC;
  TargetRegisterClass::sc_iterator I = RC->superclasses_begin();
  do {
    switch (Super->getID()) {
    case X86::GR8RegClassID:
    case X86::GR16RegClassID:
    case X86::GR32RegClassID:
    case X86::GR64RegClassID:
    case X86::FR32RegClassID:
    case X86::FR64RegClassID:
    case X86::RFP32RegClassID:
    case X86::RFP64RegClassID:
    case X86::RFP80RegClassID:
    case X86::VR128RegClassID:
    case X86::VR256RegClassID:
      // Don't return a super-class that would shrink the spill size.
      // That can happen with the vector and float classes.
      if (Super->getSize() == RC->getSize())
        return Super;
    }
    Super = *I++;
  } while (Super);
  return RC;
}

const TargetRegisterClass *
X86RegisterInfo::getPointerRegClass(unsigned Kind) const {
  switch (Kind) {
  default: llvm_unreachable("Unexpected Kind in getPointerRegClass!");
  case 0: // Normal GPRs.
    if (TM.getSubtarget<X86Subtarget>().is64Bit())
      return &X86::GR64RegClass;
    return &X86::GR32RegClass;
  case 1: // Normal GPRs except the stack pointer (for encoding reasons).
    if (TM.getSubtarget<X86Subtarget>().is64Bit())
      return &X86::GR64_NOSPRegClass;
    return &X86::GR32_NOSPRegClass;
  case 2: // Available for tailcall (not callee-saved GPRs).
    if (TM.getSubtarget<X86Subtarget>().isTargetWin64())
      return &X86::GR64_TCW64RegClass;
    if (TM.getSubtarget<X86Subtarget>().is64Bit())
      return &X86::GR64_TCRegClass;
    return &X86::GR32_TCRegClass;
  }
}

const TargetRegisterClass *
X86RegisterInfo::getCrossCopyRegClass(const TargetRegisterClass *RC) const {
  if (RC == &X86::CCRRegClass) {
    if (Is64Bit)
      return &X86::GR64RegClass;
    else
      return &X86::GR32RegClass;
  }
  return RC;
}

unsigned
X86RegisterInfo::getRegPressureLimit(const TargetRegisterClass *RC,
                                     MachineFunction &MF) const {
  const TargetFrameLowering *TFI = MF.getTarget().getFrameLowering();

  unsigned FPDiff = TFI->hasFP(MF) ? 1 : 0;
  switch (RC->getID()) {
  default:
    return 0;
  case X86::GR32RegClassID:
    return 4 - FPDiff;
  case X86::GR64RegClassID:
    return 12 - FPDiff;
  case X86::VR128RegClassID:
    return TM.getSubtarget<X86Subtarget>().is64Bit() ? 10 : 4;
  case X86::VR64RegClassID:
    return 4;
  }
}

const unsigned *
X86RegisterInfo::getCalleeSavedRegs(const MachineFunction *MF) const {
  bool callsEHReturn = false;
  bool ghcCall = false;

  if (MF) {
    callsEHReturn = MF->getMMI().callsEHReturn();
    const Function *F = MF->getFunction();
    ghcCall = (F ? F->getCallingConv() == CallingConv::GHC : false);
  }

  static const unsigned GhcCalleeSavedRegs[] = {
    0
  };

  static const unsigned CalleeSavedRegs32Bit[] = {
    X86::ESI, X86::EDI, X86::EBX, X86::EBP,  0
  };

  static const unsigned CalleeSavedRegs32EHRet[] = {
    X86::EAX, X86::EDX, X86::ESI, X86::EDI, X86::EBX, X86::EBP,  0
  };

  static const unsigned CalleeSavedRegs64Bit[] = {
    X86::RBX, X86::R12, X86::R13, X86::R14, X86::R15, X86::RBP, 0
  };

  static const unsigned CalleeSavedRegs64EHRet[] = {
    X86::RAX, X86::RDX, X86::RBX, X86::R12,
    X86::R13, X86::R14, X86::R15, X86::RBP, 0
  };

  static const unsigned CalleeSavedRegsWin64[] = {
    X86::RBX,   X86::RBP,   X86::RDI,   X86::RSI,
    X86::R12,   X86::R13,   X86::R14,   X86::R15,
    X86::XMM6,  X86::XMM7,  X86::XMM8,  X86::XMM9,
    X86::XMM10, X86::XMM11, X86::XMM12, X86::XMM13,
    X86::XMM14, X86::XMM15, 0
  };

  if (ghcCall) {
    return GhcCalleeSavedRegs;
  } else if (Is64Bit) {
    if (IsWin64)
      return CalleeSavedRegsWin64;
    else
      return (callsEHReturn ? CalleeSavedRegs64EHRet : CalleeSavedRegs64Bit);
  } else {
    return (callsEHReturn ? CalleeSavedRegs32EHRet : CalleeSavedRegs32Bit);
  }
}

BitVector X86RegisterInfo::getReservedRegs(const MachineFunction &MF) const {
  BitVector Reserved(getNumRegs());
  const TargetFrameLowering *TFI = MF.getTarget().getFrameLowering();

  // Set the stack-pointer register and its aliases as reserved.
  Reserved.set(X86::RSP);
  Reserved.set(X86::ESP);
  Reserved.set(X86::SP);
  Reserved.set(X86::SPL);

  // Set the instruction pointer register and its aliases as reserved.
  Reserved.set(X86::RIP);
  Reserved.set(X86::EIP);
  Reserved.set(X86::IP);

  // Set the frame-pointer register and its aliases as reserved if needed.
  if (TFI->hasFP(MF)) {
    Reserved.set(X86::RBP);
    Reserved.set(X86::EBP);
    Reserved.set(X86::BP);
    Reserved.set(X86::BPL);
  }

  // Mark the x87 stack registers as reserved, since they don't behave normally
  // with respect to liveness. We don't fully model the effects of x87 stack
  // pushes and pops after stackification.
  Reserved.set(X86::ST0);
  Reserved.set(X86::ST1);
  Reserved.set(X86::ST2);
  Reserved.set(X86::ST3);
  Reserved.set(X86::ST4);
  Reserved.set(X86::ST5);
  Reserved.set(X86::ST6);
  Reserved.set(X86::ST7);
  return Reserved;
}

//===----------------------------------------------------------------------===//
// Stack Frame Processing methods
//===----------------------------------------------------------------------===//

bool X86RegisterInfo::canRealignStack(const MachineFunction &MF) const {
  const MachineFrameInfo *MFI = MF.getFrameInfo();
  return (RealignStack &&
          !MFI->hasVarSizedObjects());
}

bool X86RegisterInfo::needsStackRealignment(const MachineFunction &MF) const {
  const MachineFrameInfo *MFI = MF.getFrameInfo();
  const Function *F = MF.getFunction();
  bool requiresRealignment = ((MFI->getMaxAlignment() > StackAlign) ||
                               F->hasFnAttr(Attribute::StackAlignment));

  // FIXME: Currently we don't support stack realignment for functions with
  //        variable-sized allocas.
  // FIXME: It's more complicated than this...
  if (0 && requiresRealignment && MFI->hasVarSizedObjects())
    report_fatal_error(
      "Stack realignment in presence of dynamic allocas is not supported");

  // If we've requested that we force align the stack do so now.
  if (ForceStackAlign)
    return canRealignStack(MF);

  return requiresRealignment && canRealignStack(MF);
}

bool X86RegisterInfo::hasReservedSpillSlot(const MachineFunction &MF,
                                           unsigned Reg, int &FrameIdx) const {
  const TargetFrameLowering *TFI = MF.getTarget().getFrameLowering();

  if (Reg == FramePtr && TFI->hasFP(MF)) {
    FrameIdx = MF.getFrameInfo()->getObjectIndexBegin();
    return true;
  }
  return false;
}

static unsigned getSUBriOpcode(unsigned is64Bit, int64_t Imm) {
  if (is64Bit) {
    if (isInt<8>(Imm))
      return X86::SUB64ri8;
    return X86::SUB64ri32;
  } else {
    if (isInt<8>(Imm))
      return X86::SUB32ri8;
    return X86::SUB32ri;
  }
}

static unsigned getADDriOpcode(unsigned is64Bit, int64_t Imm) {
  if (is64Bit) {
    if (isInt<8>(Imm))
      return X86::ADD64ri8;
    return X86::ADD64ri32;
  } else {
    if (isInt<8>(Imm))
      return X86::ADD32ri8;
    return X86::ADD32ri;
  }
}

void X86RegisterInfo::
eliminateCallFramePseudoInstr(MachineFunction &MF, MachineBasicBlock &MBB,
                              MachineBasicBlock::iterator I) const {
  const TargetFrameLowering *TFI = MF.getTarget().getFrameLowering();
  bool reseveCallFrame = TFI->hasReservedCallFrame(MF);
  int Opcode = I->getOpcode();
  bool isDestroy = Opcode == getCallFrameDestroyOpcode();
  DebugLoc DL = I->getDebugLoc();
  uint64_t Amount = !reseveCallFrame ? I->getOperand(0).getImm() : 0;
  uint64_t CalleeAmt = isDestroy ? I->getOperand(1).getImm() : 0;
  I = MBB.erase(I);

  if (!reseveCallFrame) {
    // If the stack pointer can be changed after prologue, turn the
    // adjcallstackup instruction into a 'sub ESP, <amt>' and the
    // adjcallstackdown instruction into 'add ESP, <amt>'
    // TODO: consider using push / pop instead of sub + store / add
    if (Amount == 0)
      return;

    // We need to keep the stack aligned properly.  To do this, we round the
    // amount of space needed for the outgoing arguments up to the next
    // alignment boundary.
    Amount = (Amount + StackAlign - 1) / StackAlign * StackAlign;

    MachineInstr *New = 0;
    if (Opcode == getCallFrameSetupOpcode()) {
      New = BuildMI(MF, DL, TII.get(getSUBriOpcode(Is64Bit, Amount)),
                    StackPtr)
        .addReg(StackPtr)
        .addImm(Amount);
    } else {
      assert(Opcode == getCallFrameDestroyOpcode());

      // Factor out the amount the callee already popped.
      Amount -= CalleeAmt;

      if (Amount) {
        unsigned Opc = getADDriOpcode(Is64Bit, Amount);
        New = BuildMI(MF, DL, TII.get(Opc), StackPtr)
          .addReg(StackPtr).addImm(Amount);
      }
    }

    if (New) {
      // The EFLAGS implicit def is dead.
      New->getOperand(3).setIsDead();

      // Replace the pseudo instruction with a new instruction.
      MBB.insert(I, New);
    }

    return;
  }

  if (Opcode == getCallFrameDestroyOpcode() && CalleeAmt) {
    // If we are performing frame pointer elimination and if the callee pops
    // something off the stack pointer, add it back.  We do this until we have
    // more advanced stack pointer tracking ability.
    unsigned Opc = getSUBriOpcode(Is64Bit, CalleeAmt);
    MachineInstr *New = BuildMI(MF, DL, TII.get(Opc), StackPtr)
      .addReg(StackPtr).addImm(CalleeAmt);

    // The EFLAGS implicit def is dead.
    New->getOperand(3).setIsDead();
    MBB.insert(I, New);
  }
}

void
X86RegisterInfo::eliminateFrameIndex(MachineBasicBlock::iterator II,
                                     int SPAdj, RegScavenger *RS) const{
  assert(SPAdj == 0 && "Unexpected");

  unsigned i = 0;
  MachineInstr &MI = *II;
  MachineFunction &MF = *MI.getParent()->getParent();
  const TargetFrameLowering *TFI = MF.getTarget().getFrameLowering();

  while (!MI.getOperand(i).isFI()) {
    ++i;
    assert(i < MI.getNumOperands() && "Instr doesn't have FrameIndex operand!");
  }

  int FrameIndex = MI.getOperand(i).getIndex();
  unsigned BasePtr;

  unsigned Opc = MI.getOpcode();
  bool AfterFPPop = Opc == X86::TAILJMPm64 || Opc == X86::TAILJMPm;
  if (needsStackRealignment(MF))
    BasePtr = (FrameIndex < 0 ? FramePtr : StackPtr);
  else if (AfterFPPop)
    BasePtr = StackPtr;
  else
    BasePtr = (TFI->hasFP(MF) ? FramePtr : StackPtr);

  // This must be part of a four operand memory reference.  Replace the
  // FrameIndex with base register with EBP.  Add an offset to the offset.
  MI.getOperand(i).ChangeToRegister(BasePtr, false);

  // Now add the frame object offset to the offset from EBP.
  int FIOffset;
  if (AfterFPPop) {
    // Tail call jmp happens after FP is popped.
    const MachineFrameInfo *MFI = MF.getFrameInfo();
    FIOffset = MFI->getObjectOffset(FrameIndex) - TFI->getOffsetOfLocalArea();
  } else
    FIOffset = TFI->getFrameIndexOffset(MF, FrameIndex);

  if (MI.getOperand(i+3).isImm()) {
    // Offset is a 32-bit integer.
    int Offset = FIOffset + (int)(MI.getOperand(i + 3).getImm());
    MI.getOperand(i + 3).ChangeToImmediate(Offset);
  } else {
    // Offset is symbolic. This is extremely rare.
    uint64_t Offset = FIOffset + (uint64_t)MI.getOperand(i+3).getOffset();
    MI.getOperand(i+3).setOffset(Offset);
  }
}

unsigned X86RegisterInfo::getRARegister() const {
  return Is64Bit ? X86::RIP     // Should have dwarf #16.
                 : X86::EIP;    // Should have dwarf #8.
}

unsigned X86RegisterInfo::getFrameRegister(const MachineFunction &MF) const {
  const TargetFrameLowering *TFI = MF.getTarget().getFrameLowering();
  return TFI->hasFP(MF) ? FramePtr : StackPtr;
}

unsigned X86RegisterInfo::getEHExceptionRegister() const {
  llvm_unreachable("What is the exception register");
  return 0;
}

unsigned X86RegisterInfo::getEHHandlerRegister() const {
  llvm_unreachable("What is the exception handler register");
  return 0;
}

namespace llvm {
unsigned getX86SubSuperRegister(unsigned Reg, EVT VT, bool High) {
  switch (VT.getSimpleVT().SimpleTy) {
  default: return Reg;
  case MVT::i8:
    if (High) {
      switch (Reg) {
      default: return 0;
      case X86::AH: case X86::AL: case X86::AX: case X86::EAX: case X86::RAX:
        return X86::AH;
      case X86::DH: case X86::DL: case X86::DX: case X86::EDX: case X86::RDX:
        return X86::DH;
      case X86::CH: case X86::CL: case X86::CX: case X86::ECX: case X86::RCX:
        return X86::CH;
      case X86::BH: case X86::BL: case X86::BX: case X86::EBX: case X86::RBX:
        return X86::BH;
      }
    } else {
      switch (Reg) {
      default: return 0;
      case X86::AH: case X86::AL: case X86::AX: case X86::EAX: case X86::RAX:
        return X86::AL;
      case X86::DH: case X86::DL: case X86::DX: case X86::EDX: case X86::RDX:
        return X86::DL;
      case X86::CH: case X86::CL: case X86::CX: case X86::ECX: case X86::RCX:
        return X86::CL;
      case X86::BH: case X86::BL: case X86::BX: case X86::EBX: case X86::RBX:
        return X86::BL;
      case X86::SIL: case X86::SI: case X86::ESI: case X86::RSI:
        return X86::SIL;
      case X86::DIL: case X86::DI: case X86::EDI: case X86::RDI:
        return X86::DIL;
      case X86::BPL: case X86::BP: case X86::EBP: case X86::RBP:
        return X86::BPL;
      case X86::SPL: case X86::SP: case X86::ESP: case X86::RSP:
        return X86::SPL;
      case X86::R8B: case X86::R8W: case X86::R8D: case X86::R8:
        return X86::R8B;
      case X86::R9B: case X86::R9W: case X86::R9D: case X86::R9:
        return X86::R9B;
      case X86::R10B: case X86::R10W: case X86::R10D: case X86::R10:
        return X86::R10B;
      case X86::R11B: case X86::R11W: case X86::R11D: case X86::R11:
        return X86::R11B;
      case X86::R12B: case X86::R12W: case X86::R12D: case X86::R12:
        return X86::R12B;
      case X86::R13B: case X86::R13W: case X86::R13D: case X86::R13:
        return X86::R13B;
      case X86::R14B: case X86::R14W: case X86::R14D: case X86::R14:
        return X86::R14B;
      case X86::R15B: case X86::R15W: case X86::R15D: case X86::R15:
        return X86::R15B;
      }
    }
  case MVT::i16:
    switch (Reg) {
    default: return Reg;
    case X86::AH: case X86::AL: case X86::AX: case X86::EAX: case X86::RAX:
      return X86::AX;
    case X86::DH: case X86::DL: case X86::DX: case X86::EDX: case X86::RDX:
      return X86::DX;
    case X86::CH: case X86::CL: case X86::CX: case X86::ECX: case X86::RCX:
      return X86::CX;
    case X86::BH: case X86::BL: case X86::BX: case X86::EBX: case X86::RBX:
      return X86::BX;
    case X86::SIL: case X86::SI: case X86::ESI: case X86::RSI:
      return X86::SI;
    case X86::DIL: case X86::DI: case X86::EDI: case X86::RDI:
      return X86::DI;
    case X86::BPL: case X86::BP: case X86::EBP: case X86::RBP:
      return X86::BP;
    case X86::SPL: case X86::SP: case X86::ESP: case X86::RSP:
      return X86::SP;
    case X86::R8B: case X86::R8W: case X86::R8D: case X86::R8:
      return X86::R8W;
    case X86::R9B: case X86::R9W: case X86::R9D: case X86::R9:
      return X86::R9W;
    case X86::R10B: case X86::R10W: case X86::R10D: case X86::R10:
      return X86::R10W;
    case X86::R11B: case X86::R11W: case X86::R11D: case X86::R11:
      return X86::R11W;
    case X86::R12B: case X86::R12W: case X86::R12D: case X86::R12:
      return X86::R12W;
    case X86::R13B: case X86::R13W: case X86::R13D: case X86::R13:
      return X86::R13W;
    case X86::R14B: case X86::R14W: case X86::R14D: case X86::R14:
      return X86::R14W;
    case X86::R15B: case X86::R15W: case X86::R15D: case X86::R15:
      return X86::R15W;
    }
  case MVT::i32:
    switch (Reg) {
    default: return Reg;
    case X86::AH: case X86::AL: case X86::AX: case X86::EAX: case X86::RAX:
      return X86::EAX;
    case X86::DH: case X86::DL: case X86::DX: case X86::EDX: case X86::RDX:
      return X86::EDX;
    case X86::CH: case X86::CL: case X86::CX: case X86::ECX: case X86::RCX:
      return X86::ECX;
    case X86::BH: case X86::BL: case X86::BX: case X86::EBX: case X86::RBX:
      return X86::EBX;
    case X86::SIL: case X86::SI: case X86::ESI: case X86::RSI:
      return X86::ESI;
    case X86::DIL: case X86::DI: case X86::EDI: case X86::RDI:
      return X86::EDI;
    case X86::BPL: case X86::BP: case X86::EBP: case X86::RBP:
      return X86::EBP;
    case X86::SPL: case X86::SP: case X86::ESP: case X86::RSP:
      return X86::ESP;
    case X86::R8B: case X86::R8W: case X86::R8D: case X86::R8:
      return X86::R8D;
    case X86::R9B: case X86::R9W: case X86::R9D: case X86::R9:
      return X86::R9D;
    case X86::R10B: case X86::R10W: case X86::R10D: case X86::R10:
      return X86::R10D;
    case X86::R11B: case X86::R11W: case X86::R11D: case X86::R11:
      return X86::R11D;
    case X86::R12B: case X86::R12W: case X86::R12D: case X86::R12:
      return X86::R12D;
    case X86::R13B: case X86::R13W: case X86::R13D: case X86::R13:
      return X86::R13D;
    case X86::R14B: case X86::R14W: case X86::R14D: case X86::R14:
      return X86::R14D;
    case X86::R15B: case X86::R15W: case X86::R15D: case X86::R15:
      return X86::R15D;
    }
  case MVT::i64:
    switch (Reg) {
    default: return Reg;
    case X86::AH: case X86::AL: case X86::AX: case X86::EAX: case X86::RAX:
      return X86::RAX;
    case X86::DH: case X86::DL: case X86::DX: case X86::EDX: case X86::RDX:
      return X86::RDX;
    case X86::CH: case X86::CL: case X86::CX: case X86::ECX: case X86::RCX:
      return X86::RCX;
    case X86::BH: case X86::BL: case X86::BX: case X86::EBX: case X86::RBX:
      return X86::RBX;
    case X86::SIL: case X86::SI: case X86::ESI: case X86::RSI:
      return X86::RSI;
    case X86::DIL: case X86::DI: case X86::EDI: case X86::RDI:
      return X86::RDI;
    case X86::BPL: case X86::BP: case X86::EBP: case X86::RBP:
      return X86::RBP;
    case X86::SPL: case X86::SP: case X86::ESP: case X86::RSP:
      return X86::RSP;
    case X86::R8B: case X86::R8W: case X86::R8D: case X86::R8:
      return X86::R8;
    case X86::R9B: case X86::R9W: case X86::R9D: case X86::R9:
      return X86::R9;
    case X86::R10B: case X86::R10W: case X86::R10D: case X86::R10:
      return X86::R10;
    case X86::R11B: case X86::R11W: case X86::R11D: case X86::R11:
      return X86::R11;
    case X86::R12B: case X86::R12W: case X86::R12D: case X86::R12:
      return X86::R12;
    case X86::R13B: case X86::R13W: case X86::R13D: case X86::R13:
      return X86::R13;
    case X86::R14B: case X86::R14W: case X86::R14D: case X86::R14:
      return X86::R14;
    case X86::R15B: case X86::R15W: case X86::R15D: case X86::R15:
      return X86::R15;
    }
  }

  return Reg;
}
}

#include "X86GenRegisterInfo.inc"

namespace {
  struct MSAH : public MachineFunctionPass {
    static char ID;
    MSAH() : MachineFunctionPass(ID) {}

    virtual bool runOnMachineFunction(MachineFunction &MF) {
      const X86TargetMachine *TM =
        static_cast<const X86TargetMachine *>(&MF.getTarget());
      const X86RegisterInfo *X86RI = TM->getRegisterInfo();
      MachineRegisterInfo &RI = MF.getRegInfo();
      X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
      unsigned StackAlignment = X86RI->getStackAlignment();

      // Be over-conservative: scan over all vreg defs and find whether vector
      // registers are used. If yes, there is a possibility that vector register
      // will be spilled and thus require dynamic stack realignment.
      for (unsigned i = 0, e = RI.getNumVirtRegs(); i != e; ++i) {
        unsigned Reg = TargetRegisterInfo::index2VirtReg(i);
        if (RI.getRegClass(Reg)->getAlignment() > StackAlignment) {
          FuncInfo->setReserveFP(true);
          return true;
        }
      }
      // Nothing to do
      return false;
    }

    virtual const char *getPassName() const {
      return "X86 Maximal Stack Alignment Check";
    }

    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
      AU.setPreservesCFG();
      MachineFunctionPass::getAnalysisUsage(AU);
    }
  };

  char MSAH::ID = 0;
}

FunctionPass*
llvm::createX86MaxStackAlignmentHeuristicPass() { return new MSAH(); }