llvm.org GIT mirror llvm / c9afb49 lib / CodeGen / InstrSched / SchedGraph.cpp
c9afb49

Tree @c9afb49 (Download .tar.gz)

SchedGraph.cpp @c9afb49raw · history · blame

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
//===- SchedGraph.cpp - Scheduling Graph Implementation -------------------===//
//
// Scheduling graph based on SSA graph plus extra dependence edges capturing
// dependences due to machine resources (machine registers, CC registers, and
// any others).
//
//===----------------------------------------------------------------------===//

#include "SchedGraph.h"
#include "llvm/Function.h"
#include "llvm/iOther.h"
#include "llvm/CodeGen/MachineCodeForInstruction.h"
#include "llvm/CodeGen/MachineFunction.h"
#include "llvm/Target/TargetInstrInfo.h"
#include "llvm/Target/TargetMachine.h"
#include "llvm/Target/TargetRegInfo.h"
#include "Support/STLExtras.h"

//*********************** Internal Data Structures *************************/

// The following two types need to be classes, not typedefs, so we can use
// opaque declarations in SchedGraph.h
// 
struct RefVec: public std::vector<std::pair<SchedGraphNode*, int> > {
  typedef std::vector<std::pair<SchedGraphNode*,int> >::iterator iterator;
  typedef
  std::vector<std::pair<SchedGraphNode*,int> >::const_iterator const_iterator;
};

struct RegToRefVecMap: public hash_map<int, RefVec> {
  typedef hash_map<int, RefVec>::      iterator       iterator;
  typedef hash_map<int, RefVec>::const_iterator const_iterator;
};

struct ValueToDefVecMap: public hash_map<const Value*, RefVec> {
  typedef hash_map<const Value*, RefVec>::      iterator       iterator;
  typedef hash_map<const Value*, RefVec>::const_iterator const_iterator;
};


// 
// class SchedGraphNode
// 

SchedGraphNode::SchedGraphNode(unsigned NID, MachineBasicBlock *mbb,
                               int   indexInBB, const TargetMachine& Target)
  : SchedGraphNodeCommon(NID,indexInBB), MBB(mbb), MI(mbb ? (*mbb)[indexInBB] : 0) {
  if (MI) {
    MachineOpCode mopCode = MI->getOpCode();
    latency = Target.getInstrInfo().hasResultInterlock(mopCode)
      ? Target.getInstrInfo().minLatency(mopCode)
      : Target.getInstrInfo().maxLatency(mopCode);
  }
}

//
// Method: SchedGraphNode Destructor
//
// Description:
//	Free memory allocated by the SchedGraphNode object.
//
// Notes:
//	Do not delete the edges here.  The base class will take care of that.
//	Only handle subclass specific stuff here (where currently there is
//	none).
//
SchedGraphNode::~SchedGraphNode() {
}

// 
// class SchedGraph
// 
SchedGraph::SchedGraph(MachineBasicBlock &mbb, const TargetMachine& target)
  : MBB(mbb) {
  buildGraph(target);
}

//
// Method: SchedGraph Destructor
//
// Description:
//	This method deletes memory allocated by the SchedGraph object.
//
// Notes:
//	Do not delete the graphRoot or graphLeaf here.  The base class handles
//	that bit of work.
//
SchedGraph::~SchedGraph() {
  for (const_iterator I = begin(); I != end(); ++I)
    delete I->second;
}

void SchedGraph::dump() const {
  std::cerr << "  Sched Graph for Basic Block: ";
  std::cerr << MBB.getBasicBlock()->getName()
            << " (" << MBB.getBasicBlock() << ")";
  
  std::cerr << "\n\n    Actual Root nodes : ";
  for (unsigned i=0, N=graphRoot->outEdges.size(); i < N; i++)
    std::cerr << graphRoot->outEdges[i]->getSink()->getNodeId()
              << ((i == N-1)? "" : ", ");
  
  std::cerr << "\n    Graph Nodes:\n";
  for (const_iterator I=begin(); I != end(); ++I)
    std::cerr << "\n" << *I->second;
  
  std::cerr << "\n";
}



void SchedGraph::addDummyEdges() {
  assert(graphRoot->outEdges.size() == 0);
  
  for (const_iterator I=begin(); I != end(); ++I) {
    SchedGraphNode* node = (*I).second;
    assert(node != graphRoot && node != graphLeaf);
    if (node->beginInEdges() == node->endInEdges())
      (void) new SchedGraphEdge(graphRoot, node, SchedGraphEdge::CtrlDep,
                                SchedGraphEdge::NonDataDep, 0);
    if (node->beginOutEdges() == node->endOutEdges())
      (void) new SchedGraphEdge(node, graphLeaf, SchedGraphEdge::CtrlDep,
                                SchedGraphEdge::NonDataDep, 0);
  }
}


void SchedGraph::addCDEdges(const TerminatorInst* term,
			    const TargetMachine& target) {
  const TargetInstrInfo& mii = target.getInstrInfo();
  MachineCodeForInstruction &termMvec = MachineCodeForInstruction::get(term);
  
  // Find the first branch instr in the sequence of machine instrs for term
  // 
  unsigned first = 0;
  while (! mii.isBranch(termMvec[first]->getOpCode()) &&
         ! mii.isReturn(termMvec[first]->getOpCode()))
    ++first;
  assert(first < termMvec.size() &&
	 "No branch instructions for terminator?  Ok, but weird!");
  if (first == termMvec.size())
    return;
  
  SchedGraphNode* firstBrNode = getGraphNodeForInstr(termMvec[first]);
  
  // Add CD edges from each instruction in the sequence to the
  // *last preceding* branch instr. in the sequence 
  // Use a latency of 0 because we only need to prevent out-of-order issue.
  // 
  for (unsigned i = termMvec.size(); i > first+1; --i) {
    SchedGraphNode* toNode = getGraphNodeForInstr(termMvec[i-1]);
    assert(toNode && "No node for instr generated for branch/ret?");
    
    for (unsigned j = i-1; j != 0; --j) 
      if (mii.isBranch(termMvec[j-1]->getOpCode()) ||
          mii.isReturn(termMvec[j-1]->getOpCode())) {
        SchedGraphNode* brNode = getGraphNodeForInstr(termMvec[j-1]);
        assert(brNode && "No node for instr generated for branch/ret?");
        (void) new SchedGraphEdge(brNode, toNode, SchedGraphEdge::CtrlDep,
                                  SchedGraphEdge::NonDataDep, 0);
        break;			// only one incoming edge is enough
      }
  }
  
  // Add CD edges from each instruction preceding the first branch
  // to the first branch.  Use a latency of 0 as above.
  // 
  for (unsigned i = first; i != 0; --i) {
    SchedGraphNode* fromNode = getGraphNodeForInstr(termMvec[i-1]);
    assert(fromNode && "No node for instr generated for branch?");
    (void) new SchedGraphEdge(fromNode, firstBrNode, SchedGraphEdge::CtrlDep,
                              SchedGraphEdge::NonDataDep, 0);
  }
  
  // Now add CD edges to the first branch instruction in the sequence from
  // all preceding instructions in the basic block.  Use 0 latency again.
  // 
  for (unsigned i=0, N=MBB.size(); i < N; i++)  {
    if (MBB[i] == termMvec[first])   // reached the first branch
      break;
    
    SchedGraphNode* fromNode = this->getGraphNodeForInstr(MBB[i]);
    if (fromNode == NULL)
      continue;			// dummy instruction, e.g., PHI
    
    (void) new SchedGraphEdge(fromNode, firstBrNode,
                              SchedGraphEdge::CtrlDep,
                              SchedGraphEdge::NonDataDep, 0);
      
    // If we find any other machine instructions (other than due to
    // the terminator) that also have delay slots, add an outgoing edge
    // from the instruction to the instructions in the delay slots.
    // 
    unsigned d = mii.getNumDelaySlots(MBB[i]->getOpCode());
    assert(i+d < N && "Insufficient delay slots for instruction?");
      
    for (unsigned j=1; j <= d; j++) {
      SchedGraphNode* toNode = this->getGraphNodeForInstr(MBB[i+j]);
      assert(toNode && "No node for machine instr in delay slot?");
      (void) new SchedGraphEdge(fromNode, toNode,
                                SchedGraphEdge::CtrlDep,
                                SchedGraphEdge::NonDataDep, 0);
    }
  }
}

static const int SG_LOAD_REF  = 0;
static const int SG_STORE_REF = 1;
static const int SG_CALL_REF  = 2;

static const unsigned int SG_DepOrderArray[][3] = {
  { SchedGraphEdge::NonDataDep,
    SchedGraphEdge::AntiDep,
    SchedGraphEdge::AntiDep },
  { SchedGraphEdge::TrueDep,
    SchedGraphEdge::OutputDep,
    SchedGraphEdge::TrueDep | SchedGraphEdge::OutputDep },
  { SchedGraphEdge::TrueDep,
    SchedGraphEdge::AntiDep | SchedGraphEdge::OutputDep,
    SchedGraphEdge::TrueDep | SchedGraphEdge::AntiDep
    | SchedGraphEdge::OutputDep }
};


// Add a dependence edge between every pair of machine load/store/call
// instructions, where at least one is a store or a call.
// Use latency 1 just to ensure that memory operations are ordered;
// latency does not otherwise matter (true dependences enforce that).
// 
void SchedGraph::addMemEdges(const std::vector<SchedGraphNode*>& memNodeVec,
			     const TargetMachine& target) {
  const TargetInstrInfo& mii = target.getInstrInfo();
  
  // Instructions in memNodeVec are in execution order within the basic block,
  // so simply look at all pairs <memNodeVec[i], memNodeVec[j: j > i]>.
  // 
  for (unsigned im=0, NM=memNodeVec.size(); im < NM; im++) {
    MachineOpCode fromOpCode = memNodeVec[im]->getOpCode();
    int fromType = (mii.isCall(fromOpCode)? SG_CALL_REF
                    : (mii.isLoad(fromOpCode)? SG_LOAD_REF
                       : SG_STORE_REF));
    for (unsigned jm=im+1; jm < NM; jm++) {
      MachineOpCode toOpCode = memNodeVec[jm]->getOpCode();
      int toType = (mii.isCall(toOpCode)? SG_CALL_REF
                    : (mii.isLoad(toOpCode)? SG_LOAD_REF
                       : SG_STORE_REF));
      
      if (fromType != SG_LOAD_REF || toType != SG_LOAD_REF)
        (void) new SchedGraphEdge(memNodeVec[im], memNodeVec[jm],
                                  SchedGraphEdge::MemoryDep,
                                  SG_DepOrderArray[fromType][toType], 1);
    }
  }
} 

// Add edges from/to CC reg instrs to/from call instrs.
// Essentially this prevents anything that sets or uses a CC reg from being
// reordered w.r.t. a call.
// Use a latency of 0 because we only need to prevent out-of-order issue,
// like with control dependences.
// 
void SchedGraph::addCallDepEdges(const std::vector<SchedGraphNode*>& callDepNodeVec,
				 const TargetMachine& target) {
  const TargetInstrInfo& mii = target.getInstrInfo();
  
  // Instructions in memNodeVec are in execution order within the basic block,
  // so simply look at all pairs <memNodeVec[i], memNodeVec[j: j > i]>.
  // 
  for (unsigned ic=0, NC=callDepNodeVec.size(); ic < NC; ic++)
    if (mii.isCall(callDepNodeVec[ic]->getOpCode())) {
      // Add SG_CALL_REF edges from all preds to this instruction.
      for (unsigned jc=0; jc < ic; jc++)
	(void) new SchedGraphEdge(callDepNodeVec[jc], callDepNodeVec[ic],
				  SchedGraphEdge::MachineRegister,
				  MachineIntRegsRID,  0);
      
      // And do the same from this instruction to all successors.
      for (unsigned jc=ic+1; jc < NC; jc++)
	(void) new SchedGraphEdge(callDepNodeVec[ic], callDepNodeVec[jc],
				  SchedGraphEdge::MachineRegister,
				  MachineIntRegsRID,  0);
    }
  
#ifdef CALL_DEP_NODE_VEC_CANNOT_WORK
  // Find the call instruction nodes and put them in a vector.
  std::vector<SchedGraphNode*> callNodeVec;
  for (unsigned im=0, NM=memNodeVec.size(); im < NM; im++)
    if (mii.isCall(memNodeVec[im]->getOpCode()))
      callNodeVec.push_back(memNodeVec[im]);
  
  // Now walk the entire basic block, looking for CC instructions *and*
  // call instructions, and keep track of the order of the instructions.
  // Use the call node vec to quickly find earlier and later call nodes
  // relative to the current CC instruction.
  // 
  int lastCallNodeIdx = -1;
  for (unsigned i=0, N=bbMvec.size(); i < N; i++)
    if (mii.isCall(bbMvec[i]->getOpCode())) {
      ++lastCallNodeIdx;
      for ( ; lastCallNodeIdx < (int)callNodeVec.size(); ++lastCallNodeIdx)
        if (callNodeVec[lastCallNodeIdx]->getMachineInstr() == bbMvec[i])
          break;
      assert(lastCallNodeIdx < (int)callNodeVec.size() && "Missed Call?");
    }
    else if (mii.isCCInstr(bbMvec[i]->getOpCode())) {
      // Add incoming/outgoing edges from/to preceding/later calls
      SchedGraphNode* ccNode = this->getGraphNodeForInstr(bbMvec[i]);
      int j=0;
      for ( ; j <= lastCallNodeIdx; j++)
        (void) new SchedGraphEdge(callNodeVec[j], ccNode,
                                  MachineCCRegsRID, 0);
      for ( ; j < (int) callNodeVec.size(); j++)
        (void) new SchedGraphEdge(ccNode, callNodeVec[j],
                                  MachineCCRegsRID, 0);
    }
#endif
}


void SchedGraph::addMachineRegEdges(RegToRefVecMap& regToRefVecMap,
				    const TargetMachine& target) {
  // This code assumes that two registers with different numbers are
  // not aliased!
  // 
  for (RegToRefVecMap::iterator I = regToRefVecMap.begin();
       I != regToRefVecMap.end(); ++I) {
    int regNum        = (*I).first;
    RefVec& regRefVec = (*I).second;
    
    // regRefVec is ordered by control flow order in the basic block
    for (unsigned i=0; i < regRefVec.size(); ++i) {
      SchedGraphNode* node = regRefVec[i].first;
      unsigned int opNum   = regRefVec[i].second;
      const MachineOperand& mop =
        node->getMachineInstr()->getExplOrImplOperand(opNum);
      bool isDef = mop.opIsDefOnly();
      bool isDefAndUse = mop.opIsDefAndUse();
          
      for (unsigned p=0; p < i; ++p) {
        SchedGraphNode* prevNode = regRefVec[p].first;
        if (prevNode != node) {
          unsigned int prevOpNum = regRefVec[p].second;
          const MachineOperand& prevMop =
            prevNode->getMachineInstr()->getExplOrImplOperand(prevOpNum);
          bool prevIsDef = prevMop.opIsDefOnly();
          bool prevIsDefAndUse = prevMop.opIsDefAndUse();
          if (isDef) {
            if (prevIsDef)
              new SchedGraphEdge(prevNode, node, regNum,
                                 SchedGraphEdge::OutputDep);
            if (!prevIsDef || prevIsDefAndUse)
              new SchedGraphEdge(prevNode, node, regNum,
                                 SchedGraphEdge::AntiDep);
          }
	  
          if (prevIsDef)
            if (!isDef || isDefAndUse)
              new SchedGraphEdge(prevNode, node, regNum,
                                 SchedGraphEdge::TrueDep);
        }
      }
    }
  }
}


// Adds dependences to/from refNode from/to all other defs
// in the basic block.  refNode may be a use, a def, or both.
// We do not consider other uses because we are not building use-use deps.
// 
void SchedGraph::addEdgesForValue(SchedGraphNode* refNode,
				  const RefVec& defVec,
				  const Value* defValue,
				  bool  refNodeIsDef,
				  bool  refNodeIsDefAndUse,
				  const TargetMachine& target) {
  bool refNodeIsUse = !refNodeIsDef || refNodeIsDefAndUse;
  
  // Add true or output dep edges from all def nodes before refNode in BB.
  // Add anti or output dep edges to all def nodes after refNode.
  for (RefVec::const_iterator I=defVec.begin(), E=defVec.end(); I != E; ++I) {
    if ((*I).first == refNode)
      continue;                       // Dont add any self-loops
    
    if ((*I).first->getOrigIndexInBB() < refNode->getOrigIndexInBB()) {
      // (*).first is before refNode
      if (refNodeIsDef)
        (void) new SchedGraphEdge((*I).first, refNode, defValue,
                                  SchedGraphEdge::OutputDep);
      if (refNodeIsUse)
        (void) new SchedGraphEdge((*I).first, refNode, defValue,
                                  SchedGraphEdge::TrueDep);
    } else {
      // (*).first is after refNode
      if (refNodeIsDef)
        (void) new SchedGraphEdge(refNode, (*I).first, defValue,
                                  SchedGraphEdge::OutputDep);
      if (refNodeIsUse)
        (void) new SchedGraphEdge(refNode, (*I).first, defValue,
                                  SchedGraphEdge::AntiDep);
    }
  }
}


void SchedGraph::addEdgesForInstruction(const MachineInstr& MI,
					const ValueToDefVecMap& valueToDefVecMap,
					const TargetMachine& target) {
  SchedGraphNode* node = getGraphNodeForInstr(&MI);
  if (node == NULL)
    return;
  
  // Add edges for all operands of the machine instruction.
  // 
  for (unsigned i = 0, numOps = MI.getNumOperands(); i != numOps; ++i) {
    switch (MI.getOperand(i).getType()) {
    case MachineOperand::MO_VirtualRegister:
    case MachineOperand::MO_CCRegister:
      if (const Value* srcI = MI.getOperand(i).getVRegValue()) {
        ValueToDefVecMap::const_iterator I = valueToDefVecMap.find(srcI);
        if (I != valueToDefVecMap.end())
          addEdgesForValue(node, I->second, srcI,
                           MI.getOperand(i).opIsDefOnly(),
                           MI.getOperand(i).opIsDefAndUse(), target);
      }
      break;
      
    case MachineOperand::MO_MachineRegister:
      break; 
      
    case MachineOperand::MO_SignExtendedImmed:
    case MachineOperand::MO_UnextendedImmed:
    case MachineOperand::MO_PCRelativeDisp:
      break;	// nothing to do for immediate fields
      
    default:
      assert(0 && "Unknown machine operand type in SchedGraph builder");
      break;
    }
  }
  
  // Add edges for values implicitly used by the machine instruction.
  // Examples include function arguments to a Call instructions or the return
  // value of a Ret instruction.
  // 
  for (unsigned i=0, N=MI.getNumImplicitRefs(); i < N; ++i)
    if (MI.getImplicitOp(i).opIsUse() || MI.getImplicitOp(i).opIsDefAndUse())
      if (const Value* srcI = MI.getImplicitRef(i)) {
        ValueToDefVecMap::const_iterator I = valueToDefVecMap.find(srcI);
        if (I != valueToDefVecMap.end())
          addEdgesForValue(node, I->second, srcI,
                           MI.getImplicitOp(i).opIsDefOnly(),
                           MI.getImplicitOp(i).opIsDefAndUse(), target);
      }
}


void SchedGraph::findDefUseInfoAtInstr(const TargetMachine& target,
				       SchedGraphNode* node,
				       std::vector<SchedGraphNode*>& memNodeVec,
				       std::vector<SchedGraphNode*>& callDepNodeVec,
				       RegToRefVecMap& regToRefVecMap,
				       ValueToDefVecMap& valueToDefVecMap) {
  const TargetInstrInfo& mii = target.getInstrInfo();
  
  MachineOpCode opCode = node->getOpCode();
  
  if (mii.isCall(opCode) || mii.isCCInstr(opCode))
    callDepNodeVec.push_back(node);
  
  if (mii.isLoad(opCode) || mii.isStore(opCode) || mii.isCall(opCode))
    memNodeVec.push_back(node);
  
  // Collect the register references and value defs. for explicit operands
  // 
  const MachineInstr& MI = *node->getMachineInstr();
  for (int i=0, numOps = (int) MI.getNumOperands(); i < numOps; i++) {
    const MachineOperand& mop = MI.getOperand(i);
    
    // if this references a register other than the hardwired
    // "zero" register, record the reference.
    if (mop.hasAllocatedReg()) {
      int regNum = mop.getAllocatedRegNum();
      
      // If this is not a dummy zero register, record the reference in order
      if (regNum != target.getRegInfo().getZeroRegNum())
        regToRefVecMap[mop.getAllocatedRegNum()]
          .push_back(std::make_pair(node, i));

      // If this is a volatile register, add the instruction to callDepVec
      // (only if the node is not already on the callDepVec!)
      if (callDepNodeVec.size() == 0 || callDepNodeVec.back() != node)
        {
          unsigned rcid;
          int regInClass = target.getRegInfo().getClassRegNum(regNum, rcid);
          if (target.getRegInfo().getMachineRegClass(rcid)
              ->isRegVolatile(regInClass))
            callDepNodeVec.push_back(node);
        }
          
      continue;                     // nothing more to do
    }
    
    // ignore all other non-def operands
    if (!MI.getOperand(i).opIsDefOnly() &&
        !MI.getOperand(i).opIsDefAndUse())
      continue;
      
    // We must be defining a value.
    assert((mop.getType() == MachineOperand::MO_VirtualRegister ||
            mop.getType() == MachineOperand::MO_CCRegister)
           && "Do not expect any other kind of operand to be defined!");
    assert(mop.getVRegValue() != NULL && "Null value being defined?");
    
    valueToDefVecMap[mop.getVRegValue()].push_back(std::make_pair(node, i)); 
  }
  
  // 
  // Collect value defs. for implicit operands.  They may have allocated
  // physical registers also.
  // 
  for (unsigned i=0, N = MI.getNumImplicitRefs(); i != N; ++i) {
    const MachineOperand& mop = MI.getImplicitOp(i);
    if (mop.hasAllocatedReg()) {
      int regNum = mop.getAllocatedRegNum();
      if (regNum != target.getRegInfo().getZeroRegNum())
        regToRefVecMap[mop.getAllocatedRegNum()]
          .push_back(std::make_pair(node, i + MI.getNumOperands()));
      continue;                     // nothing more to do
    }

    if (mop.opIsDefOnly() || mop.opIsDefAndUse()) {
      assert(MI.getImplicitRef(i) != NULL && "Null value being defined?");
      valueToDefVecMap[MI.getImplicitRef(i)].push_back(std::make_pair(node,
                                                                          -i)); 
    }
  }
}


void SchedGraph::buildNodesForBB(const TargetMachine& target,
				 MachineBasicBlock& MBB,
				 std::vector<SchedGraphNode*>& memNodeVec,
				 std::vector<SchedGraphNode*>& callDepNodeVec,
				 RegToRefVecMap& regToRefVecMap,
				 ValueToDefVecMap& valueToDefVecMap) {
  const TargetInstrInfo& mii = target.getInstrInfo();
  
  // Build graph nodes for each VM instruction and gather def/use info.
  // Do both those together in a single pass over all machine instructions.
  for (unsigned i=0; i < MBB.size(); i++)
    if (!mii.isDummyPhiInstr(MBB[i]->getOpCode())) {
      SchedGraphNode* node = new SchedGraphNode(getNumNodes(), &MBB, i, target);
      noteGraphNodeForInstr(MBB[i], node);
      
      // Remember all register references and value defs
      findDefUseInfoAtInstr(target, node, memNodeVec, callDepNodeVec,
                            regToRefVecMap, valueToDefVecMap);
    }
}


void SchedGraph::buildGraph(const TargetMachine& target) {
  // Use this data structure to note all machine operands that compute
  // ordinary LLVM values.  These must be computed defs (i.e., instructions). 
  // Note that there may be multiple machine instructions that define
  // each Value.
  ValueToDefVecMap valueToDefVecMap;
  
  // Use this data structure to note all memory instructions.
  // We use this to add memory dependence edges without a second full walk.
  std::vector<SchedGraphNode*> memNodeVec;

  // Use this data structure to note all instructions that access physical
  // registers that can be modified by a call (including call instructions)
  std::vector<SchedGraphNode*> callDepNodeVec;
  
  // Use this data structure to note any uses or definitions of
  // machine registers so we can add edges for those later without
  // extra passes over the nodes.
  // The vector holds an ordered list of references to the machine reg,
  // ordered according to control-flow order.  This only works for a
  // single basic block, hence the assertion.  Each reference is identified
  // by the pair: <node, operand-number>.
  // 
  RegToRefVecMap regToRefVecMap;
  
  // Make a dummy root node.  We'll add edges to the real roots later.
  graphRoot = new SchedGraphNode(0, NULL, -1, target);
  graphLeaf = new SchedGraphNode(1, NULL, -1, target);

  //----------------------------------------------------------------
  // First add nodes for all the machine instructions in the basic block
  // because this greatly simplifies identifying which edges to add.
  // Do this one VM instruction at a time since the SchedGraphNode needs that.
  // Also, remember the load/store instructions to add memory deps later.
  //----------------------------------------------------------------

  buildNodesForBB(target, MBB, memNodeVec, callDepNodeVec,
                  regToRefVecMap, valueToDefVecMap);
  
  //----------------------------------------------------------------
  // Now add edges for the following (all are incoming edges except (4)):
  // (1) operands of the machine instruction, including hidden operands
  // (2) machine register dependences
  // (3) memory load/store dependences
  // (3) other resource dependences for the machine instruction, if any
  // (4) output dependences when multiple machine instructions define the
  //     same value; all must have been generated from a single VM instrn
  // (5) control dependences to branch instructions generated for the
  //     terminator instruction of the BB. Because of delay slots and
  //     2-way conditional branches, multiple CD edges are needed
  //     (see addCDEdges for details).
  // Also, note any uses or defs of machine registers.
  // 
  //----------------------------------------------------------------
      
  // First, add edges to the terminator instruction of the basic block.
  this->addCDEdges(MBB.getBasicBlock()->getTerminator(), target);
      
  // Then add memory dep edges: store->load, load->store, and store->store.
  // Call instructions are treated as both load and store.
  this->addMemEdges(memNodeVec, target);

  // Then add edges between call instructions and CC set/use instructions
  this->addCallDepEdges(callDepNodeVec, target);
  
  // Then add incoming def-use (SSA) edges for each machine instruction.
  for (unsigned i=0, N=MBB.size(); i < N; i++)
    addEdgesForInstruction(*MBB[i], valueToDefVecMap, target);
  
#ifdef NEED_SEPARATE_NONSSA_EDGES_CODE
  // Then add non-SSA edges for all VM instructions in the block.
  // We assume that all machine instructions that define a value are
  // generated from the VM instruction corresponding to that value.
  // TODO: This could probably be done much more efficiently.
  for (BasicBlock::const_iterator II = bb->begin(); II != bb->end(); ++II)
    this->addNonSSAEdgesForValue(*II, target);
#endif //NEED_SEPARATE_NONSSA_EDGES_CODE
  
  // Then add edges for dependences on machine registers
  this->addMachineRegEdges(regToRefVecMap, target);
  
  // Finally, add edges from the dummy root and to dummy leaf
  this->addDummyEdges();		
}


// 
// class SchedGraphSet
// 
SchedGraphSet::SchedGraphSet(const Function* _function,
			     const TargetMachine& target) :
  function(_function) {
  buildGraphsForMethod(function, target);
}

SchedGraphSet::~SchedGraphSet() {
  // delete all the graphs
  for(iterator I = begin(), E = end(); I != E; ++I)
    delete *I;  // destructor is a friend
}


void SchedGraphSet::dump() const {
  std::cerr << "======== Sched graphs for function `" << function->getName()
            << "' ========\n\n";
  
  for (const_iterator I=begin(); I != end(); ++I)
    (*I)->dump();
  
  std::cerr << "\n====== End graphs for function `" << function->getName()
            << "' ========\n\n";
}


void SchedGraphSet::buildGraphsForMethod(const Function *F,
					 const TargetMachine& target) {
  MachineFunction &MF = MachineFunction::get(F);
  for (MachineFunction::iterator I = MF.begin(), E = MF.end(); I != E; ++I)
    addGraph(new SchedGraph(*I, target));
}


void SchedGraphEdge::print(std::ostream &os) const {
  os << "edge [" << src->getNodeId() << "] -> ["
     << sink->getNodeId() << "] : ";
  
  switch(depType) {
  case SchedGraphEdge::CtrlDep:		
    os<< "Control Dep"; 
    break;
  case SchedGraphEdge::ValueDep:        
    os<< "Reg Value " << val; 
    break;
  case SchedGraphEdge::MemoryDep:	
    os<< "Memory Dep"; 
    break;
  case SchedGraphEdge::MachineRegister: 
    os<< "Reg " << machineRegNum;
    break;
  case SchedGraphEdge::MachineResource:
    os<<"Resource "<< resourceId;
    break;
  default: 
    assert(0); 
    break;
  }
  
  os << " : delay = " << minDelay << "\n";
}

void SchedGraphNode::print(std::ostream &os) const {
  os << std::string(8, ' ')
     << "Node " << ID << " : "
     << "latency = " << latency << "\n" << std::string(12, ' ');
  
  if (getMachineInstr() == NULL)
    os << "(Dummy node)\n";
  else {
    os << *getMachineInstr() << "\n" << std::string(12, ' ');
    os << inEdges.size() << " Incoming Edges:\n";
    for (unsigned i=0, N = inEdges.size(); i < N; i++)
      os << std::string(16, ' ') << *inEdges[i];
  
    os << std::string(12, ' ') << outEdges.size()
       << " Outgoing Edges:\n";
    for (unsigned i=0, N= outEdges.size(); i < N; i++)
      os << std::string(16, ' ') << *outEdges[i];
  }
}