llvm.org GIT mirror llvm / c5d3eed lib / Transforms / Vectorize / LoopVectorizationLegality.cpp
c5d3eed

Tree @c5d3eed (Download .tar.gz)

LoopVectorizationLegality.cpp @c5d3eedraw · history · blame

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
//===- LoopVectorizationLegality.cpp --------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file provides loop vectorization legality analysis. Original code
// resided in LoopVectorize.cpp for a long time.
//
// At this point, it is implemented as a utility class, not as an analysis
// pass. It should be easy to create an analysis pass around it if there
// is a need (but D45420 needs to happen first).
//
#include "llvm/Transforms/Vectorize/LoopVectorizationLegality.h"
#include "llvm/Analysis/VectorUtils.h"
#include "llvm/IR/IntrinsicInst.h"

using namespace llvm;

#define LV_NAME "loop-vectorize"
#define DEBUG_TYPE LV_NAME

extern cl::opt<bool> EnableVPlanPredication;

static cl::opt<bool>
    EnableIfConversion("enable-if-conversion", cl::init(true), cl::Hidden,
                       cl::desc("Enable if-conversion during vectorization."));

static cl::opt<unsigned> PragmaVectorizeMemoryCheckThreshold(
    "pragma-vectorize-memory-check-threshold", cl::init(128), cl::Hidden,
    cl::desc("The maximum allowed number of runtime memory checks with a "
             "vectorize(enable) pragma."));

static cl::opt<unsigned> VectorizeSCEVCheckThreshold(
    "vectorize-scev-check-threshold", cl::init(16), cl::Hidden,
    cl::desc("The maximum number of SCEV checks allowed."));

static cl::opt<unsigned> PragmaVectorizeSCEVCheckThreshold(
    "pragma-vectorize-scev-check-threshold", cl::init(128), cl::Hidden,
    cl::desc("The maximum number of SCEV checks allowed with a "
             "vectorize(enable) pragma"));

/// Maximum vectorization interleave count.
static const unsigned MaxInterleaveFactor = 16;

namespace llvm {

#ifndef NDEBUG
static void debugVectorizationFailure(const StringRef DebugMsg,
    Instruction *I) {
  dbgs() << "LV: Not vectorizing: " << DebugMsg;
  if (I != nullptr)
    dbgs() << " " << *I;
  else
    dbgs() << '.';
  dbgs() << '\n';
}
#endif

OptimizationRemarkAnalysis createLVMissedAnalysis(const char *PassName,
                                                  StringRef RemarkName,
                                                  Loop *TheLoop,
                                                  Instruction *I) {
  Value *CodeRegion = TheLoop->getHeader();
  DebugLoc DL = TheLoop->getStartLoc();

  if (I) {
    CodeRegion = I->getParent();
    // If there is no debug location attached to the instruction, revert back to
    // using the loop's.
    if (I->getDebugLoc())
      DL = I->getDebugLoc();
  }

  OptimizationRemarkAnalysis R(PassName, RemarkName, DL, CodeRegion);
  R << "loop not vectorized: ";
  return R;
}

bool LoopVectorizeHints::Hint::validate(unsigned Val) {
  switch (Kind) {
  case HK_WIDTH:
    return isPowerOf2_32(Val) && Val <= VectorizerParams::MaxVectorWidth;
  case HK_UNROLL:
    return isPowerOf2_32(Val) && Val <= MaxInterleaveFactor;
  case HK_FORCE:
    return (Val <= 1);
  case HK_ISVECTORIZED:
    return (Val == 0 || Val == 1);
  }
  return false;
}

LoopVectorizeHints::LoopVectorizeHints(const Loop *L,
                                       bool InterleaveOnlyWhenForced,
                                       OptimizationRemarkEmitter &ORE)
    : Width("vectorize.width", VectorizerParams::VectorizationFactor, HK_WIDTH),
      Interleave("interleave.count", InterleaveOnlyWhenForced, HK_UNROLL),
      Force("vectorize.enable", FK_Undefined, HK_FORCE),
      IsVectorized("isvectorized", 0, HK_ISVECTORIZED), TheLoop(L), ORE(ORE) {
  // Populate values with existing loop metadata.
  getHintsFromMetadata();

  // force-vector-interleave overrides DisableInterleaving.
  if (VectorizerParams::isInterleaveForced())
    Interleave.Value = VectorizerParams::VectorizationInterleave;

  if (IsVectorized.Value != 1)
    // If the vectorization width and interleaving count are both 1 then
    // consider the loop to have been already vectorized because there's
    // nothing more that we can do.
    IsVectorized.Value = Width.Value == 1 && Interleave.Value == 1;
  LLVM_DEBUG(if (InterleaveOnlyWhenForced && Interleave.Value == 1) dbgs()
             << "LV: Interleaving disabled by the pass manager\n");
}

void LoopVectorizeHints::setAlreadyVectorized() {
  LLVMContext &Context = TheLoop->getHeader()->getContext();

  MDNode *IsVectorizedMD = MDNode::get(
      Context,
      {MDString::get(Context, "llvm.loop.isvectorized"),
       ConstantAsMetadata::get(ConstantInt::get(Context, APInt(32, 1)))});
  MDNode *LoopID = TheLoop->getLoopID();
  MDNode *NewLoopID =
      makePostTransformationMetadata(Context, LoopID,
                                     {Twine(Prefix(), "vectorize.").str(),
                                      Twine(Prefix(), "interleave.").str()},
                                     {IsVectorizedMD});
  TheLoop->setLoopID(NewLoopID);

  // Update internal cache.
  IsVectorized.Value = 1;
}

bool LoopVectorizeHints::allowVectorization(
    Function *F, Loop *L, bool VectorizeOnlyWhenForced) const {
  if (getForce() == LoopVectorizeHints::FK_Disabled) {
    LLVM_DEBUG(dbgs() << "LV: Not vectorizing: #pragma vectorize disable.\n");
    emitRemarkWithHints();
    return false;
  }

  if (VectorizeOnlyWhenForced && getForce() != LoopVectorizeHints::FK_Enabled) {
    LLVM_DEBUG(dbgs() << "LV: Not vectorizing: No #pragma vectorize enable.\n");
    emitRemarkWithHints();
    return false;
  }

  if (getIsVectorized() == 1) {
    LLVM_DEBUG(dbgs() << "LV: Not vectorizing: Disabled/already vectorized.\n");
    // FIXME: Add interleave.disable metadata. This will allow
    // vectorize.disable to be used without disabling the pass and errors
    // to differentiate between disabled vectorization and a width of 1.
    ORE.emit([&]() {
      return OptimizationRemarkAnalysis(vectorizeAnalysisPassName(),
                                        "AllDisabled", L->getStartLoc(),
                                        L->getHeader())
             << "loop not vectorized: vectorization and interleaving are "
                "explicitly disabled, or the loop has already been "
                "vectorized";
    });
    return false;
  }

  return true;
}

void LoopVectorizeHints::emitRemarkWithHints() const {
  using namespace ore;

  ORE.emit([&]() {
    if (Force.Value == LoopVectorizeHints::FK_Disabled)
      return OptimizationRemarkMissed(LV_NAME, "MissedExplicitlyDisabled",
                                      TheLoop->getStartLoc(),
                                      TheLoop->getHeader())
             << "loop not vectorized: vectorization is explicitly disabled";
    else {
      OptimizationRemarkMissed R(LV_NAME, "MissedDetails",
                                 TheLoop->getStartLoc(), TheLoop->getHeader());
      R << "loop not vectorized";
      if (Force.Value == LoopVectorizeHints::FK_Enabled) {
        R << " (Force=" << NV("Force", true);
        if (Width.Value != 0)
          R << ", Vector Width=" << NV("VectorWidth", Width.Value);
        if (Interleave.Value != 0)
          R << ", Interleave Count=" << NV("InterleaveCount", Interleave.Value);
        R << ")";
      }
      return R;
    }
  });
}

const char *LoopVectorizeHints::vectorizeAnalysisPassName() const {
  if (getWidth() == 1)
    return LV_NAME;
  if (getForce() == LoopVectorizeHints::FK_Disabled)
    return LV_NAME;
  if (getForce() == LoopVectorizeHints::FK_Undefined && getWidth() == 0)
    return LV_NAME;
  return OptimizationRemarkAnalysis::AlwaysPrint;
}

void LoopVectorizeHints::getHintsFromMetadata() {
  MDNode *LoopID = TheLoop->getLoopID();
  if (!LoopID)
    return;

  // First operand should refer to the loop id itself.
  assert(LoopID->getNumOperands() > 0 && "requires at least one operand");
  assert(LoopID->getOperand(0) == LoopID && "invalid loop id");

  for (unsigned i = 1, ie = LoopID->getNumOperands(); i < ie; ++i) {
    const MDString *S = nullptr;
    SmallVector<Metadata *, 4> Args;

    // The expected hint is either a MDString or a MDNode with the first
    // operand a MDString.
    if (const MDNode *MD = dyn_cast<MDNode>(LoopID->getOperand(i))) {
      if (!MD || MD->getNumOperands() == 0)
        continue;
      S = dyn_cast<MDString>(MD->getOperand(0));
      for (unsigned i = 1, ie = MD->getNumOperands(); i < ie; ++i)
        Args.push_back(MD->getOperand(i));
    } else {
      S = dyn_cast<MDString>(LoopID->getOperand(i));
      assert(Args.size() == 0 && "too many arguments for MDString");
    }

    if (!S)
      continue;

    // Check if the hint starts with the loop metadata prefix.
    StringRef Name = S->getString();
    if (Args.size() == 1)
      setHint(Name, Args[0]);
  }
}

void LoopVectorizeHints::setHint(StringRef Name, Metadata *Arg) {
  if (!Name.startswith(Prefix()))
    return;
  Name = Name.substr(Prefix().size(), StringRef::npos);

  const ConstantInt *C = mdconst::dyn_extract<ConstantInt>(Arg);
  if (!C)
    return;
  unsigned Val = C->getZExtValue();

  Hint *Hints[] = {&Width, &Interleave, &Force, &IsVectorized};
  for (auto H : Hints) {
    if (Name == H->Name) {
      if (H->validate(Val))
        H->Value = Val;
      else
        LLVM_DEBUG(dbgs() << "LV: ignoring invalid hint '" << Name << "'\n");
      break;
    }
  }
}

bool LoopVectorizationRequirements::doesNotMeet(
    Function *F, Loop *L, const LoopVectorizeHints &Hints) {
  const char *PassName = Hints.vectorizeAnalysisPassName();
  bool Failed = false;
  if (UnsafeAlgebraInst && !Hints.allowReordering()) {
    ORE.emit([&]() {
      return OptimizationRemarkAnalysisFPCommute(
                 PassName, "CantReorderFPOps", UnsafeAlgebraInst->getDebugLoc(),
                 UnsafeAlgebraInst->getParent())
             << "loop not vectorized: cannot prove it is safe to reorder "
                "floating-point operations";
    });
    Failed = true;
  }

  // Test if runtime memcheck thresholds are exceeded.
  bool PragmaThresholdReached =
      NumRuntimePointerChecks > PragmaVectorizeMemoryCheckThreshold;
  bool ThresholdReached =
      NumRuntimePointerChecks > VectorizerParams::RuntimeMemoryCheckThreshold;
  if ((ThresholdReached && !Hints.allowReordering()) ||
      PragmaThresholdReached) {
    ORE.emit([&]() {
      return OptimizationRemarkAnalysisAliasing(PassName, "CantReorderMemOps",
                                                L->getStartLoc(),
                                                L->getHeader())
             << "loop not vectorized: cannot prove it is safe to reorder "
                "memory operations";
    });
    LLVM_DEBUG(dbgs() << "LV: Too many memory checks needed.\n");
    Failed = true;
  }

  return Failed;
}

// Return true if the inner loop \p Lp is uniform with regard to the outer loop
// \p OuterLp (i.e., if the outer loop is vectorized, all the vector lanes
// executing the inner loop will execute the same iterations). This check is
// very constrained for now but it will be relaxed in the future. \p Lp is
// considered uniform if it meets all the following conditions:
//   1) it has a canonical IV (starting from 0 and with stride 1),
//   2) its latch terminator is a conditional branch and,
//   3) its latch condition is a compare instruction whose operands are the
//      canonical IV and an OuterLp invariant.
// This check doesn't take into account the uniformity of other conditions not
// related to the loop latch because they don't affect the loop uniformity.
//
// NOTE: We decided to keep all these checks and its associated documentation
// together so that we can easily have a picture of the current supported loop
// nests. However, some of the current checks don't depend on \p OuterLp and
// would be redundantly executed for each \p Lp if we invoked this function for
// different candidate outer loops. This is not the case for now because we
// don't currently have the infrastructure to evaluate multiple candidate outer
// loops and \p OuterLp will be a fixed parameter while we only support explicit
// outer loop vectorization. It's also very likely that these checks go away
// before introducing the aforementioned infrastructure. However, if this is not
// the case, we should move the \p OuterLp independent checks to a separate
// function that is only executed once for each \p Lp.
static bool isUniformLoop(Loop *Lp, Loop *OuterLp) {
  assert(Lp->getLoopLatch() && "Expected loop with a single latch.");

  // If Lp is the outer loop, it's uniform by definition.
  if (Lp == OuterLp)
    return true;
  assert(OuterLp->contains(Lp) && "OuterLp must contain Lp.");

  // 1.
  PHINode *IV = Lp->getCanonicalInductionVariable();
  if (!IV) {
    LLVM_DEBUG(dbgs() << "LV: Canonical IV not found.\n");
    return false;
  }

  // 2.
  BasicBlock *Latch = Lp->getLoopLatch();
  auto *LatchBr = dyn_cast<BranchInst>(Latch->getTerminator());
  if (!LatchBr || LatchBr->isUnconditional()) {
    LLVM_DEBUG(dbgs() << "LV: Unsupported loop latch branch.\n");
    return false;
  }

  // 3.
  auto *LatchCmp = dyn_cast<CmpInst>(LatchBr->getCondition());
  if (!LatchCmp) {
    LLVM_DEBUG(
        dbgs() << "LV: Loop latch condition is not a compare instruction.\n");
    return false;
  }

  Value *CondOp0 = LatchCmp->getOperand(0);
  Value *CondOp1 = LatchCmp->getOperand(1);
  Value *IVUpdate = IV->getIncomingValueForBlock(Latch);
  if (!(CondOp0 == IVUpdate && OuterLp->isLoopInvariant(CondOp1)) &&
      !(CondOp1 == IVUpdate && OuterLp->isLoopInvariant(CondOp0))) {
    LLVM_DEBUG(dbgs() << "LV: Loop latch condition is not uniform.\n");
    return false;
  }

  return true;
}

// Return true if \p Lp and all its nested loops are uniform with regard to \p
// OuterLp.
static bool isUniformLoopNest(Loop *Lp, Loop *OuterLp) {
  if (!isUniformLoop(Lp, OuterLp))
    return false;

  // Check if nested loops are uniform.
  for (Loop *SubLp : *Lp)
    if (!isUniformLoopNest(SubLp, OuterLp))
      return false;

  return true;
}

/// Check whether it is safe to if-convert this phi node.
///
/// Phi nodes with constant expressions that can trap are not safe to if
/// convert.
static bool canIfConvertPHINodes(BasicBlock *BB) {
  for (PHINode &Phi : BB->phis()) {
    for (Value *V : Phi.incoming_values())
      if (auto *C = dyn_cast<Constant>(V))
        if (C->canTrap())
          return false;
  }
  return true;
}

static Type *convertPointerToIntegerType(const DataLayout &DL, Type *Ty) {
  if (Ty->isPointerTy())
    return DL.getIntPtrType(Ty);

  // It is possible that char's or short's overflow when we ask for the loop's
  // trip count, work around this by changing the type size.
  if (Ty->getScalarSizeInBits() < 32)
    return Type::getInt32Ty(Ty->getContext());

  return Ty;
}

static Type *getWiderType(const DataLayout &DL, Type *Ty0, Type *Ty1) {
  Ty0 = convertPointerToIntegerType(DL, Ty0);
  Ty1 = convertPointerToIntegerType(DL, Ty1);
  if (Ty0->getScalarSizeInBits() > Ty1->getScalarSizeInBits())
    return Ty0;
  return Ty1;
}

/// Check that the instruction has outside loop users and is not an
/// identified reduction variable.
static bool hasOutsideLoopUser(const Loop *TheLoop, Instruction *Inst,
                               SmallPtrSetImpl<Value *> &AllowedExit) {
  // Reductions, Inductions and non-header phis are allowed to have exit users. All
  // other instructions must not have external users.
  if (!AllowedExit.count(Inst))
    // Check that all of the users of the loop are inside the BB.
    for (User *U : Inst->users()) {
      Instruction *UI = cast<Instruction>(U);
      // This user may be a reduction exit value.
      if (!TheLoop->contains(UI)) {
        LLVM_DEBUG(dbgs() << "LV: Found an outside user for : " << *UI << '\n');
        return true;
      }
    }
  return false;
}

int LoopVectorizationLegality::isConsecutivePtr(Value *Ptr) {
  const ValueToValueMap &Strides =
      getSymbolicStrides() ? *getSymbolicStrides() : ValueToValueMap();

  int Stride = getPtrStride(PSE, Ptr, TheLoop, Strides, true, false);
  if (Stride == 1 || Stride == -1)
    return Stride;
  return 0;
}

bool LoopVectorizationLegality::isUniform(Value *V) {
  return LAI->isUniform(V);
}

void LoopVectorizationLegality::reportVectorizationFailure(
    const StringRef DebugMsg, const StringRef OREMsg,
    const StringRef ORETag, Instruction *I) const {
  LLVM_DEBUG(debugVectorizationFailure(DebugMsg, I));
  ORE->emit(createLVMissedAnalysis(Hints->vectorizeAnalysisPassName(),
      ORETag, TheLoop, I) << OREMsg);
}

bool LoopVectorizationLegality::canVectorizeOuterLoop() {
  assert(!TheLoop->empty() && "We are not vectorizing an outer loop.");
  // Store the result and return it at the end instead of exiting early, in case
  // allowExtraAnalysis is used to report multiple reasons for not vectorizing.
  bool Result = true;
  bool DoExtraAnalysis = ORE->allowExtraAnalysis(DEBUG_TYPE);

  for (BasicBlock *BB : TheLoop->blocks()) {
    // Check whether the BB terminator is a BranchInst. Any other terminator is
    // not supported yet.
    auto *Br = dyn_cast<BranchInst>(BB->getTerminator());
    if (!Br) {
      reportVectorizationFailure("Unsupported basic block terminator",
          "loop control flow is not understood by vectorizer",
          "CFGNotUnderstood");
      if (DoExtraAnalysis)
        Result = false;
      else
        return false;
    }

    // Check whether the BranchInst is a supported one. Only unconditional
    // branches, conditional branches with an outer loop invariant condition or
    // backedges are supported.
    // FIXME: We skip these checks when VPlan predication is enabled as we
    // want to allow divergent branches. This whole check will be removed
    // once VPlan predication is on by default.
    if (!EnableVPlanPredication && Br && Br->isConditional() &&
        !TheLoop->isLoopInvariant(Br->getCondition()) &&
        !LI->isLoopHeader(Br->getSuccessor(0)) &&
        !LI->isLoopHeader(Br->getSuccessor(1))) {
      reportVectorizationFailure("Unsupported conditional branch",
          "loop control flow is not understood by vectorizer",
          "CFGNotUnderstood");
      if (DoExtraAnalysis)
        Result = false;
      else
        return false;
    }
  }

  // Check whether inner loops are uniform. At this point, we only support
  // simple outer loops scenarios with uniform nested loops.
  if (!isUniformLoopNest(TheLoop /*loop nest*/,
                         TheLoop /*context outer loop*/)) {
    reportVectorizationFailure("Outer loop contains divergent loops",
        "loop control flow is not understood by vectorizer",
        "CFGNotUnderstood");
    if (DoExtraAnalysis)
      Result = false;
    else
      return false;
  }

  // Check whether we are able to set up outer loop induction.
  if (!setupOuterLoopInductions()) {
    reportVectorizationFailure("Unsupported outer loop Phi(s)",
                               "Unsupported outer loop Phi(s)",
                               "UnsupportedPhi");
    if (DoExtraAnalysis)
      Result = false;
    else
      return false;
  }

  return Result;
}

void LoopVectorizationLegality::addInductionPhi(
    PHINode *Phi, const InductionDescriptor &ID,
    SmallPtrSetImpl<Value *> &AllowedExit) {
  Inductions[Phi] = ID;

  // In case this induction also comes with casts that we know we can ignore
  // in the vectorized loop body, record them here. All casts could be recorded
  // here for ignoring, but suffices to record only the first (as it is the
  // only one that may bw used outside the cast sequence).
  const SmallVectorImpl<Instruction *> &Casts = ID.getCastInsts();
  if (!Casts.empty())
    InductionCastsToIgnore.insert(*Casts.begin());

  Type *PhiTy = Phi->getType();
  const DataLayout &DL = Phi->getModule()->getDataLayout();

  // Get the widest type.
  if (!PhiTy->isFloatingPointTy()) {
    if (!WidestIndTy)
      WidestIndTy = convertPointerToIntegerType(DL, PhiTy);
    else
      WidestIndTy = getWiderType(DL, PhiTy, WidestIndTy);
  }

  // Int inductions are special because we only allow one IV.
  if (ID.getKind() == InductionDescriptor::IK_IntInduction &&
      ID.getConstIntStepValue() && ID.getConstIntStepValue()->isOne() &&
      isa<Constant>(ID.getStartValue()) &&
      cast<Constant>(ID.getStartValue())->isNullValue()) {

    // Use the phi node with the widest type as induction. Use the last
    // one if there are multiple (no good reason for doing this other
    // than it is expedient). We've checked that it begins at zero and
    // steps by one, so this is a canonical induction variable.
    if (!PrimaryInduction || PhiTy == WidestIndTy)
      PrimaryInduction = Phi;
  }

  // Both the PHI node itself, and the "post-increment" value feeding
  // back into the PHI node may have external users.
  // We can allow those uses, except if the SCEVs we have for them rely
  // on predicates that only hold within the loop, since allowing the exit
  // currently means re-using this SCEV outside the loop (see PR33706 for more
  // details).
  if (PSE.getUnionPredicate().isAlwaysTrue()) {
    AllowedExit.insert(Phi);
    AllowedExit.insert(Phi->getIncomingValueForBlock(TheLoop->getLoopLatch()));
  }

  LLVM_DEBUG(dbgs() << "LV: Found an induction variable.\n");
}

bool LoopVectorizationLegality::setupOuterLoopInductions() {
  BasicBlock *Header = TheLoop->getHeader();

  // Returns true if a given Phi is a supported induction.
  auto isSupportedPhi = [&](PHINode &Phi) -> bool {
    InductionDescriptor ID;
    if (InductionDescriptor::isInductionPHI(&Phi, TheLoop, PSE, ID) &&
        ID.getKind() == InductionDescriptor::IK_IntInduction) {
      addInductionPhi(&Phi, ID, AllowedExit);
      return true;
    } else {
      // Bail out for any Phi in the outer loop header that is not a supported
      // induction.
      LLVM_DEBUG(
          dbgs()
          << "LV: Found unsupported PHI for outer loop vectorization.\n");
      return false;
    }
  };

  if (llvm::all_of(Header->phis(), isSupportedPhi))
    return true;
  else
    return false;
}

bool LoopVectorizationLegality::canVectorizeInstrs() {
  BasicBlock *Header = TheLoop->getHeader();

  // Look for the attribute signaling the absence of NaNs.
  Function &F = *Header->getParent();
  HasFunNoNaNAttr =
      F.getFnAttribute("no-nans-fp-math").getValueAsString() == "true";

  // For each block in the loop.
  for (BasicBlock *BB : TheLoop->blocks()) {
    // Scan the instructions in the block and look for hazards.
    for (Instruction &I : *BB) {
      if (auto *Phi = dyn_cast<PHINode>(&I)) {
        Type *PhiTy = Phi->getType();
        // Check that this PHI type is allowed.
        if (!PhiTy->isIntegerTy() && !PhiTy->isFloatingPointTy() &&
            !PhiTy->isPointerTy()) {
          reportVectorizationFailure("Found a non-int non-pointer PHI",
                                     "loop control flow is not understood by vectorizer",
                                     "CFGNotUnderstood");
          return false;
        }

        // If this PHINode is not in the header block, then we know that we
        // can convert it to select during if-conversion. No need to check if
        // the PHIs in this block are induction or reduction variables.
        if (BB != Header) {
          // Non-header phi nodes that have outside uses can be vectorized. Add
          // them to the list of allowed exits.
          // Unsafe cyclic dependencies with header phis are identified during
          // legalization for reduction, induction and first order
          // recurrences.
          AllowedExit.insert(&I);
          continue;
        }

        // We only allow if-converted PHIs with exactly two incoming values.
        if (Phi->getNumIncomingValues() != 2) {
          reportVectorizationFailure("Found an invalid PHI",
              "loop control flow is not understood by vectorizer",
              "CFGNotUnderstood", Phi);
          return false;
        }

        RecurrenceDescriptor RedDes;
        if (RecurrenceDescriptor::isReductionPHI(Phi, TheLoop, RedDes, DB, AC,
                                                 DT)) {
          if (RedDes.hasUnsafeAlgebra())
            Requirements->addUnsafeAlgebraInst(RedDes.getUnsafeAlgebraInst());
          AllowedExit.insert(RedDes.getLoopExitInstr());
          Reductions[Phi] = RedDes;
          continue;
        }

        // TODO: Instead of recording the AllowedExit, it would be good to record the
        // complementary set: NotAllowedExit. These include (but may not be
        // limited to):
        // 1. Reduction phis as they represent the one-before-last value, which
        // is not available when vectorized 
        // 2. Induction phis and increment when SCEV predicates cannot be used
        // outside the loop - see addInductionPhi
        // 3. Non-Phis with outside uses when SCEV predicates cannot be used
        // outside the loop - see call to hasOutsideLoopUser in the non-phi
        // handling below
        // 4. FirstOrderRecurrence phis that can possibly be handled by
        // extraction.
        // By recording these, we can then reason about ways to vectorize each
        // of these NotAllowedExit. 
        InductionDescriptor ID;
        if (InductionDescriptor::isInductionPHI(Phi, TheLoop, PSE, ID)) {
          addInductionPhi(Phi, ID, AllowedExit);
          if (ID.hasUnsafeAlgebra() && !HasFunNoNaNAttr)
            Requirements->addUnsafeAlgebraInst(ID.getUnsafeAlgebraInst());
          continue;
        }

        if (RecurrenceDescriptor::isFirstOrderRecurrence(Phi, TheLoop,
                                                         SinkAfter, DT)) {
          FirstOrderRecurrences.insert(Phi);
          continue;
        }

        // As a last resort, coerce the PHI to a AddRec expression
        // and re-try classifying it a an induction PHI.
        if (InductionDescriptor::isInductionPHI(Phi, TheLoop, PSE, ID, true)) {
          addInductionPhi(Phi, ID, AllowedExit);
          continue;
        }

        reportVectorizationFailure("Found an unidentified PHI",
            "value that could not be identified as "
            "reduction is used outside the loop",
            "NonReductionValueUsedOutsideLoop", Phi);
        return false;
      } // end of PHI handling

      // We handle calls that:
      //   * Are debug info intrinsics.
      //   * Have a mapping to an IR intrinsic.
      //   * Have a vector version available.
      auto *CI = dyn_cast<CallInst>(&I);
      if (CI && !getVectorIntrinsicIDForCall(CI, TLI) &&
          !isa<DbgInfoIntrinsic>(CI) &&
          !(CI->getCalledFunction() && TLI &&
            TLI->isFunctionVectorizable(CI->getCalledFunction()->getName()))) {
        // If the call is a recognized math libary call, it is likely that
        // we can vectorize it given loosened floating-point constraints.
        LibFunc Func;
        bool IsMathLibCall =
            TLI && CI->getCalledFunction() &&
            CI->getType()->isFloatingPointTy() &&
            TLI->getLibFunc(CI->getCalledFunction()->getName(), Func) &&
            TLI->hasOptimizedCodeGen(Func);

        if (IsMathLibCall) {
          // TODO: Ideally, we should not use clang-specific language here,
          // but it's hard to provide meaningful yet generic advice.
          // Also, should this be guarded by allowExtraAnalysis() and/or be part
          // of the returned info from isFunctionVectorizable()?
          reportVectorizationFailure("Found a non-intrinsic callsite",
              "library call cannot be vectorized. "
              "Try compiling with -fno-math-errno, -ffast-math, "
              "or similar flags",
              "CantVectorizeLibcall", CI);
        } else {
          reportVectorizationFailure("Found a non-intrinsic callsite",
                                     "call instruction cannot be vectorized",
                                     "CantVectorizeLibcall", CI);
        }
        return false;
      }

      // Some intrinsics have scalar arguments and should be same in order for
      // them to be vectorized (i.e. loop invariant).
      if (CI) {
        auto *SE = PSE.getSE();
        Intrinsic::ID IntrinID = getVectorIntrinsicIDForCall(CI, TLI);
        for (unsigned i = 0, e = CI->getNumArgOperands(); i != e; ++i)
          if (hasVectorInstrinsicScalarOpd(IntrinID, i)) {
            if (!SE->isLoopInvariant(PSE.getSCEV(CI->getOperand(i)), TheLoop)) {
              reportVectorizationFailure("Found unvectorizable intrinsic",
                  "intrinsic instruction cannot be vectorized",
                  "CantVectorizeIntrinsic", CI);
              return false;
            }
          }
      }

      // Check that the instruction return type is vectorizable.
      // Also, we can't vectorize extractelement instructions.
      if ((!VectorType::isValidElementType(I.getType()) &&
           !I.getType()->isVoidTy()) ||
          isa<ExtractElementInst>(I)) {
        reportVectorizationFailure("Found unvectorizable type",
            "instruction return type cannot be vectorized",
            "CantVectorizeInstructionReturnType", &I);
        return false;
      }

      // Check that the stored type is vectorizable.
      if (auto *ST = dyn_cast<StoreInst>(&I)) {
        Type *T = ST->getValueOperand()->getType();
        if (!VectorType::isValidElementType(T)) {
          reportVectorizationFailure("Store instruction cannot be vectorized",
                                     "store instruction cannot be vectorized",
                                     "CantVectorizeStore", ST);
          return false;
        }

        // For nontemporal stores, check that a nontemporal vector version is
        // supported on the target.
        if (ST->getMetadata(LLVMContext::MD_nontemporal)) {
          // Arbitrarily try a vector of 2 elements.
          Type *VecTy = VectorType::get(T, /*NumElements=*/2);
          assert(VecTy && "did not find vectorized version of stored type");
          unsigned Alignment = getLoadStoreAlignment(ST);
          if (!TTI->isLegalNTStore(VecTy, Alignment)) {
            reportVectorizationFailure(
                "nontemporal store instruction cannot be vectorized",
                "nontemporal store instruction cannot be vectorized",
                "CantVectorizeNontemporalStore", ST);
            return false;
          }
        }

      } else if (auto *LD = dyn_cast<LoadInst>(&I)) {
        if (LD->getMetadata(LLVMContext::MD_nontemporal)) {
          // For nontemporal loads, check that a nontemporal vector version is
          // supported on the target (arbitrarily try a vector of 2 elements).
          Type *VecTy = VectorType::get(I.getType(), /*NumElements=*/2);
          assert(VecTy && "did not find vectorized version of load type");
          unsigned Alignment = getLoadStoreAlignment(LD);
          if (!TTI->isLegalNTLoad(VecTy, Alignment)) {
            reportVectorizationFailure(
                "nontemporal load instruction cannot be vectorized",
                "nontemporal load instruction cannot be vectorized",
                "CantVectorizeNontemporalLoad", LD);
            return false;
          }
        }

        // FP instructions can allow unsafe algebra, thus vectorizable by
        // non-IEEE-754 compliant SIMD units.
        // This applies to floating-point math operations and calls, not memory
        // operations, shuffles, or casts, as they don't change precision or
        // semantics.
      } else if (I.getType()->isFloatingPointTy() && (CI || I.isBinaryOp()) &&
                 !I.isFast()) {
        LLVM_DEBUG(dbgs() << "LV: Found FP op with unsafe algebra.\n");
        Hints->setPotentiallyUnsafe();
      }

      // Reduction instructions are allowed to have exit users.
      // All other instructions must not have external users.
      if (hasOutsideLoopUser(TheLoop, &I, AllowedExit)) {
        // We can safely vectorize loops where instructions within the loop are
        // used outside the loop only if the SCEV predicates within the loop is
        // same as outside the loop. Allowing the exit means reusing the SCEV
        // outside the loop.
        if (PSE.getUnionPredicate().isAlwaysTrue()) {
          AllowedExit.insert(&I);
          continue;
        }
        reportVectorizationFailure("Value cannot be used outside the loop",
                                   "value cannot be used outside the loop",
                                   "ValueUsedOutsideLoop", &I);
        return false;
      }
    } // next instr.
  }

  if (!PrimaryInduction) {
    if (Inductions.empty()) {
      reportVectorizationFailure("Did not find one integer induction var",
          "loop induction variable could not be identified",
          "NoInductionVariable");
      return false;
    } else if (!WidestIndTy) {
      reportVectorizationFailure("Did not find one integer induction var",
          "integer loop induction variable could not be identified",
          "NoIntegerInductionVariable");
      return false;
    } else {
      LLVM_DEBUG(dbgs() << "LV: Did not find one integer induction var.\n");
    }
  }

  // Now we know the widest induction type, check if our found induction
  // is the same size. If it's not, unset it here and InnerLoopVectorizer
  // will create another.
  if (PrimaryInduction && WidestIndTy != PrimaryInduction->getType())
    PrimaryInduction = nullptr;

  return true;
}

bool LoopVectorizationLegality::canVectorizeMemory() {
  LAI = &(*GetLAA)(*TheLoop);
  const OptimizationRemarkAnalysis *LAR = LAI->getReport();
  if (LAR) {
    ORE->emit([&]() {
      return OptimizationRemarkAnalysis(Hints->vectorizeAnalysisPassName(),
                                        "loop not vectorized: ", *LAR);
    });
  }
  if (!LAI->canVectorizeMemory())
    return false;

  if (LAI->hasDependenceInvolvingLoopInvariantAddress()) {
    reportVectorizationFailure("Stores to a uniform address",
        "write to a loop invariant address could not be vectorized",
        "CantVectorizeStoreToLoopInvariantAddress");
    return false;
  }
  Requirements->addRuntimePointerChecks(LAI->getNumRuntimePointerChecks());
  PSE.addPredicate(LAI->getPSE().getUnionPredicate());

  return true;
}

bool LoopVectorizationLegality::isInductionPhi(const Value *V) {
  Value *In0 = const_cast<Value *>(V);
  PHINode *PN = dyn_cast_or_null<PHINode>(In0);
  if (!PN)
    return false;

  return Inductions.count(PN);
}

bool LoopVectorizationLegality::isCastedInductionVariable(const Value *V) {
  auto *Inst = dyn_cast<Instruction>(V);
  return (Inst && InductionCastsToIgnore.count(Inst));
}

bool LoopVectorizationLegality::isInductionVariable(const Value *V) {
  return isInductionPhi(V) || isCastedInductionVariable(V);
}

bool LoopVectorizationLegality::isFirstOrderRecurrence(const PHINode *Phi) {
  return FirstOrderRecurrences.count(Phi);
}

bool LoopVectorizationLegality::blockNeedsPredication(BasicBlock *BB) {
  return LoopAccessInfo::blockNeedsPredication(BB, TheLoop, DT);
}

bool LoopVectorizationLegality::blockCanBePredicated(
    BasicBlock *BB, SmallPtrSetImpl<Value *> &SafePtrs) {
  const bool IsAnnotatedParallel = TheLoop->isAnnotatedParallel();

  for (Instruction &I : *BB) {
    // Check that we don't have a constant expression that can trap as operand.
    for (Value *Operand : I.operands()) {
      if (auto *C = dyn_cast<Constant>(Operand))
        if (C->canTrap())
          return false;
    }
    // We might be able to hoist the load.
    if (I.mayReadFromMemory()) {
      auto *LI = dyn_cast<LoadInst>(&I);
      if (!LI)
        return false;
      if (!SafePtrs.count(LI->getPointerOperand())) {
        // !llvm.mem.parallel_loop_access implies if-conversion safety.
        // Otherwise, record that the load needs (real or emulated) masking
        // and let the cost model decide.
        if (!IsAnnotatedParallel)
          MaskedOp.insert(LI);
        continue;
      }
    }

    if (I.mayWriteToMemory()) {
      auto *SI = dyn_cast<StoreInst>(&I);
      if (!SI)
        return false;
      // Predicated store requires some form of masking:
      // 1) masked store HW instruction,
      // 2) emulation via load-blend-store (only if safe and legal to do so,
      //    be aware on the race conditions), or
      // 3) element-by-element predicate check and scalar store.
      MaskedOp.insert(SI);
      continue;
    }
    if (I.mayThrow())
      return false;
  }

  return true;
}

bool LoopVectorizationLegality::canVectorizeWithIfConvert() {
  if (!EnableIfConversion) {
    reportVectorizationFailure("If-conversion is disabled",
                               "if-conversion is disabled",
                               "IfConversionDisabled");
    return false;
  }

  assert(TheLoop->getNumBlocks() > 1 && "Single block loops are vectorizable");

  // A list of pointers that we can safely read and write to.
  SmallPtrSet<Value *, 8> SafePointes;

  // Collect safe addresses.
  for (BasicBlock *BB : TheLoop->blocks()) {
    if (blockNeedsPredication(BB))
      continue;

    for (Instruction &I : *BB)
      if (auto *Ptr = getLoadStorePointerOperand(&I))
        SafePointes.insert(Ptr);
  }

  // Collect the blocks that need predication.
  BasicBlock *Header = TheLoop->getHeader();
  for (BasicBlock *BB : TheLoop->blocks()) {
    // We don't support switch statements inside loops.
    if (!isa<BranchInst>(BB->getTerminator())) {
      reportVectorizationFailure("Loop contains a switch statement",
                                 "loop contains a switch statement",
                                 "LoopContainsSwitch", BB->getTerminator());
      return false;
    }

    // We must be able to predicate all blocks that need to be predicated.
    if (blockNeedsPredication(BB)) {
      if (!blockCanBePredicated(BB, SafePointes)) {
        reportVectorizationFailure(
            "Control flow cannot be substituted for a select",
            "control flow cannot be substituted for a select",
            "NoCFGForSelect", BB->getTerminator());
        return false;
      }
    } else if (BB != Header && !canIfConvertPHINodes(BB)) {
      reportVectorizationFailure(
          "Control flow cannot be substituted for a select",
          "control flow cannot be substituted for a select",
          "NoCFGForSelect", BB->getTerminator());
      return false;
    }
  }

  // We can if-convert this loop.
  return true;
}

// Helper function to canVectorizeLoopNestCFG.
bool LoopVectorizationLegality::canVectorizeLoopCFG(Loop *Lp,
                                                    bool UseVPlanNativePath) {
  assert((UseVPlanNativePath || Lp->empty()) &&
         "VPlan-native path is not enabled.");

  // TODO: ORE should be improved to show more accurate information when an
  // outer loop can't be vectorized because a nested loop is not understood or
  // legal. Something like: "outer_loop_location: loop not vectorized:
  // (inner_loop_location) loop control flow is not understood by vectorizer".

  // Store the result and return it at the end instead of exiting early, in case
  // allowExtraAnalysis is used to report multiple reasons for not vectorizing.
  bool Result = true;
  bool DoExtraAnalysis = ORE->allowExtraAnalysis(DEBUG_TYPE);

  // We must have a loop in canonical form. Loops with indirectbr in them cannot
  // be canonicalized.
  if (!Lp->getLoopPreheader()) {
    reportVectorizationFailure("Loop doesn't have a legal pre-header",
        "loop control flow is not understood by vectorizer",
        "CFGNotUnderstood");
    if (DoExtraAnalysis)
      Result = false;
    else
      return false;
  }

  // We must have a single backedge.
  if (Lp->getNumBackEdges() != 1) {
    reportVectorizationFailure("The loop must have a single backedge",
        "loop control flow is not understood by vectorizer",
        "CFGNotUnderstood");
    if (DoExtraAnalysis)
      Result = false;
    else
      return false;
  }

  // We must have a single exiting block.
  if (!Lp->getExitingBlock()) {
    reportVectorizationFailure("The loop must have an exiting block",
        "loop control flow is not understood by vectorizer",
        "CFGNotUnderstood");
    if (DoExtraAnalysis)
      Result = false;
    else
      return false;
  }

  // We only handle bottom-tested loops, i.e. loop in which the condition is
  // checked at the end of each iteration. With that we can assume that all
  // instructions in the loop are executed the same number of times.
  if (Lp->getExitingBlock() != Lp->getLoopLatch()) {
    reportVectorizationFailure("The exiting block is not the loop latch",
        "loop control flow is not understood by vectorizer",
        "CFGNotUnderstood");
    if (DoExtraAnalysis)
      Result = false;
    else
      return false;
  }

  return Result;
}

bool LoopVectorizationLegality::canVectorizeLoopNestCFG(
    Loop *Lp, bool UseVPlanNativePath) {
  // Store the result and return it at the end instead of exiting early, in case
  // allowExtraAnalysis is used to report multiple reasons for not vectorizing.
  bool Result = true;
  bool DoExtraAnalysis = ORE->allowExtraAnalysis(DEBUG_TYPE);
  if (!canVectorizeLoopCFG(Lp, UseVPlanNativePath)) {
    if (DoExtraAnalysis)
      Result = false;
    else
      return false;
  }

  // Recursively check whether the loop control flow of nested loops is
  // understood.
  for (Loop *SubLp : *Lp)
    if (!canVectorizeLoopNestCFG(SubLp, UseVPlanNativePath)) {
      if (DoExtraAnalysis)
        Result = false;
      else
        return false;
    }

  return Result;
}

bool LoopVectorizationLegality::canVectorize(bool UseVPlanNativePath) {
  // Store the result and return it at the end instead of exiting early, in case
  // allowExtraAnalysis is used to report multiple reasons for not vectorizing.
  bool Result = true;

  bool DoExtraAnalysis = ORE->allowExtraAnalysis(DEBUG_TYPE);
  // Check whether the loop-related control flow in the loop nest is expected by
  // vectorizer.
  if (!canVectorizeLoopNestCFG(TheLoop, UseVPlanNativePath)) {
    if (DoExtraAnalysis)
      Result = false;
    else
      return false;
  }

  // We need to have a loop header.
  LLVM_DEBUG(dbgs() << "LV: Found a loop: " << TheLoop->getHeader()->getName()
                    << '\n');

  // Specific checks for outer loops. We skip the remaining legal checks at this
  // point because they don't support outer loops.
  if (!TheLoop->empty()) {
    assert(UseVPlanNativePath && "VPlan-native path is not enabled.");

    if (!canVectorizeOuterLoop()) {
      reportVectorizationFailure("Unsupported outer loop",
                                 "unsupported outer loop",
                                 "UnsupportedOuterLoop");
      // TODO: Implement DoExtraAnalysis when subsequent legal checks support
      // outer loops.
      return false;
    }

    LLVM_DEBUG(dbgs() << "LV: We can vectorize this outer loop!\n");
    return Result;
  }

  assert(TheLoop->empty() && "Inner loop expected.");
  // Check if we can if-convert non-single-bb loops.
  unsigned NumBlocks = TheLoop->getNumBlocks();
  if (NumBlocks != 1 && !canVectorizeWithIfConvert()) {
    LLVM_DEBUG(dbgs() << "LV: Can't if-convert the loop.\n");
    if (DoExtraAnalysis)
      Result = false;
    else
      return false;
  }

  // Check if we can vectorize the instructions and CFG in this loop.
  if (!canVectorizeInstrs()) {
    LLVM_DEBUG(dbgs() << "LV: Can't vectorize the instructions or CFG\n");
    if (DoExtraAnalysis)
      Result = false;
    else
      return false;
  }

  // Go over each instruction and look at memory deps.
  if (!canVectorizeMemory()) {
    LLVM_DEBUG(dbgs() << "LV: Can't vectorize due to memory conflicts\n");
    if (DoExtraAnalysis)
      Result = false;
    else
      return false;
  }

  LLVM_DEBUG(dbgs() << "LV: We can vectorize this loop"
                    << (LAI->getRuntimePointerChecking()->Need
                            ? " (with a runtime bound check)"
                            : "")
                    << "!\n");

  unsigned SCEVThreshold = VectorizeSCEVCheckThreshold;
  if (Hints->getForce() == LoopVectorizeHints::FK_Enabled)
    SCEVThreshold = PragmaVectorizeSCEVCheckThreshold;

  if (PSE.getUnionPredicate().getComplexity() > SCEVThreshold) {
    reportVectorizationFailure("Too many SCEV checks needed",
        "Too many SCEV assumptions need to be made and checked at runtime",
        "TooManySCEVRunTimeChecks");
    if (DoExtraAnalysis)
      Result = false;
    else
      return false;
  }

  // Okay! We've done all the tests. If any have failed, return false. Otherwise
  // we can vectorize, and at this point we don't have any other mem analysis
  // which may limit our maximum vectorization factor, so just return true with
  // no restrictions.
  return Result;
}

bool LoopVectorizationLegality::canFoldTailByMasking() {

  LLVM_DEBUG(dbgs() << "LV: checking if tail can be folded by masking.\n");

  if (!PrimaryInduction) {
    reportVectorizationFailure(
        "No primary induction, cannot fold tail by masking",
        "Missing a primary induction variable in the loop, which is "
        "needed in order to fold tail by masking as required.",
        "NoPrimaryInduction");
    return false;
  }

  // TODO: handle reductions when tail is folded by masking.
  if (!Reductions.empty()) {
    reportVectorizationFailure(
        "Loop has reductions, cannot fold tail by masking",
        "Cannot fold tail by masking in the presence of reductions.",
        "ReductionFoldingTailByMasking");
    return false;
  }

  // TODO: handle outside users when tail is folded by masking.
  for (auto *AE : AllowedExit) {
    // Check that all users of allowed exit values are inside the loop.
    for (User *U : AE->users()) {
      Instruction *UI = cast<Instruction>(U);
      if (TheLoop->contains(UI))
        continue;
      reportVectorizationFailure(
          "Cannot fold tail by masking, loop has an outside user for",
          "Cannot fold tail by masking in the presence of live outs.",
          "LiveOutFoldingTailByMasking", UI);
      return false;
    }
  }

  // The list of pointers that we can safely read and write to remains empty.
  SmallPtrSet<Value *, 8> SafePointers;

  // Check and mark all blocks for predication, including those that ordinarily
  // do not need predication such as the header block.
  for (BasicBlock *BB : TheLoop->blocks()) {
    if (!blockCanBePredicated(BB, SafePointers)) {
      reportVectorizationFailure(
          "Cannot fold tail by masking as required",
          "control flow cannot be substituted for a select",
          "NoCFGForSelect", BB->getTerminator());
      return false;
    }
  }

  LLVM_DEBUG(dbgs() << "LV: can fold tail by masking.\n");
  return true;
}

} // namespace llvm