llvm.org GIT mirror llvm / c313a17 include / llvm / Analysis / TargetTransformInfo.h
c313a17

Tree @c313a17 (Download .tar.gz)

TargetTransformInfo.h @c313a17raw · history · blame

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
//===- TargetTransformInfo.h ------------------------------------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
/// \file
/// This pass exposes codegen information to IR-level passes. Every
/// transformation that uses codegen information is broken into three parts:
/// 1. The IR-level analysis pass.
/// 2. The IR-level transformation interface which provides the needed
///    information.
/// 3. Codegen-level implementation which uses target-specific hooks.
///
/// This file defines #2, which is the interface that IR-level transformations
/// use for querying the codegen.
///
//===----------------------------------------------------------------------===//

#ifndef LLVM_ANALYSIS_TARGETTRANSFORMINFO_H
#define LLVM_ANALYSIS_TARGETTRANSFORMINFO_H

#include "llvm/ADT/Optional.h"
#include "llvm/IR/Operator.h"
#include "llvm/IR/PassManager.h"
#include "llvm/Pass.h"
#include "llvm/Support/AtomicOrdering.h"
#include "llvm/Support/DataTypes.h"
#include <functional>

namespace llvm {

namespace Intrinsic {
enum ID : unsigned;
}

class AssumptionCache;
class BranchInst;
class Function;
class GlobalValue;
class IntrinsicInst;
class LoadInst;
class Loop;
class SCEV;
class ScalarEvolution;
class StoreInst;
class SwitchInst;
class TargetLibraryInfo;
class Type;
class User;
class Value;

/// Information about a load/store intrinsic defined by the target.
struct MemIntrinsicInfo {
  /// This is the pointer that the intrinsic is loading from or storing to.
  /// If this is non-null, then analysis/optimization passes can assume that
  /// this intrinsic is functionally equivalent to a load/store from this
  /// pointer.
  Value *PtrVal = nullptr;

  // Ordering for atomic operations.
  AtomicOrdering Ordering = AtomicOrdering::NotAtomic;

  // Same Id is set by the target for corresponding load/store intrinsics.
  unsigned short MatchingId = 0;

  bool ReadMem = false;
  bool WriteMem = false;
  bool IsVolatile = false;

  bool isUnordered() const {
    return (Ordering == AtomicOrdering::NotAtomic ||
            Ordering == AtomicOrdering::Unordered) && !IsVolatile;
  }
};

/// This pass provides access to the codegen interfaces that are needed
/// for IR-level transformations.
class TargetTransformInfo {
public:
  /// Construct a TTI object using a type implementing the \c Concept
  /// API below.
  ///
  /// This is used by targets to construct a TTI wrapping their target-specific
  /// implementation that encodes appropriate costs for their target.
  template <typename T> TargetTransformInfo(T Impl);

  /// Construct a baseline TTI object using a minimal implementation of
  /// the \c Concept API below.
  ///
  /// The TTI implementation will reflect the information in the DataLayout
  /// provided if non-null.
  explicit TargetTransformInfo(const DataLayout &DL);

  // Provide move semantics.
  TargetTransformInfo(TargetTransformInfo &&Arg);
  TargetTransformInfo &operator=(TargetTransformInfo &&RHS);

  // We need to define the destructor out-of-line to define our sub-classes
  // out-of-line.
  ~TargetTransformInfo();

  /// Handle the invalidation of this information.
  ///
  /// When used as a result of \c TargetIRAnalysis this method will be called
  /// when the function this was computed for changes. When it returns false,
  /// the information is preserved across those changes.
  bool invalidate(Function &, const PreservedAnalyses &,
                  FunctionAnalysisManager::Invalidator &) {
    // FIXME: We should probably in some way ensure that the subtarget
    // information for a function hasn't changed.
    return false;
  }

  /// \name Generic Target Information
  /// @{

  /// The kind of cost model.
  ///
  /// There are several different cost models that can be customized by the
  /// target. The normalization of each cost model may be target specific.
  enum TargetCostKind {
    TCK_RecipThroughput, ///< Reciprocal throughput.
    TCK_Latency,         ///< The latency of instruction.
    TCK_CodeSize         ///< Instruction code size.
  };

  /// Query the cost of a specified instruction.
  ///
  /// Clients should use this interface to query the cost of an existing
  /// instruction. The instruction must have a valid parent (basic block).
  ///
  /// Note, this method does not cache the cost calculation and it
  /// can be expensive in some cases.
  int getInstructionCost(const Instruction *I, enum TargetCostKind kind) const {
    switch (kind){
    case TCK_RecipThroughput:
      return getInstructionThroughput(I);

    case TCK_Latency:
      return getInstructionLatency(I);

    case TCK_CodeSize:
      return getUserCost(I);
    }
    llvm_unreachable("Unknown instruction cost kind");
  }

  /// Underlying constants for 'cost' values in this interface.
  ///
  /// Many APIs in this interface return a cost. This enum defines the
  /// fundamental values that should be used to interpret (and produce) those
  /// costs. The costs are returned as an int rather than a member of this
  /// enumeration because it is expected that the cost of one IR instruction
  /// may have a multiplicative factor to it or otherwise won't fit directly
  /// into the enum. Moreover, it is common to sum or average costs which works
  /// better as simple integral values. Thus this enum only provides constants.
  /// Also note that the returned costs are signed integers to make it natural
  /// to add, subtract, and test with zero (a common boundary condition). It is
  /// not expected that 2^32 is a realistic cost to be modeling at any point.
  ///
  /// Note that these costs should usually reflect the intersection of code-size
  /// cost and execution cost. A free instruction is typically one that folds
  /// into another instruction. For example, reg-to-reg moves can often be
  /// skipped by renaming the registers in the CPU, but they still are encoded
  /// and thus wouldn't be considered 'free' here.
  enum TargetCostConstants {
    TCC_Free = 0,     ///< Expected to fold away in lowering.
    TCC_Basic = 1,    ///< The cost of a typical 'add' instruction.
    TCC_Expensive = 4 ///< The cost of a 'div' instruction on x86.
  };

  /// Estimate the cost of a specific operation when lowered.
  ///
  /// Note that this is designed to work on an arbitrary synthetic opcode, and
  /// thus work for hypothetical queries before an instruction has even been
  /// formed. However, this does *not* work for GEPs, and must not be called
  /// for a GEP instruction. Instead, use the dedicated getGEPCost interface as
  /// analyzing a GEP's cost required more information.
  ///
  /// Typically only the result type is required, and the operand type can be
  /// omitted. However, if the opcode is one of the cast instructions, the
  /// operand type is required.
  ///
  /// The returned cost is defined in terms of \c TargetCostConstants, see its
  /// comments for a detailed explanation of the cost values.
  int getOperationCost(unsigned Opcode, Type *Ty, Type *OpTy = nullptr) const;

  /// Estimate the cost of a GEP operation when lowered.
  ///
  /// The contract for this function is the same as \c getOperationCost except
  /// that it supports an interface that provides extra information specific to
  /// the GEP operation.
  int getGEPCost(Type *PointeeType, const Value *Ptr,
                 ArrayRef<const Value *> Operands) const;

  /// Estimate the cost of a EXT operation when lowered.
  ///
  /// The contract for this function is the same as \c getOperationCost except
  /// that it supports an interface that provides extra information specific to
  /// the EXT operation.
  int getExtCost(const Instruction *I, const Value *Src) const;

  /// Estimate the cost of a function call when lowered.
  ///
  /// The contract for this is the same as \c getOperationCost except that it
  /// supports an interface that provides extra information specific to call
  /// instructions.
  ///
  /// This is the most basic query for estimating call cost: it only knows the
  /// function type and (potentially) the number of arguments at the call site.
  /// The latter is only interesting for varargs function types.
  int getCallCost(FunctionType *FTy, int NumArgs = -1,
                  const User *U = nullptr) const;

  /// Estimate the cost of calling a specific function when lowered.
  ///
  /// This overload adds the ability to reason about the particular function
  /// being called in the event it is a library call with special lowering.
  int getCallCost(const Function *F, int NumArgs = -1,
                  const User *U = nullptr) const;

  /// Estimate the cost of calling a specific function when lowered.
  ///
  /// This overload allows specifying a set of candidate argument values.
  int getCallCost(const Function *F, ArrayRef<const Value *> Arguments,
                  const User *U = nullptr) const;

  /// \returns A value by which our inlining threshold should be multiplied.
  /// This is primarily used to bump up the inlining threshold wholesale on
  /// targets where calls are unusually expensive.
  ///
  /// TODO: This is a rather blunt instrument.  Perhaps altering the costs of
  /// individual classes of instructions would be better.
  unsigned getInliningThresholdMultiplier() const;

  /// Estimate the cost of an intrinsic when lowered.
  ///
  /// Mirrors the \c getCallCost method but uses an intrinsic identifier.
  int getIntrinsicCost(Intrinsic::ID IID, Type *RetTy,
                       ArrayRef<Type *> ParamTys,
                       const User *U = nullptr) const;

  /// Estimate the cost of an intrinsic when lowered.
  ///
  /// Mirrors the \c getCallCost method but uses an intrinsic identifier.
  int getIntrinsicCost(Intrinsic::ID IID, Type *RetTy,
                       ArrayRef<const Value *> Arguments,
                       const User *U = nullptr) const;

  /// \return the expected cost of a memcpy, which could e.g. depend on the
  /// source/destination type and alignment and the number of bytes copied.
  int getMemcpyCost(const Instruction *I) const;

  /// \return The estimated number of case clusters when lowering \p 'SI'.
  /// \p JTSize Set a jump table size only when \p SI is suitable for a jump
  /// table.
  unsigned getEstimatedNumberOfCaseClusters(const SwitchInst &SI,
                                            unsigned &JTSize) const;

  /// Estimate the cost of a given IR user when lowered.
  ///
  /// This can estimate the cost of either a ConstantExpr or Instruction when
  /// lowered. It has two primary advantages over the \c getOperationCost and
  /// \c getGEPCost above, and one significant disadvantage: it can only be
  /// used when the IR construct has already been formed.
  ///
  /// The advantages are that it can inspect the SSA use graph to reason more
  /// accurately about the cost. For example, all-constant-GEPs can often be
  /// folded into a load or other instruction, but if they are used in some
  /// other context they may not be folded. This routine can distinguish such
  /// cases.
  ///
  /// \p Operands is a list of operands which can be a result of transformations
  /// of the current operands. The number of the operands on the list must equal
  /// to the number of the current operands the IR user has. Their order on the
  /// list must be the same as the order of the current operands the IR user
  /// has.
  ///
  /// The returned cost is defined in terms of \c TargetCostConstants, see its
  /// comments for a detailed explanation of the cost values.
  int getUserCost(const User *U, ArrayRef<const Value *> Operands) const;

  /// This is a helper function which calls the two-argument getUserCost
  /// with \p Operands which are the current operands U has.
  int getUserCost(const User *U) const {
    SmallVector<const Value *, 4> Operands(U->value_op_begin(),
                                           U->value_op_end());
    return getUserCost(U, Operands);
  }

  /// Return true if branch divergence exists.
  ///
  /// Branch divergence has a significantly negative impact on GPU performance
  /// when threads in the same wavefront take different paths due to conditional
  /// branches.
  bool hasBranchDivergence() const;

  /// Returns whether V is a source of divergence.
  ///
  /// This function provides the target-dependent information for
  /// the target-independent LegacyDivergenceAnalysis. LegacyDivergenceAnalysis first
  /// builds the dependency graph, and then runs the reachability algorithm
  /// starting with the sources of divergence.
  bool isSourceOfDivergence(const Value *V) const;

  // Returns true for the target specific
  // set of operations which produce uniform result
  // even taking non-uniform arguments
  bool isAlwaysUniform(const Value *V) const;

  /// Returns the address space ID for a target's 'flat' address space. Note
  /// this is not necessarily the same as addrspace(0), which LLVM sometimes
  /// refers to as the generic address space. The flat address space is a
  /// generic address space that can be used access multiple segments of memory
  /// with different address spaces. Access of a memory location through a
  /// pointer with this address space is expected to be legal but slower
  /// compared to the same memory location accessed through a pointer with a
  /// different address space.
  //
  /// This is for targets with different pointer representations which can
  /// be converted with the addrspacecast instruction. If a pointer is converted
  /// to this address space, optimizations should attempt to replace the access
  /// with the source address space.
  ///
  /// \returns ~0u if the target does not have such a flat address space to
  /// optimize away.
  unsigned getFlatAddressSpace() const;

  /// Test whether calls to a function lower to actual program function
  /// calls.
  ///
  /// The idea is to test whether the program is likely to require a 'call'
  /// instruction or equivalent in order to call the given function.
  ///
  /// FIXME: It's not clear that this is a good or useful query API. Client's
  /// should probably move to simpler cost metrics using the above.
  /// Alternatively, we could split the cost interface into distinct code-size
  /// and execution-speed costs. This would allow modelling the core of this
  /// query more accurately as a call is a single small instruction, but
  /// incurs significant execution cost.
  bool isLoweredToCall(const Function *F) const;

  struct LSRCost {
    /// TODO: Some of these could be merged. Also, a lexical ordering
    /// isn't always optimal.
    unsigned Insns;
    unsigned NumRegs;
    unsigned AddRecCost;
    unsigned NumIVMuls;
    unsigned NumBaseAdds;
    unsigned ImmCost;
    unsigned SetupCost;
    unsigned ScaleCost;
  };

  /// Parameters that control the generic loop unrolling transformation.
  struct UnrollingPreferences {
    /// The cost threshold for the unrolled loop. Should be relative to the
    /// getUserCost values returned by this API, and the expectation is that
    /// the unrolled loop's instructions when run through that interface should
    /// not exceed this cost. However, this is only an estimate. Also, specific
    /// loops may be unrolled even with a cost above this threshold if deemed
    /// profitable. Set this to UINT_MAX to disable the loop body cost
    /// restriction.
    unsigned Threshold;
    /// If complete unrolling will reduce the cost of the loop, we will boost
    /// the Threshold by a certain percent to allow more aggressive complete
    /// unrolling. This value provides the maximum boost percentage that we
    /// can apply to Threshold (The value should be no less than 100).
    /// BoostedThreshold = Threshold * min(RolledCost / UnrolledCost,
    ///                                    MaxPercentThresholdBoost / 100)
    /// E.g. if complete unrolling reduces the loop execution time by 50%
    /// then we boost the threshold by the factor of 2x. If unrolling is not
    /// expected to reduce the running time, then we do not increase the
    /// threshold.
    unsigned MaxPercentThresholdBoost;
    /// The cost threshold for the unrolled loop when optimizing for size (set
    /// to UINT_MAX to disable).
    unsigned OptSizeThreshold;
    /// The cost threshold for the unrolled loop, like Threshold, but used
    /// for partial/runtime unrolling (set to UINT_MAX to disable).
    unsigned PartialThreshold;
    /// The cost threshold for the unrolled loop when optimizing for size, like
    /// OptSizeThreshold, but used for partial/runtime unrolling (set to
    /// UINT_MAX to disable).
    unsigned PartialOptSizeThreshold;
    /// A forced unrolling factor (the number of concatenated bodies of the
    /// original loop in the unrolled loop body). When set to 0, the unrolling
    /// transformation will select an unrolling factor based on the current cost
    /// threshold and other factors.
    unsigned Count;
    /// A forced peeling factor (the number of bodied of the original loop
    /// that should be peeled off before the loop body). When set to 0, the
    /// unrolling transformation will select a peeling factor based on profile
    /// information and other factors.
    unsigned PeelCount;
    /// Default unroll count for loops with run-time trip count.
    unsigned DefaultUnrollRuntimeCount;
    // Set the maximum unrolling factor. The unrolling factor may be selected
    // using the appropriate cost threshold, but may not exceed this number
    // (set to UINT_MAX to disable). This does not apply in cases where the
    // loop is being fully unrolled.
    unsigned MaxCount;
    /// Set the maximum unrolling factor for full unrolling. Like MaxCount, but
    /// applies even if full unrolling is selected. This allows a target to fall
    /// back to Partial unrolling if full unrolling is above FullUnrollMaxCount.
    unsigned FullUnrollMaxCount;
    // Represents number of instructions optimized when "back edge"
    // becomes "fall through" in unrolled loop.
    // For now we count a conditional branch on a backedge and a comparison
    // feeding it.
    unsigned BEInsns;
    /// Allow partial unrolling (unrolling of loops to expand the size of the
    /// loop body, not only to eliminate small constant-trip-count loops).
    bool Partial;
    /// Allow runtime unrolling (unrolling of loops to expand the size of the
    /// loop body even when the number of loop iterations is not known at
    /// compile time).
    bool Runtime;
    /// Allow generation of a loop remainder (extra iterations after unroll).
    bool AllowRemainder;
    /// Allow emitting expensive instructions (such as divisions) when computing
    /// the trip count of a loop for runtime unrolling.
    bool AllowExpensiveTripCount;
    /// Apply loop unroll on any kind of loop
    /// (mainly to loops that fail runtime unrolling).
    bool Force;
    /// Allow using trip count upper bound to unroll loops.
    bool UpperBound;
    /// Allow peeling off loop iterations for loops with low dynamic tripcount.
    bool AllowPeeling;
    /// Allow unrolling of all the iterations of the runtime loop remainder.
    bool UnrollRemainder;
    /// Allow unroll and jam. Used to enable unroll and jam for the target.
    bool UnrollAndJam;
    /// Threshold for unroll and jam, for inner loop size. The 'Threshold'
    /// value above is used during unroll and jam for the outer loop size.
    /// This value is used in the same manner to limit the size of the inner
    /// loop.
    unsigned UnrollAndJamInnerLoopThreshold;
  };

  /// Get target-customized preferences for the generic loop unrolling
  /// transformation. The caller will initialize UP with the current
  /// target-independent defaults.
  void getUnrollingPreferences(Loop *L, ScalarEvolution &,
                               UnrollingPreferences &UP) const;

  /// Attributes of a target dependent hardware loop. Here, the term 'element'
  /// describes the work performed by an IR loop that has not been vectorized
  /// by the compiler.
  struct HardwareLoopInfo {
    HardwareLoopInfo()        = delete;
    HardwareLoopInfo(Loop *L) : L(L) { }
    Loop *L                   = nullptr;
    BasicBlock *ExitBlock     = nullptr;
    BranchInst *ExitBranch    = nullptr;
    const SCEV *ExitCount     = nullptr;
    IntegerType *CountType    = nullptr;
    Value *LoopDecrement      = nullptr;  // The maximum number of elements
                                          // processed in the loop body.
    bool IsNestingLegal       = false;    // Can a hardware loop be a parent to
                                          // another hardware loop.
    bool CounterInReg         = false;    // Should loop counter be updated in
                                          // the loop via a phi?
  };

  /// Query the target whether it would be profitable to convert the given loop
  /// into a hardware loop.
  bool isHardwareLoopProfitable(Loop *L, ScalarEvolution &SE,
                                AssumptionCache &AC,
                                TargetLibraryInfo *LibInfo,
                                HardwareLoopInfo &HWLoopInfo) const;

  /// @}

  /// \name Scalar Target Information
  /// @{

  /// Flags indicating the kind of support for population count.
  ///
  /// Compared to the SW implementation, HW support is supposed to
  /// significantly boost the performance when the population is dense, and it
  /// may or may not degrade performance if the population is sparse. A HW
  /// support is considered as "Fast" if it can outperform, or is on a par
  /// with, SW implementation when the population is sparse; otherwise, it is
  /// considered as "Slow".
  enum PopcntSupportKind { PSK_Software, PSK_SlowHardware, PSK_FastHardware };

  /// Return true if the specified immediate is legal add immediate, that
  /// is the target has add instructions which can add a register with the
  /// immediate without having to materialize the immediate into a register.
  bool isLegalAddImmediate(int64_t Imm) const;

  /// Return true if the specified immediate is legal icmp immediate,
  /// that is the target has icmp instructions which can compare a register
  /// against the immediate without having to materialize the immediate into a
  /// register.
  bool isLegalICmpImmediate(int64_t Imm) const;

  /// Return true if the addressing mode represented by AM is legal for
  /// this target, for a load/store of the specified type.
  /// The type may be VoidTy, in which case only return true if the addressing
  /// mode is legal for a load/store of any legal type.
  /// If target returns true in LSRWithInstrQueries(), I may be valid.
  /// TODO: Handle pre/postinc as well.
  bool isLegalAddressingMode(Type *Ty, GlobalValue *BaseGV, int64_t BaseOffset,
                             bool HasBaseReg, int64_t Scale,
                             unsigned AddrSpace = 0,
                             Instruction *I = nullptr) const;

  /// Return true if LSR cost of C1 is lower than C1.
  bool isLSRCostLess(TargetTransformInfo::LSRCost &C1,
                     TargetTransformInfo::LSRCost &C2) const;

  /// Return true if the target can fuse a compare and branch.
  /// Loop-strength-reduction (LSR) uses that knowledge to adjust its cost
  /// calculation for the instructions in a loop.
  bool canMacroFuseCmp() const;

  /// \return True is LSR should make efforts to create/preserve post-inc
  /// addressing mode expressions.
  bool shouldFavorPostInc() const;

  /// Return true if LSR should make efforts to generate indexed addressing
  /// modes that operate across loop iterations.
  bool shouldFavorBackedgeIndex(const Loop *L) const;

  /// Return true if the target supports masked load.
  bool isLegalMaskedStore(Type *DataType) const;
  /// Return true if the target supports masked store.
  bool isLegalMaskedLoad(Type *DataType) const;

  /// Return true if the target supports masked scatter.
  bool isLegalMaskedScatter(Type *DataType) const;
  /// Return true if the target supports masked gather.
  bool isLegalMaskedGather(Type *DataType) const;

  /// Return true if the target supports masked compress store.
  bool isLegalMaskedCompressStore(Type *DataType) const;
  /// Return true if the target supports masked expand load.
  bool isLegalMaskedExpandLoad(Type *DataType) const;

  /// Return true if the target has a unified operation to calculate division
  /// and remainder. If so, the additional implicit multiplication and
  /// subtraction required to calculate a remainder from division are free. This
  /// can enable more aggressive transformations for division and remainder than
  /// would typically be allowed using throughput or size cost models.
  bool hasDivRemOp(Type *DataType, bool IsSigned) const;

  /// Return true if the given instruction (assumed to be a memory access
  /// instruction) has a volatile variant. If that's the case then we can avoid
  /// addrspacecast to generic AS for volatile loads/stores. Default
  /// implementation returns false, which prevents address space inference for
  /// volatile loads/stores.
  bool hasVolatileVariant(Instruction *I, unsigned AddrSpace) const;

  /// Return true if target doesn't mind addresses in vectors.
  bool prefersVectorizedAddressing() const;

  /// Return the cost of the scaling factor used in the addressing
  /// mode represented by AM for this target, for a load/store
  /// of the specified type.
  /// If the AM is supported, the return value must be >= 0.
  /// If the AM is not supported, it returns a negative value.
  /// TODO: Handle pre/postinc as well.
  int getScalingFactorCost(Type *Ty, GlobalValue *BaseGV, int64_t BaseOffset,
                           bool HasBaseReg, int64_t Scale,
                           unsigned AddrSpace = 0) const;

  /// Return true if the loop strength reduce pass should make
  /// Instruction* based TTI queries to isLegalAddressingMode(). This is
  /// needed on SystemZ, where e.g. a memcpy can only have a 12 bit unsigned
  /// immediate offset and no index register.
  bool LSRWithInstrQueries() const;

  /// Return true if it's free to truncate a value of type Ty1 to type
  /// Ty2. e.g. On x86 it's free to truncate a i32 value in register EAX to i16
  /// by referencing its sub-register AX.
  bool isTruncateFree(Type *Ty1, Type *Ty2) const;

  /// Return true if it is profitable to hoist instruction in the
  /// then/else to before if.
  bool isProfitableToHoist(Instruction *I) const;

  bool useAA() const;

  /// Return true if this type is legal.
  bool isTypeLegal(Type *Ty) const;

  /// Returns the target's jmp_buf alignment in bytes.
  unsigned getJumpBufAlignment() const;

  /// Returns the target's jmp_buf size in bytes.
  unsigned getJumpBufSize() const;

  /// Return true if switches should be turned into lookup tables for the
  /// target.
  bool shouldBuildLookupTables() const;

  /// Return true if switches should be turned into lookup tables
  /// containing this constant value for the target.
  bool shouldBuildLookupTablesForConstant(Constant *C) const;

  /// Return true if the input function which is cold at all call sites,
  ///  should use coldcc calling convention.
  bool useColdCCForColdCall(Function &F) const;

  unsigned getScalarizationOverhead(Type *Ty, bool Insert, bool Extract) const;

  unsigned getOperandsScalarizationOverhead(ArrayRef<const Value *> Args,
                                            unsigned VF) const;

  /// If target has efficient vector element load/store instructions, it can
  /// return true here so that insertion/extraction costs are not added to
  /// the scalarization cost of a load/store.
  bool supportsEfficientVectorElementLoadStore() const;

  /// Don't restrict interleaved unrolling to small loops.
  bool enableAggressiveInterleaving(bool LoopHasReductions) const;

  /// If not nullptr, enable inline expansion of memcmp. IsZeroCmp is
  /// true if this is the expansion of memcmp(p1, p2, s) == 0.
  struct MemCmpExpansionOptions {
    // The list of available load sizes (in bytes), sorted in decreasing order.
    SmallVector<unsigned, 8> LoadSizes;
    // Set to true to allow overlapping loads. For example, 7-byte compares can
    // be done with two 4-byte compares instead of 4+2+1-byte compares. This
    // requires all loads in LoadSizes to be doable in an unaligned way.
    bool AllowOverlappingLoads = false;
  };
  const MemCmpExpansionOptions *enableMemCmpExpansion(bool IsZeroCmp) const;

  /// Enable matching of interleaved access groups.
  bool enableInterleavedAccessVectorization() const;

  /// Enable matching of interleaved access groups that contain predicated
  /// accesses or gaps and therefore vectorized using masked
  /// vector loads/stores.
  bool enableMaskedInterleavedAccessVectorization() const;

  /// Indicate that it is potentially unsafe to automatically vectorize
  /// floating-point operations because the semantics of vector and scalar
  /// floating-point semantics may differ. For example, ARM NEON v7 SIMD math
  /// does not support IEEE-754 denormal numbers, while depending on the
  /// platform, scalar floating-point math does.
  /// This applies to floating-point math operations and calls, not memory
  /// operations, shuffles, or casts.
  bool isFPVectorizationPotentiallyUnsafe() const;

  /// Determine if the target supports unaligned memory accesses.
  bool allowsMisalignedMemoryAccesses(LLVMContext &Context,
                                      unsigned BitWidth, unsigned AddressSpace = 0,
                                      unsigned Alignment = 1,
                                      bool *Fast = nullptr) const;

  /// Return hardware support for population count.
  PopcntSupportKind getPopcntSupport(unsigned IntTyWidthInBit) const;

  /// Return true if the hardware has a fast square-root instruction.
  bool haveFastSqrt(Type *Ty) const;

  /// Return true if it is faster to check if a floating-point value is NaN
  /// (or not-NaN) versus a comparison against a constant FP zero value.
  /// Targets should override this if materializing a 0.0 for comparison is
  /// generally as cheap as checking for ordered/unordered.
  bool isFCmpOrdCheaperThanFCmpZero(Type *Ty) const;

  /// Return the expected cost of supporting the floating point operation
  /// of the specified type.
  int getFPOpCost(Type *Ty) const;

  /// Return the expected cost of materializing for the given integer
  /// immediate of the specified type.
  int getIntImmCost(const APInt &Imm, Type *Ty) const;

  /// Return the expected cost of materialization for the given integer
  /// immediate of the specified type for a given instruction. The cost can be
  /// zero if the immediate can be folded into the specified instruction.
  int getIntImmCost(unsigned Opc, unsigned Idx, const APInt &Imm,
                    Type *Ty) const;
  int getIntImmCost(Intrinsic::ID IID, unsigned Idx, const APInt &Imm,
                    Type *Ty) const;

  /// Return the expected cost for the given integer when optimising
  /// for size. This is different than the other integer immediate cost
  /// functions in that it is subtarget agnostic. This is useful when you e.g.
  /// target one ISA such as Aarch32 but smaller encodings could be possible
  /// with another such as Thumb. This return value is used as a penalty when
  /// the total costs for a constant is calculated (the bigger the cost, the
  /// more beneficial constant hoisting is).
  int getIntImmCodeSizeCost(unsigned Opc, unsigned Idx, const APInt &Imm,
                            Type *Ty) const;
  /// @}

  /// \name Vector Target Information
  /// @{

  /// The various kinds of shuffle patterns for vector queries.
  enum ShuffleKind {
    SK_Broadcast,       ///< Broadcast element 0 to all other elements.
    SK_Reverse,         ///< Reverse the order of the vector.
    SK_Select,          ///< Selects elements from the corresponding lane of
                        ///< either source operand. This is equivalent to a
                        ///< vector select with a constant condition operand.
    SK_Transpose,       ///< Transpose two vectors.
    SK_InsertSubvector, ///< InsertSubvector. Index indicates start offset.
    SK_ExtractSubvector,///< ExtractSubvector Index indicates start offset.
    SK_PermuteTwoSrc,   ///< Merge elements from two source vectors into one
                        ///< with any shuffle mask.
    SK_PermuteSingleSrc ///< Shuffle elements of single source vector with any
                        ///< shuffle mask.
  };

  /// Additional information about an operand's possible values.
  enum OperandValueKind {
    OK_AnyValue,               // Operand can have any value.
    OK_UniformValue,           // Operand is uniform (splat of a value).
    OK_UniformConstantValue,   // Operand is uniform constant.
    OK_NonUniformConstantValue // Operand is a non uniform constant value.
  };

  /// Additional properties of an operand's values.
  enum OperandValueProperties { OP_None = 0, OP_PowerOf2 = 1 };

  /// \return The number of scalar or vector registers that the target has.
  /// If 'Vectors' is true, it returns the number of vector registers. If it is
  /// set to false, it returns the number of scalar registers.
  unsigned getNumberOfRegisters(bool Vector) const;

  /// \return The width of the largest scalar or vector register type.
  unsigned getRegisterBitWidth(bool Vector) const;

  /// \return The width of the smallest vector register type.
  unsigned getMinVectorRegisterBitWidth() const;

  /// \return True if the vectorization factor should be chosen to
  /// make the vector of the smallest element type match the size of a
  /// vector register. For wider element types, this could result in
  /// creating vectors that span multiple vector registers.
  /// If false, the vectorization factor will be chosen based on the
  /// size of the widest element type.
  bool shouldMaximizeVectorBandwidth(bool OptSize) const;

  /// \return The minimum vectorization factor for types of given element
  /// bit width, or 0 if there is no minimum VF. The returned value only
  /// applies when shouldMaximizeVectorBandwidth returns true.
  unsigned getMinimumVF(unsigned ElemWidth) const;

  /// \return True if it should be considered for address type promotion.
  /// \p AllowPromotionWithoutCommonHeader Set true if promoting \p I is
  /// profitable without finding other extensions fed by the same input.
  bool shouldConsiderAddressTypePromotion(
      const Instruction &I, bool &AllowPromotionWithoutCommonHeader) const;

  /// \return The size of a cache line in bytes.
  unsigned getCacheLineSize() const;

  /// The possible cache levels
  enum class CacheLevel {
    L1D,   // The L1 data cache
    L2D,   // The L2 data cache

    // We currently do not model L3 caches, as their sizes differ widely between
    // microarchitectures. Also, we currently do not have a use for L3 cache
    // size modeling yet.
  };

  /// \return The size of the cache level in bytes, if available.
  llvm::Optional<unsigned> getCacheSize(CacheLevel Level) const;

  /// \return The associativity of the cache level, if available.
  llvm::Optional<unsigned> getCacheAssociativity(CacheLevel Level) const;

  /// \return How much before a load we should place the prefetch instruction.
  /// This is currently measured in number of instructions.
  unsigned getPrefetchDistance() const;

  /// \return Some HW prefetchers can handle accesses up to a certain constant
  /// stride.  This is the minimum stride in bytes where it makes sense to start
  /// adding SW prefetches.  The default is 1, i.e. prefetch with any stride.
  unsigned getMinPrefetchStride() const;

  /// \return The maximum number of iterations to prefetch ahead.  If the
  /// required number of iterations is more than this number, no prefetching is
  /// performed.
  unsigned getMaxPrefetchIterationsAhead() const;

  /// \return The maximum interleave factor that any transform should try to
  /// perform for this target. This number depends on the level of parallelism
  /// and the number of execution units in the CPU.
  unsigned getMaxInterleaveFactor(unsigned VF) const;

  /// Collect properties of V used in cost analysis, e.g. OP_PowerOf2.
  static OperandValueKind getOperandInfo(Value *V,
                                         OperandValueProperties &OpProps);

  /// This is an approximation of reciprocal throughput of a math/logic op.
  /// A higher cost indicates less expected throughput.
  /// From Agner Fog's guides, reciprocal throughput is "the average number of
  /// clock cycles per instruction when the instructions are not part of a
  /// limiting dependency chain."
  /// Therefore, costs should be scaled to account for multiple execution units
  /// on the target that can process this type of instruction. For example, if
  /// there are 5 scalar integer units and 2 vector integer units that can
  /// calculate an 'add' in a single cycle, this model should indicate that the
  /// cost of the vector add instruction is 2.5 times the cost of the scalar
  /// add instruction.
  /// \p Args is an optional argument which holds the instruction operands
  /// values so the TTI can analyze those values searching for special
  /// cases or optimizations based on those values.
  int getArithmeticInstrCost(
      unsigned Opcode, Type *Ty, OperandValueKind Opd1Info = OK_AnyValue,
      OperandValueKind Opd2Info = OK_AnyValue,
      OperandValueProperties Opd1PropInfo = OP_None,
      OperandValueProperties Opd2PropInfo = OP_None,
      ArrayRef<const Value *> Args = ArrayRef<const Value *>()) const;

  /// \return The cost of a shuffle instruction of kind Kind and of type Tp.
  /// The index and subtype parameters are used by the subvector insertion and
  /// extraction shuffle kinds to show the insert/extract point and the type of
  /// the subvector being inserted/extracted.
  /// NOTE: For subvector extractions Tp represents the source type.
  int getShuffleCost(ShuffleKind Kind, Type *Tp, int Index = 0,
                     Type *SubTp = nullptr) const;

  /// \return The expected cost of cast instructions, such as bitcast, trunc,
  /// zext, etc. If there is an existing instruction that holds Opcode, it
  /// may be passed in the 'I' parameter.
  int getCastInstrCost(unsigned Opcode, Type *Dst, Type *Src,
                       const Instruction *I = nullptr) const;

  /// \return The expected cost of a sign- or zero-extended vector extract. Use
  /// -1 to indicate that there is no information about the index value.
  int getExtractWithExtendCost(unsigned Opcode, Type *Dst, VectorType *VecTy,
                               unsigned Index = -1) const;

  /// \return The expected cost of control-flow related instructions such as
  /// Phi, Ret, Br.
  int getCFInstrCost(unsigned Opcode) const;

  /// \returns The expected cost of compare and select instructions. If there
  /// is an existing instruction that holds Opcode, it may be passed in the
  /// 'I' parameter.
  int getCmpSelInstrCost(unsigned Opcode, Type *ValTy,
                 Type *CondTy = nullptr, const Instruction *I = nullptr) const;

  /// \return The expected cost of vector Insert and Extract.
  /// Use -1 to indicate that there is no information on the index value.
  int getVectorInstrCost(unsigned Opcode, Type *Val, unsigned Index = -1) const;

  /// \return The cost of Load and Store instructions.
  int getMemoryOpCost(unsigned Opcode, Type *Src, unsigned Alignment,
                      unsigned AddressSpace, const Instruction *I = nullptr) const;

  /// \return The cost of masked Load and Store instructions.
  int getMaskedMemoryOpCost(unsigned Opcode, Type *Src, unsigned Alignment,
                            unsigned AddressSpace) const;

  /// \return The cost of Gather or Scatter operation
  /// \p Opcode - is a type of memory access Load or Store
  /// \p DataTy - a vector type of the data to be loaded or stored
  /// \p Ptr - pointer [or vector of pointers] - address[es] in memory
  /// \p VariableMask - true when the memory access is predicated with a mask
  ///                   that is not a compile-time constant
  /// \p Alignment - alignment of single element
  int getGatherScatterOpCost(unsigned Opcode, Type *DataTy, Value *Ptr,
                             bool VariableMask, unsigned Alignment) const;

  /// \return The cost of the interleaved memory operation.
  /// \p Opcode is the memory operation code
  /// \p VecTy is the vector type of the interleaved access.
  /// \p Factor is the interleave factor
  /// \p Indices is the indices for interleaved load members (as interleaved
  ///    load allows gaps)
  /// \p Alignment is the alignment of the memory operation
  /// \p AddressSpace is address space of the pointer.
  /// \p UseMaskForCond indicates if the memory access is predicated.
  /// \p UseMaskForGaps indicates if gaps should be masked.
  int getInterleavedMemoryOpCost(unsigned Opcode, Type *VecTy, unsigned Factor,
                                 ArrayRef<unsigned> Indices, unsigned Alignment,
                                 unsigned AddressSpace,
                                 bool UseMaskForCond = false,
                                 bool UseMaskForGaps = false) const;

  /// Calculate the cost of performing a vector reduction.
  ///
  /// This is the cost of reducing the vector value of type \p Ty to a scalar
  /// value using the operation denoted by \p Opcode. The form of the reduction
  /// can either be a pairwise reduction or a reduction that splits the vector
  /// at every reduction level.
  ///
  /// Pairwise:
  ///  (v0, v1, v2, v3)
  ///  ((v0+v1), (v2+v3), undef, undef)
  /// Split:
  ///  (v0, v1, v2, v3)
  ///  ((v0+v2), (v1+v3), undef, undef)
  int getArithmeticReductionCost(unsigned Opcode, Type *Ty,
                                 bool IsPairwiseForm) const;
  int getMinMaxReductionCost(Type *Ty, Type *CondTy, bool IsPairwiseForm,
                             bool IsUnsigned) const;

  /// \returns The cost of Intrinsic instructions. Analyses the real arguments.
  /// Three cases are handled: 1. scalar instruction 2. vector instruction
  /// 3. scalar instruction which is to be vectorized with VF.
  int getIntrinsicInstrCost(Intrinsic::ID ID, Type *RetTy,
                            ArrayRef<Value *> Args, FastMathFlags FMF,
                            unsigned VF = 1) const;

  /// \returns The cost of Intrinsic instructions. Types analysis only.
  /// If ScalarizationCostPassed is UINT_MAX, the cost of scalarizing the
  /// arguments and the return value will be computed based on types.
  int getIntrinsicInstrCost(Intrinsic::ID ID, Type *RetTy,
                            ArrayRef<Type *> Tys, FastMathFlags FMF,
                            unsigned ScalarizationCostPassed = UINT_MAX) const;

  /// \returns The cost of Call instructions.
  int getCallInstrCost(Function *F, Type *RetTy, ArrayRef<Type *> Tys) const;

  /// \returns The number of pieces into which the provided type must be
  /// split during legalization. Zero is returned when the answer is unknown.
  unsigned getNumberOfParts(Type *Tp) const;

  /// \returns The cost of the address computation. For most targets this can be
  /// merged into the instruction indexing mode. Some targets might want to
  /// distinguish between address computation for memory operations on vector
  /// types and scalar types. Such targets should override this function.
  /// The 'SE' parameter holds pointer for the scalar evolution object which
  /// is used in order to get the Ptr step value in case of constant stride.
  /// The 'Ptr' parameter holds SCEV of the access pointer.
  int getAddressComputationCost(Type *Ty, ScalarEvolution *SE = nullptr,
                                const SCEV *Ptr = nullptr) const;

  /// \returns The cost, if any, of keeping values of the given types alive
  /// over a callsite.
  ///
  /// Some types may require the use of register classes that do not have
  /// any callee-saved registers, so would require a spill and fill.
  unsigned getCostOfKeepingLiveOverCall(ArrayRef<Type *> Tys) const;

  /// \returns True if the intrinsic is a supported memory intrinsic.  Info
  /// will contain additional information - whether the intrinsic may write
  /// or read to memory, volatility and the pointer.  Info is undefined
  /// if false is returned.
  bool getTgtMemIntrinsic(IntrinsicInst *Inst, MemIntrinsicInfo &Info) const;

  /// \returns The maximum element size, in bytes, for an element
  /// unordered-atomic memory intrinsic.
  unsigned getAtomicMemIntrinsicMaxElementSize() const;

  /// \returns A value which is the result of the given memory intrinsic.  New
  /// instructions may be created to extract the result from the given intrinsic
  /// memory operation.  Returns nullptr if the target cannot create a result
  /// from the given intrinsic.
  Value *getOrCreateResultFromMemIntrinsic(IntrinsicInst *Inst,
                                           Type *ExpectedType) const;

  /// \returns The type to use in a loop expansion of a memcpy call.
  Type *getMemcpyLoopLoweringType(LLVMContext &Context, Value *Length,
                                  unsigned SrcAlign, unsigned DestAlign) const;

  /// \param[out] OpsOut The operand types to copy RemainingBytes of memory.
  /// \param RemainingBytes The number of bytes to copy.
  ///
  /// Calculates the operand types to use when copying \p RemainingBytes of
  /// memory, where source and destination alignments are \p SrcAlign and
  /// \p DestAlign respectively.
  void getMemcpyLoopResidualLoweringType(SmallVectorImpl<Type *> &OpsOut,
                                         LLVMContext &Context,
                                         unsigned RemainingBytes,
                                         unsigned SrcAlign,
                                         unsigned DestAlign) const;

  /// \returns True if the two functions have compatible attributes for inlining
  /// purposes.
  bool areInlineCompatible(const Function *Caller,
                           const Function *Callee) const;

  /// \returns True if the caller and callee agree on how \p Args will be passed
  /// to the callee.
  /// \param[out] Args The list of compatible arguments.  The implementation may
  /// filter out any incompatible args from this list.
  bool areFunctionArgsABICompatible(const Function *Caller,
                                    const Function *Callee,
                                    SmallPtrSetImpl<Argument *> &Args) const;

  /// The type of load/store indexing.
  enum MemIndexedMode {
    MIM_Unindexed,  ///< No indexing.
    MIM_PreInc,     ///< Pre-incrementing.
    MIM_PreDec,     ///< Pre-decrementing.
    MIM_PostInc,    ///< Post-incrementing.
    MIM_PostDec     ///< Post-decrementing.
  };

  /// \returns True if the specified indexed load for the given type is legal.
  bool isIndexedLoadLegal(enum MemIndexedMode Mode, Type *Ty) const;

  /// \returns True if the specified indexed store for the given type is legal.
  bool isIndexedStoreLegal(enum MemIndexedMode Mode, Type *Ty) const;

  /// \returns The bitwidth of the largest vector type that should be used to
  /// load/store in the given address space.
  unsigned getLoadStoreVecRegBitWidth(unsigned AddrSpace) const;

  /// \returns True if the load instruction is legal to vectorize.
  bool isLegalToVectorizeLoad(LoadInst *LI) const;

  /// \returns True if the store instruction is legal to vectorize.
  bool isLegalToVectorizeStore(StoreInst *SI) const;

  /// \returns True if it is legal to vectorize the given load chain.
  bool isLegalToVectorizeLoadChain(unsigned ChainSizeInBytes,
                                   unsigned Alignment,
                                   unsigned AddrSpace) const;

  /// \returns True if it is legal to vectorize the given store chain.
  bool isLegalToVectorizeStoreChain(unsigned ChainSizeInBytes,
                                    unsigned Alignment,
                                    unsigned AddrSpace) const;

  /// \returns The new vector factor value if the target doesn't support \p
  /// SizeInBytes loads or has a better vector factor.
  unsigned getLoadVectorFactor(unsigned VF, unsigned LoadSize,
                               unsigned ChainSizeInBytes,
                               VectorType *VecTy) const;

  /// \returns The new vector factor value if the target doesn't support \p
  /// SizeInBytes stores or has a better vector factor.
  unsigned getStoreVectorFactor(unsigned VF, unsigned StoreSize,
                                unsigned ChainSizeInBytes,
                                VectorType *VecTy) const;

  /// Flags describing the kind of vector reduction.
  struct ReductionFlags {
    ReductionFlags() : IsMaxOp(false), IsSigned(false), NoNaN(false) {}
    bool IsMaxOp;  ///< If the op a min/max kind, true if it's a max operation.
    bool IsSigned; ///< Whether the operation is a signed int reduction.
    bool NoNaN;    ///< If op is an fp min/max, whether NaNs may be present.
  };

  /// \returns True if the target wants to handle the given reduction idiom in
  /// the intrinsics form instead of the shuffle form.
  bool useReductionIntrinsic(unsigned Opcode, Type *Ty,
                             ReductionFlags Flags) const;

  /// \returns True if the target wants to expand the given reduction intrinsic
  /// into a shuffle sequence.
  bool shouldExpandReduction(const IntrinsicInst *II) const;
  /// @}

private:
  /// Estimate the latency of specified instruction.
  /// Returns 1 as the default value.
  int getInstructionLatency(const Instruction *I) const;

  /// Returns the expected throughput cost of the instruction.
  /// Returns -1 if the cost is unknown.
  int getInstructionThroughput(const Instruction *I) const;

  /// The abstract base class used to type erase specific TTI
  /// implementations.
  class Concept;

  /// The template model for the base class which wraps a concrete
  /// implementation in a type erased interface.
  template <typename T> class Model;

  std::unique_ptr<Concept> TTIImpl;
};

class TargetTransformInfo::Concept {
public:
  virtual ~Concept() = 0;
  virtual const DataLayout &getDataLayout() const = 0;
  virtual int getOperationCost(unsigned Opcode, Type *Ty, Type *OpTy) = 0;
  virtual int getGEPCost(Type *PointeeType, const Value *Ptr,
                         ArrayRef<const Value *> Operands) = 0;
  virtual int getExtCost(const Instruction *I, const Value *Src) = 0;
  virtual int getCallCost(FunctionType *FTy, int NumArgs, const User *U) = 0;
  virtual int getCallCost(const Function *F, int NumArgs, const User *U) = 0;
  virtual int getCallCost(const Function *F,
                          ArrayRef<const Value *> Arguments, const User *U) = 0;
  virtual unsigned getInliningThresholdMultiplier() = 0;
  virtual int getIntrinsicCost(Intrinsic::ID IID, Type *RetTy,
                               ArrayRef<Type *> ParamTys, const User *U) = 0;
  virtual int getIntrinsicCost(Intrinsic::ID IID, Type *RetTy,
                               ArrayRef<const Value *> Arguments,
                               const User *U) = 0;
  virtual int getMemcpyCost(const Instruction *I) = 0;
  virtual unsigned getEstimatedNumberOfCaseClusters(const SwitchInst &SI,
                                                    unsigned &JTSize) = 0;
  virtual int
  getUserCost(const User *U, ArrayRef<const Value *> Operands) = 0;
  virtual bool hasBranchDivergence() = 0;
  virtual bool isSourceOfDivergence(const Value *V) = 0;
  virtual bool isAlwaysUniform(const Value *V) = 0;
  virtual unsigned getFlatAddressSpace() = 0;
  virtual bool isLoweredToCall(const Function *F) = 0;
  virtual void getUnrollingPreferences(Loop *L, ScalarEvolution &,
                                       UnrollingPreferences &UP) = 0;
  virtual bool isHardwareLoopProfitable(Loop *L, ScalarEvolution &SE,
                                        AssumptionCache &AC,
                                        TargetLibraryInfo *LibInfo,
                                        HardwareLoopInfo &HWLoopInfo) = 0;
  virtual bool isLegalAddImmediate(int64_t Imm) = 0;
  virtual bool isLegalICmpImmediate(int64_t Imm) = 0;
  virtual bool isLegalAddressingMode(Type *Ty, GlobalValue *BaseGV,
                                     int64_t BaseOffset, bool HasBaseReg,
                                     int64_t Scale,
                                     unsigned AddrSpace,
                                     Instruction *I) = 0;
  virtual bool isLSRCostLess(TargetTransformInfo::LSRCost &C1,
                             TargetTransformInfo::LSRCost &C2) = 0;
  virtual bool canMacroFuseCmp() = 0;
  virtual bool shouldFavorPostInc() const = 0;
  virtual bool shouldFavorBackedgeIndex(const Loop *L) const = 0;
  virtual bool isLegalMaskedStore(Type *DataType) = 0;
  virtual bool isLegalMaskedLoad(Type *DataType) = 0;
  virtual bool isLegalMaskedScatter(Type *DataType) = 0;
  virtual bool isLegalMaskedGather(Type *DataType) = 0;
  virtual bool isLegalMaskedCompressStore(Type *DataType) = 0;
  virtual bool isLegalMaskedExpandLoad(Type *DataType) = 0;
  virtual bool hasDivRemOp(Type *DataType, bool IsSigned) = 0;
  virtual bool hasVolatileVariant(Instruction *I, unsigned AddrSpace) = 0;
  virtual bool prefersVectorizedAddressing() = 0;
  virtual int getScalingFactorCost(Type *Ty, GlobalValue *BaseGV,
                                   int64_t BaseOffset, bool HasBaseReg,
                                   int64_t Scale, unsigned AddrSpace) = 0;
  virtual bool LSRWithInstrQueries() = 0;
  virtual bool isTruncateFree(Type *Ty1, Type *Ty2) = 0;
  virtual bool isProfitableToHoist(Instruction *I) = 0;
  virtual bool useAA() = 0;
  virtual bool isTypeLegal(Type *Ty) = 0;
  virtual unsigned getJumpBufAlignment() = 0;
  virtual unsigned getJumpBufSize() = 0;
  virtual bool shouldBuildLookupTables() = 0;
  virtual bool shouldBuildLookupTablesForConstant(Constant *C) = 0;
  virtual bool useColdCCForColdCall(Function &F) = 0;
  virtual unsigned
  getScalarizationOverhead(Type *Ty, bool Insert, bool Extract) = 0;
  virtual unsigned getOperandsScalarizationOverhead(ArrayRef<const Value *> Args,
                                                    unsigned VF) = 0;
  virtual bool supportsEfficientVectorElementLoadStore() = 0;
  virtual bool enableAggressiveInterleaving(bool LoopHasReductions) = 0;
  virtual const MemCmpExpansionOptions *enableMemCmpExpansion(
      bool IsZeroCmp) const = 0;
  virtual bool enableInterleavedAccessVectorization() = 0;
  virtual bool enableMaskedInterleavedAccessVectorization() = 0;
  virtual bool isFPVectorizationPotentiallyUnsafe() = 0;
  virtual bool allowsMisalignedMemoryAccesses(LLVMContext &Context,
                                              unsigned BitWidth,
                                              unsigned AddressSpace,
                                              unsigned Alignment,
                                              bool *Fast) = 0;
  virtual PopcntSupportKind getPopcntSupport(unsigned IntTyWidthInBit) = 0;
  virtual bool haveFastSqrt(Type *Ty) = 0;
  virtual bool isFCmpOrdCheaperThanFCmpZero(Type *Ty) = 0;
  virtual int getFPOpCost(Type *Ty) = 0;
  virtual int getIntImmCodeSizeCost(unsigned Opc, unsigned Idx, const APInt &Imm,
                                    Type *Ty) = 0;
  virtual int getIntImmCost(const APInt &Imm, Type *Ty) = 0;
  virtual int getIntImmCost(unsigned Opc, unsigned Idx, const APInt &Imm,
                            Type *Ty) = 0;
  virtual int getIntImmCost(Intrinsic::ID IID, unsigned Idx, const APInt &Imm,
                            Type *Ty) = 0;
  virtual unsigned getNumberOfRegisters(bool Vector) = 0;
  virtual unsigned getRegisterBitWidth(bool Vector) const = 0;
  virtual unsigned getMinVectorRegisterBitWidth() = 0;
  virtual bool shouldMaximizeVectorBandwidth(bool OptSize) const = 0;
  virtual unsigned getMinimumVF(unsigned ElemWidth) const = 0;
  virtual bool shouldConsiderAddressTypePromotion(
      const Instruction &I, bool &AllowPromotionWithoutCommonHeader) = 0;
  virtual unsigned getCacheLineSize() = 0;
  virtual llvm::Optional<unsigned> getCacheSize(CacheLevel Level) = 0;
  virtual llvm::Optional<unsigned> getCacheAssociativity(CacheLevel Level) = 0;
  virtual unsigned getPrefetchDistance() = 0;
  virtual unsigned getMinPrefetchStride() = 0;
  virtual unsigned getMaxPrefetchIterationsAhead() = 0;
  virtual unsigned getMaxInterleaveFactor(unsigned VF) = 0;
  virtual unsigned
  getArithmeticInstrCost(unsigned Opcode, Type *Ty, OperandValueKind Opd1Info,
                         OperandValueKind Opd2Info,
                         OperandValueProperties Opd1PropInfo,
                         OperandValueProperties Opd2PropInfo,
                         ArrayRef<const Value *> Args) = 0;
  virtual int getShuffleCost(ShuffleKind Kind, Type *Tp, int Index,
                             Type *SubTp) = 0;
  virtual int getCastInstrCost(unsigned Opcode, Type *Dst, Type *Src,
                               const Instruction *I) = 0;
  virtual int getExtractWithExtendCost(unsigned Opcode, Type *Dst,
                                       VectorType *VecTy, unsigned Index) = 0;
  virtual int getCFInstrCost(unsigned Opcode) = 0;
  virtual int getCmpSelInstrCost(unsigned Opcode, Type *ValTy,
                                Type *CondTy, const Instruction *I) = 0;
  virtual int getVectorInstrCost(unsigned Opcode, Type *Val,
                                 unsigned Index) = 0;
  virtual int getMemoryOpCost(unsigned Opcode, Type *Src, unsigned Alignment,
                              unsigned AddressSpace, const Instruction *I) = 0;
  virtual int getMaskedMemoryOpCost(unsigned Opcode, Type *Src,
                                    unsigned Alignment,
                                    unsigned AddressSpace) = 0;
  virtual int getGatherScatterOpCost(unsigned Opcode, Type *DataTy,
                                     Value *Ptr, bool VariableMask,
                                     unsigned Alignment) = 0;
  virtual int getInterleavedMemoryOpCost(unsigned Opcode, Type *VecTy,
                                         unsigned Factor,
                                         ArrayRef<unsigned> Indices,
                                         unsigned Alignment,
                                         unsigned AddressSpace,
                                         bool UseMaskForCond = false,
                                         bool UseMaskForGaps = false) = 0;
  virtual int getArithmeticReductionCost(unsigned Opcode, Type *Ty,
                                         bool IsPairwiseForm) = 0;
  virtual int getMinMaxReductionCost(Type *Ty, Type *CondTy,
                                     bool IsPairwiseForm, bool IsUnsigned) = 0;
  virtual int getIntrinsicInstrCost(Intrinsic::ID ID, Type *RetTy,
                      ArrayRef<Type *> Tys, FastMathFlags FMF,
                      unsigned ScalarizationCostPassed) = 0;
  virtual int getIntrinsicInstrCost(Intrinsic::ID ID, Type *RetTy,
         ArrayRef<Value *> Args, FastMathFlags FMF, unsigned VF) = 0;
  virtual int getCallInstrCost(Function *F, Type *RetTy,
                               ArrayRef<Type *> Tys) = 0;
  virtual unsigned getNumberOfParts(Type *Tp) = 0;
  virtual int getAddressComputationCost(Type *Ty, ScalarEvolution *SE,
                                        const SCEV *Ptr) = 0;
  virtual unsigned getCostOfKeepingLiveOverCall(ArrayRef<Type *> Tys) = 0;
  virtual bool getTgtMemIntrinsic(IntrinsicInst *Inst,
                                  MemIntrinsicInfo &Info) = 0;
  virtual unsigned getAtomicMemIntrinsicMaxElementSize() const = 0;
  virtual Value *getOrCreateResultFromMemIntrinsic(IntrinsicInst *Inst,
                                                   Type *ExpectedType) = 0;
  virtual Type *getMemcpyLoopLoweringType(LLVMContext &Context, Value *Length,
                                          unsigned SrcAlign,
                                          unsigned DestAlign) const = 0;
  virtual void getMemcpyLoopResidualLoweringType(
      SmallVectorImpl<Type *> &OpsOut, LLVMContext &Context,
      unsigned RemainingBytes, unsigned SrcAlign, unsigned DestAlign) const = 0;
  virtual bool areInlineCompatible(const Function *Caller,
                                   const Function *Callee) const = 0;
  virtual bool
  areFunctionArgsABICompatible(const Function *Caller, const Function *Callee,
                               SmallPtrSetImpl<Argument *> &Args) const = 0;
  virtual bool isIndexedLoadLegal(MemIndexedMode Mode, Type *Ty) const = 0;
  virtual bool isIndexedStoreLegal(MemIndexedMode Mode,Type *Ty) const = 0;
  virtual unsigned getLoadStoreVecRegBitWidth(unsigned AddrSpace) const = 0;
  virtual bool isLegalToVectorizeLoad(LoadInst *LI) const = 0;
  virtual bool isLegalToVectorizeStore(StoreInst *SI) const = 0;
  virtual bool isLegalToVectorizeLoadChain(unsigned ChainSizeInBytes,
                                           unsigned Alignment,
                                           unsigned AddrSpace) const = 0;
  virtual bool isLegalToVectorizeStoreChain(unsigned ChainSizeInBytes,
                                            unsigned Alignment,
                                            unsigned AddrSpace) const = 0;
  virtual unsigned getLoadVectorFactor(unsigned VF, unsigned LoadSize,
                                       unsigned ChainSizeInBytes,
                                       VectorType *VecTy) const = 0;
  virtual unsigned getStoreVectorFactor(unsigned VF, unsigned StoreSize,
                                        unsigned ChainSizeInBytes,
                                        VectorType *VecTy) const = 0;
  virtual bool useReductionIntrinsic(unsigned Opcode, Type *Ty,
                                     ReductionFlags) const = 0;
  virtual bool shouldExpandReduction(const IntrinsicInst *II) const = 0;
  virtual int getInstructionLatency(const Instruction *I) = 0;
};

template <typename T>
class TargetTransformInfo::Model final : public TargetTransformInfo::Concept {
  T Impl;

public:
  Model(T Impl) : Impl(std::move(Impl)) {}
  ~Model() override {}

  const DataLayout &getDataLayout() const override {
    return Impl.getDataLayout();
  }

  int getOperationCost(unsigned Opcode, Type *Ty, Type *OpTy) override {
    return Impl.getOperationCost(Opcode, Ty, OpTy);
  }
  int getGEPCost(Type *PointeeType, const Value *Ptr,
                 ArrayRef<const Value *> Operands) override {
    return Impl.getGEPCost(PointeeType, Ptr, Operands);
  }
  int getExtCost(const Instruction *I, const Value *Src) override {
    return Impl.getExtCost(I, Src);
  }
  int getCallCost(FunctionType *FTy, int NumArgs, const User *U) override {
    return Impl.getCallCost(FTy, NumArgs, U);
  }
  int getCallCost(const Function *F, int NumArgs, const User *U) override {
    return Impl.getCallCost(F, NumArgs, U);
  }
  int getCallCost(const Function *F,
                  ArrayRef<const Value *> Arguments, const User *U) override {
    return Impl.getCallCost(F, Arguments, U);
  }
  unsigned getInliningThresholdMultiplier() override {
    return Impl.getInliningThresholdMultiplier();
  }
  int getIntrinsicCost(Intrinsic::ID IID, Type *RetTy,
                       ArrayRef<Type *> ParamTys, const User *U = nullptr) override {
    return Impl.getIntrinsicCost(IID, RetTy, ParamTys, U);
  }
  int getIntrinsicCost(Intrinsic::ID IID, Type *RetTy,
                       ArrayRef<const Value *> Arguments,
                       const User *U = nullptr) override {
    return Impl.getIntrinsicCost(IID, RetTy, Arguments, U);
  }
  int getMemcpyCost(const Instruction *I) override {
    return Impl.getMemcpyCost(I);
  }
  int getUserCost(const User *U, ArrayRef<const Value *> Operands) override {
    return Impl.getUserCost(U, Operands);
  }
  bool hasBranchDivergence() override { return Impl.hasBranchDivergence(); }
  bool isSourceOfDivergence(const Value *V) override {
    return Impl.isSourceOfDivergence(V);
  }

  bool isAlwaysUniform(const Value *V) override {
    return Impl.isAlwaysUniform(V);
  }

  unsigned getFlatAddressSpace() override {
    return Impl.getFlatAddressSpace();
  }

  bool isLoweredToCall(const Function *F) override {
    return Impl.isLoweredToCall(F);
  }
  void getUnrollingPreferences(Loop *L, ScalarEvolution &SE,
                               UnrollingPreferences &UP) override {
    return Impl.getUnrollingPreferences(L, SE, UP);
  }
  bool isHardwareLoopProfitable(Loop *L, ScalarEvolution &SE,
                                AssumptionCache &AC,
                                TargetLibraryInfo *LibInfo,
                                HardwareLoopInfo &HWLoopInfo) override {
    return Impl.isHardwareLoopProfitable(L, SE, AC, LibInfo, HWLoopInfo);
  }
  bool isLegalAddImmediate(int64_t Imm) override {
    return Impl.isLegalAddImmediate(Imm);
  }
  bool isLegalICmpImmediate(int64_t Imm) override {
    return Impl.isLegalICmpImmediate(Imm);
  }
  bool isLegalAddressingMode(Type *Ty, GlobalValue *BaseGV, int64_t BaseOffset,
                             bool HasBaseReg, int64_t Scale,
                             unsigned AddrSpace,
                             Instruction *I) override {
    return Impl.isLegalAddressingMode(Ty, BaseGV, BaseOffset, HasBaseReg,
                                      Scale, AddrSpace, I);
  }
  bool isLSRCostLess(TargetTransformInfo::LSRCost &C1,
                     TargetTransformInfo::LSRCost &C2) override {
    return Impl.isLSRCostLess(C1, C2);
  }
  bool canMacroFuseCmp() override {
    return Impl.canMacroFuseCmp();
  }
  bool shouldFavorPostInc() const override {
    return Impl.shouldFavorPostInc();
  }
  bool shouldFavorBackedgeIndex(const Loop *L) const override {
    return Impl.shouldFavorBackedgeIndex(L);
  }
  bool isLegalMaskedStore(Type *DataType) override {
    return Impl.isLegalMaskedStore(DataType);
  }
  bool isLegalMaskedLoad(Type *DataType) override {
    return Impl.isLegalMaskedLoad(DataType);
  }
  bool isLegalMaskedScatter(Type *DataType) override {
    return Impl.isLegalMaskedScatter(DataType);
  }
  bool isLegalMaskedGather(Type *DataType) override {
    return Impl.isLegalMaskedGather(DataType);
  }
  bool isLegalMaskedCompressStore(Type *DataType) override {
    return Impl.isLegalMaskedCompressStore(DataType);
  }
  bool isLegalMaskedExpandLoad(Type *DataType) override {
    return Impl.isLegalMaskedExpandLoad(DataType);
  }
  bool hasDivRemOp(Type *DataType, bool IsSigned) override {
    return Impl.hasDivRemOp(DataType, IsSigned);
  }
  bool hasVolatileVariant(Instruction *I, unsigned AddrSpace) override {
    return Impl.hasVolatileVariant(I, AddrSpace);
  }
  bool prefersVectorizedAddressing() override {
    return Impl.prefersVectorizedAddressing();
  }
  int getScalingFactorCost(Type *Ty, GlobalValue *BaseGV, int64_t BaseOffset,
                           bool HasBaseReg, int64_t Scale,
                           unsigned AddrSpace) override {
    return Impl.getScalingFactorCost(Ty, BaseGV, BaseOffset, HasBaseReg,
                                     Scale, AddrSpace);
  }
  bool LSRWithInstrQueries() override {
    return Impl.LSRWithInstrQueries();
  }
  bool isTruncateFree(Type *Ty1, Type *Ty2) override {
    return Impl.isTruncateFree(Ty1, Ty2);
  }
  bool isProfitableToHoist(Instruction *I) override {
    return Impl.isProfitableToHoist(I);
  }
  bool useAA() override { return Impl.useAA(); }
  bool isTypeLegal(Type *Ty) override { return Impl.isTypeLegal(Ty); }
  unsigned getJumpBufAlignment() override { return Impl.getJumpBufAlignment(); }
  unsigned getJumpBufSize() override { return Impl.getJumpBufSize(); }
  bool shouldBuildLookupTables() override {
    return Impl.shouldBuildLookupTables();
  }
  bool shouldBuildLookupTablesForConstant(Constant *C) override {
    return Impl.shouldBuildLookupTablesForConstant(C);
  }
  bool useColdCCForColdCall(Function &F) override {
    return Impl.useColdCCForColdCall(F);
  }

  unsigned getScalarizationOverhead(Type *Ty, bool Insert,
                                    bool Extract) override {
    return Impl.getScalarizationOverhead(Ty, Insert, Extract);
  }
  unsigned getOperandsScalarizationOverhead(ArrayRef<const Value *> Args,
                                            unsigned VF) override {
    return Impl.getOperandsScalarizationOverhead(Args, VF);
  }

  bool supportsEfficientVectorElementLoadStore() override {
    return Impl.supportsEfficientVectorElementLoadStore();
  }

  bool enableAggressiveInterleaving(bool LoopHasReductions) override {
    return Impl.enableAggressiveInterleaving(LoopHasReductions);
  }
  const MemCmpExpansionOptions *enableMemCmpExpansion(
      bool IsZeroCmp) const override {
    return Impl.enableMemCmpExpansion(IsZeroCmp);
  }
  bool enableInterleavedAccessVectorization() override {
    return Impl.enableInterleavedAccessVectorization();
  }
  bool enableMaskedInterleavedAccessVectorization() override {
    return Impl.enableMaskedInterleavedAccessVectorization();
  }
  bool isFPVectorizationPotentiallyUnsafe() override {
    return Impl.isFPVectorizationPotentiallyUnsafe();
  }
  bool allowsMisalignedMemoryAccesses(LLVMContext &Context,
                                      unsigned BitWidth, unsigned AddressSpace,
                                      unsigned Alignment, bool *Fast) override {
    return Impl.allowsMisalignedMemoryAccesses(Context, BitWidth, AddressSpace,
                                               Alignment, Fast);
  }
  PopcntSupportKind getPopcntSupport(unsigned IntTyWidthInBit) override {
    return Impl.getPopcntSupport(IntTyWidthInBit);
  }
  bool haveFastSqrt(Type *Ty) override { return Impl.haveFastSqrt(Ty); }

  bool isFCmpOrdCheaperThanFCmpZero(Type *Ty) override {
    return Impl.isFCmpOrdCheaperThanFCmpZero(Ty);
  }

  int getFPOpCost(Type *Ty) override { return Impl.getFPOpCost(Ty); }

  int getIntImmCodeSizeCost(unsigned Opc, unsigned Idx, const APInt &Imm,
                            Type *Ty) override {
    return Impl.getIntImmCodeSizeCost(Opc, Idx, Imm, Ty);
  }
  int getIntImmCost(const APInt &Imm, Type *Ty) override {
    return Impl.getIntImmCost(Imm, Ty);
  }
  int getIntImmCost(unsigned Opc, unsigned Idx, const APInt &Imm,
                    Type *Ty) override {
    return Impl.getIntImmCost(Opc, Idx, Imm, Ty);
  }
  int getIntImmCost(Intrinsic::ID IID, unsigned Idx, const APInt &Imm,
                    Type *Ty) override {
    return Impl.getIntImmCost(IID, Idx, Imm, Ty);
  }
  unsigned getNumberOfRegisters(bool Vector) override {
    return Impl.getNumberOfRegisters(Vector);
  }
  unsigned getRegisterBitWidth(bool Vector) const override {
    return Impl.getRegisterBitWidth(Vector);
  }
  unsigned getMinVectorRegisterBitWidth() override {
    return Impl.getMinVectorRegisterBitWidth();
  }
  bool shouldMaximizeVectorBandwidth(bool OptSize) const override {
    return Impl.shouldMaximizeVectorBandwidth(OptSize);
  }
  unsigned getMinimumVF(unsigned ElemWidth) const override {
    return Impl.getMinimumVF(ElemWidth);
  }
  bool shouldConsiderAddressTypePromotion(
      const Instruction &I, bool &AllowPromotionWithoutCommonHeader) override {
    return Impl.shouldConsiderAddressTypePromotion(
        I, AllowPromotionWithoutCommonHeader);
  }
  unsigned getCacheLineSize() override {
    return Impl.getCacheLineSize();
  }
  llvm::Optional<unsigned> getCacheSize(CacheLevel Level) override {
    return Impl.getCacheSize(Level);
  }
  llvm::Optional<unsigned> getCacheAssociativity(CacheLevel Level) override {
    return Impl.getCacheAssociativity(Level);
  }
  unsigned getPrefetchDistance() override { return Impl.getPrefetchDistance(); }
  unsigned getMinPrefetchStride() override {
    return Impl.getMinPrefetchStride();
  }
  unsigned getMaxPrefetchIterationsAhead() override {
    return Impl.getMaxPrefetchIterationsAhead();
  }
  unsigned getMaxInterleaveFactor(unsigned VF) override {
    return Impl.getMaxInterleaveFactor(VF);
  }
  unsigned getEstimatedNumberOfCaseClusters(const SwitchInst &SI,
                                            unsigned &JTSize) override {
    return Impl.getEstimatedNumberOfCaseClusters(SI, JTSize);
  }
  unsigned
  getArithmeticInstrCost(unsigned Opcode, Type *Ty, OperandValueKind Opd1Info,
                         OperandValueKind Opd2Info,
                         OperandValueProperties Opd1PropInfo,
                         OperandValueProperties Opd2PropInfo,
                         ArrayRef<const Value *> Args) override {
    return Impl.getArithmeticInstrCost(Opcode, Ty, Opd1Info, Opd2Info,
                                       Opd1PropInfo, Opd2PropInfo, Args);
  }
  int getShuffleCost(ShuffleKind Kind, Type *Tp, int Index,
                     Type *SubTp) override {
    return Impl.getShuffleCost(Kind, Tp, Index, SubTp);
  }
  int getCastInstrCost(unsigned Opcode, Type *Dst, Type *Src,
                       const Instruction *I) override {
    return Impl.getCastInstrCost(Opcode, Dst, Src, I);
  }
  int getExtractWithExtendCost(unsigned Opcode, Type *Dst, VectorType *VecTy,
                               unsigned Index) override {
    return Impl.getExtractWithExtendCost(Opcode, Dst, VecTy, Index);
  }
  int getCFInstrCost(unsigned Opcode) override {
    return Impl.getCFInstrCost(Opcode);
  }
  int getCmpSelInstrCost(unsigned Opcode, Type *ValTy, Type *CondTy,
                         const Instruction *I) override {
    return Impl.getCmpSelInstrCost(Opcode, ValTy, CondTy, I);
  }
  int getVectorInstrCost(unsigned Opcode, Type *Val, unsigned Index) override {
    return Impl.getVectorInstrCost(Opcode, Val, Index);
  }
  int getMemoryOpCost(unsigned Opcode, Type *Src, unsigned Alignment,
                      unsigned AddressSpace, const Instruction *I) override {
    return Impl.getMemoryOpCost(Opcode, Src, Alignment, AddressSpace, I);
  }
  int getMaskedMemoryOpCost(unsigned Opcode, Type *Src, unsigned Alignment,
                            unsigned AddressSpace) override {
    return Impl.getMaskedMemoryOpCost(Opcode, Src, Alignment, AddressSpace);
  }
  int getGatherScatterOpCost(unsigned Opcode, Type *DataTy,
                             Value *Ptr, bool VariableMask,
                             unsigned Alignment) override {
    return Impl.getGatherScatterOpCost(Opcode, DataTy, Ptr, VariableMask,
                                       Alignment);
  }
  int getInterleavedMemoryOpCost(unsigned Opcode, Type *VecTy, unsigned Factor,
                                 ArrayRef<unsigned> Indices, unsigned Alignment,
                                 unsigned AddressSpace, bool UseMaskForCond,
                                 bool UseMaskForGaps) override {
    return Impl.getInterleavedMemoryOpCost(Opcode, VecTy, Factor, Indices,
                                           Alignment, AddressSpace,
                                           UseMaskForCond, UseMaskForGaps);
  }
  int getArithmeticReductionCost(unsigned Opcode, Type *Ty,
                                 bool IsPairwiseForm) override {
    return Impl.getArithmeticReductionCost(Opcode, Ty, IsPairwiseForm);
  }
  int getMinMaxReductionCost(Type *Ty, Type *CondTy,
                             bool IsPairwiseForm, bool IsUnsigned) override {
    return Impl.getMinMaxReductionCost(Ty, CondTy, IsPairwiseForm, IsUnsigned);
   }
  int getIntrinsicInstrCost(Intrinsic::ID ID, Type *RetTy, ArrayRef<Type *> Tys,
               FastMathFlags FMF, unsigned ScalarizationCostPassed) override {
    return Impl.getIntrinsicInstrCost(ID, RetTy, Tys, FMF,
                                      ScalarizationCostPassed);
  }
  int getIntrinsicInstrCost(Intrinsic::ID ID, Type *RetTy,
       ArrayRef<Value *> Args, FastMathFlags FMF, unsigned VF) override {
    return Impl.getIntrinsicInstrCost(ID, RetTy, Args, FMF, VF);
  }
  int getCallInstrCost(Function *F, Type *RetTy,
                       ArrayRef<Type *> Tys) override {
    return Impl.getCallInstrCost(F, RetTy, Tys);
  }
  unsigned getNumberOfParts(Type *Tp) override {
    return Impl.getNumberOfParts(Tp);
  }
  int getAddressComputationCost(Type *Ty, ScalarEvolution *SE,
                                const SCEV *Ptr) override {
    return Impl.getAddressComputationCost(Ty, SE, Ptr);
  }
  unsigned getCostOfKeepingLiveOverCall(ArrayRef<Type *> Tys) override {
    return Impl.getCostOfKeepingLiveOverCall(Tys);
  }
  bool getTgtMemIntrinsic(IntrinsicInst *Inst,
                          MemIntrinsicInfo &Info) override {
    return Impl.getTgtMemIntrinsic(Inst, Info);
  }
  unsigned getAtomicMemIntrinsicMaxElementSize() const override {
    return Impl.getAtomicMemIntrinsicMaxElementSize();
  }
  Value *getOrCreateResultFromMemIntrinsic(IntrinsicInst *Inst,
                                           Type *ExpectedType) override {
    return Impl.getOrCreateResultFromMemIntrinsic(Inst, ExpectedType);
  }
  Type *getMemcpyLoopLoweringType(LLVMContext &Context, Value *Length,
                                  unsigned SrcAlign,
                                  unsigned DestAlign) const override {
    return Impl.getMemcpyLoopLoweringType(Context, Length, SrcAlign, DestAlign);
  }
  void getMemcpyLoopResidualLoweringType(SmallVectorImpl<Type *> &OpsOut,
                                         LLVMContext &Context,
                                         unsigned RemainingBytes,
                                         unsigned SrcAlign,
                                         unsigned DestAlign) const override {
    Impl.getMemcpyLoopResidualLoweringType(OpsOut, Context, RemainingBytes,
                                           SrcAlign, DestAlign);
  }
  bool areInlineCompatible(const Function *Caller,
                           const Function *Callee) const override {
    return Impl.areInlineCompatible(Caller, Callee);
  }
  bool areFunctionArgsABICompatible(
      const Function *Caller, const Function *Callee,
      SmallPtrSetImpl<Argument *> &Args) const override {
    return Impl.areFunctionArgsABICompatible(Caller, Callee, Args);
  }
  bool isIndexedLoadLegal(MemIndexedMode Mode, Type *Ty) const override {
    return Impl.isIndexedLoadLegal(Mode, Ty, getDataLayout());
  }
  bool isIndexedStoreLegal(MemIndexedMode Mode, Type *Ty) const override {
    return Impl.isIndexedStoreLegal(Mode, Ty, getDataLayout());
  }
  unsigned getLoadStoreVecRegBitWidth(unsigned AddrSpace) const override {
    return Impl.getLoadStoreVecRegBitWidth(AddrSpace);
  }
  bool isLegalToVectorizeLoad(LoadInst *LI) const override {
    return Impl.isLegalToVectorizeLoad(LI);
  }
  bool isLegalToVectorizeStore(StoreInst *SI) const override {
    return Impl.isLegalToVectorizeStore(SI);
  }
  bool isLegalToVectorizeLoadChain(unsigned ChainSizeInBytes,
                                   unsigned Alignment,
                                   unsigned AddrSpace) const override {
    return Impl.isLegalToVectorizeLoadChain(ChainSizeInBytes, Alignment,
                                            AddrSpace);
  }
  bool isLegalToVectorizeStoreChain(unsigned ChainSizeInBytes,
                                    unsigned Alignment,
                                    unsigned AddrSpace) const override {
    return Impl.isLegalToVectorizeStoreChain(ChainSizeInBytes, Alignment,
                                             AddrSpace);
  }
  unsigned getLoadVectorFactor(unsigned VF, unsigned LoadSize,
                               unsigned ChainSizeInBytes,
                               VectorType *VecTy) const override {
    return Impl.getLoadVectorFactor(VF, LoadSize, ChainSizeInBytes, VecTy);
  }
  unsigned getStoreVectorFactor(unsigned VF, unsigned StoreSize,
                                unsigned ChainSizeInBytes,
                                VectorType *VecTy) const override {
    return Impl.getStoreVectorFactor(VF, StoreSize, ChainSizeInBytes, VecTy);
  }
  bool useReductionIntrinsic(unsigned Opcode, Type *Ty,
                             ReductionFlags Flags) const override {
    return Impl.useReductionIntrinsic(Opcode, Ty, Flags);
  }
  bool shouldExpandReduction(const IntrinsicInst *II) const override {
    return Impl.shouldExpandReduction(II);
  }
  int getInstructionLatency(const Instruction *I) override {
    return Impl.getInstructionLatency(I);
  }
};

template <typename T>
TargetTransformInfo::TargetTransformInfo(T Impl)
    : TTIImpl(new Model<T>(Impl)) {}

/// Analysis pass providing the \c TargetTransformInfo.
///
/// The core idea of the TargetIRAnalysis is to expose an interface through
/// which LLVM targets can analyze and provide information about the middle
/// end's target-independent IR. This supports use cases such as target-aware
/// cost modeling of IR constructs.
///
/// This is a function analysis because much of the cost modeling for targets
/// is done in a subtarget specific way and LLVM supports compiling different
/// functions targeting different subtargets in order to support runtime
/// dispatch according to the observed subtarget.
class TargetIRAnalysis : public AnalysisInfoMixin<TargetIRAnalysis> {
public:
  typedef TargetTransformInfo Result;

  /// Default construct a target IR analysis.
  ///
  /// This will use the module's datalayout to construct a baseline
  /// conservative TTI result.
  TargetIRAnalysis();

  /// Construct an IR analysis pass around a target-provide callback.
  ///
  /// The callback will be called with a particular function for which the TTI
  /// is needed and must return a TTI object for that function.
  TargetIRAnalysis(std::function<Result(const Function &)> TTICallback);

  // Value semantics. We spell out the constructors for MSVC.
  TargetIRAnalysis(const TargetIRAnalysis &Arg)
      : TTICallback(Arg.TTICallback) {}
  TargetIRAnalysis(TargetIRAnalysis &&Arg)
      : TTICallback(std::move(Arg.TTICallback)) {}
  TargetIRAnalysis &operator=(const TargetIRAnalysis &RHS) {
    TTICallback = RHS.TTICallback;
    return *this;
  }
  TargetIRAnalysis &operator=(TargetIRAnalysis &&RHS) {
    TTICallback = std::move(RHS.TTICallback);
    return *this;
  }

  Result run(const Function &F, FunctionAnalysisManager &);

private:
  friend AnalysisInfoMixin<TargetIRAnalysis>;
  static AnalysisKey Key;

  /// The callback used to produce a result.
  ///
  /// We use a completely opaque callback so that targets can provide whatever
  /// mechanism they desire for constructing the TTI for a given function.
  ///
  /// FIXME: Should we really use std::function? It's relatively inefficient.
  /// It might be possible to arrange for even stateful callbacks to outlive
  /// the analysis and thus use a function_ref which would be lighter weight.
  /// This may also be less error prone as the callback is likely to reference
  /// the external TargetMachine, and that reference needs to never dangle.
  std::function<Result(const Function &)> TTICallback;

  /// Helper function used as the callback in the default constructor.
  static Result getDefaultTTI(const Function &F);
};

/// Wrapper pass for TargetTransformInfo.
///
/// This pass can be constructed from a TTI object which it stores internally
/// and is queried by passes.
class TargetTransformInfoWrapperPass : public ImmutablePass {
  TargetIRAnalysis TIRA;
  Optional<TargetTransformInfo> TTI;

  virtual void anchor();

public:
  static char ID;

  /// We must provide a default constructor for the pass but it should
  /// never be used.
  ///
  /// Use the constructor below or call one of the creation routines.
  TargetTransformInfoWrapperPass();

  explicit TargetTransformInfoWrapperPass(TargetIRAnalysis TIRA);

  TargetTransformInfo &getTTI(const Function &F);
};

/// Create an analysis pass wrapper around a TTI object.
///
/// This analysis pass just holds the TTI instance and makes it available to
/// clients.
ImmutablePass *createTargetTransformInfoWrapperPass(TargetIRAnalysis TIRA);

} // End llvm namespace

#endif