llvm.org GIT mirror llvm / c2c97e6 lib / Transforms / Instrumentation / PGOInstrumentation.cpp
c2c97e6

Tree @c2c97e6 (Download .tar.gz)

PGOInstrumentation.cpp @c2c97e6raw · history · blame

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
//===- PGOInstrumentation.cpp - MST-based PGO Instrumentation -------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements PGO instrumentation using a minimum spanning tree based
// on the following paper:
//   [1] Donald E. Knuth, Francis R. Stevenson. Optimal measurement of points
//   for program frequency counts. BIT Numerical Mathematics 1973, Volume 13,
//   Issue 3, pp 313-322
// The idea of the algorithm based on the fact that for each node (except for
// the entry and exit), the sum of incoming edge counts equals the sum of
// outgoing edge counts. The count of edge on spanning tree can be derived from
// those edges not on the spanning tree. Knuth proves this method instruments
// the minimum number of edges.
//
// The minimal spanning tree here is actually a maximum weight tree -- on-tree
// edges have higher frequencies (more likely to execute). The idea is to
// instrument those less frequently executed edges to reduce the runtime
// overhead of instrumented binaries.
//
// This file contains two passes:
// (1) Pass PGOInstrumentationGen which instruments the IR to generate edge
// count profile, and generates the instrumentation for indirect call
// profiling.
// (2) Pass PGOInstrumentationUse which reads the edge count profile and
// annotates the branch weights. It also reads the indirect call value
// profiling records and annotate the indirect call instructions.
//
// To get the precise counter information, These two passes need to invoke at
// the same compilation point (so they see the same IR). For pass
// PGOInstrumentationGen, the real work is done in instrumentOneFunc(). For
// pass PGOInstrumentationUse, the real work in done in class PGOUseFunc and
// the profile is opened in module level and passed to each PGOUseFunc instance.
// The shared code for PGOInstrumentationGen and PGOInstrumentationUse is put
// in class FuncPGOInstrumentation.
//
// Class PGOEdge represents a CFG edge and some auxiliary information. Class
// BBInfo contains auxiliary information for each BB. These two classes are used
// in pass PGOInstrumentationGen. Class PGOUseEdge and UseBBInfo are the derived
// class of PGOEdge and BBInfo, respectively. They contains extra data structure
// used in populating profile counters.
// The MST implementation is in Class CFGMST (CFGMST.h).
//
//===----------------------------------------------------------------------===//

#include "CFGMST.h"
#include "llvm/ADT/APInt.h"
#include "llvm/ADT/ArrayRef.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/ADT/StringRef.h"
#include "llvm/ADT/Triple.h"
#include "llvm/ADT/Twine.h"
#include "llvm/ADT/iterator.h"
#include "llvm/ADT/iterator_range.h"
#include "llvm/Analysis/BlockFrequencyInfo.h"
#include "llvm/Analysis/BranchProbabilityInfo.h"
#include "llvm/Analysis/CFG.h"
#include "llvm/Analysis/IndirectCallVisitor.h"
#include "llvm/Analysis/LoopInfo.h"
#include "llvm/Analysis/OptimizationRemarkEmitter.h"
#include "llvm/Analysis/ProfileSummaryInfo.h"
#include "llvm/IR/Attributes.h"
#include "llvm/IR/BasicBlock.h"
#include "llvm/IR/CFG.h"
#include "llvm/IR/CallSite.h"
#include "llvm/IR/Comdat.h"
#include "llvm/IR/Constant.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/DiagnosticInfo.h"
#include "llvm/IR/Dominators.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/GlobalAlias.h"
#include "llvm/IR/GlobalValue.h"
#include "llvm/IR/GlobalVariable.h"
#include "llvm/IR/IRBuilder.h"
#include "llvm/IR/InstVisitor.h"
#include "llvm/IR/InstrTypes.h"
#include "llvm/IR/Instruction.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/IntrinsicInst.h"
#include "llvm/IR/Intrinsics.h"
#include "llvm/IR/LLVMContext.h"
#include "llvm/IR/MDBuilder.h"
#include "llvm/IR/Module.h"
#include "llvm/IR/PassManager.h"
#include "llvm/IR/ProfileSummary.h"
#include "llvm/IR/Type.h"
#include "llvm/IR/Value.h"
#include "llvm/Pass.h"
#include "llvm/ProfileData/InstrProf.h"
#include "llvm/ProfileData/InstrProfReader.h"
#include "llvm/Support/BranchProbability.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/DOTGraphTraits.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/Error.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/GraphWriter.h"
#include "llvm/Support/JamCRC.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Transforms/Instrumentation.h"
#include "llvm/Transforms/Instrumentation/PGOInstrumentation.h"
#include "llvm/Transforms/Utils/BasicBlockUtils.h"
#include <algorithm>
#include <cassert>
#include <cstdint>
#include <memory>
#include <numeric>
#include <string>
#include <unordered_map>
#include <utility>
#include <vector>

using namespace llvm;
using ProfileCount = Function::ProfileCount;

#define DEBUG_TYPE "pgo-instrumentation"

STATISTIC(NumOfPGOInstrument, "Number of edges instrumented.");
STATISTIC(NumOfPGOSelectInsts, "Number of select instruction instrumented.");
STATISTIC(NumOfPGOMemIntrinsics, "Number of mem intrinsics instrumented.");
STATISTIC(NumOfPGOEdge, "Number of edges.");
STATISTIC(NumOfPGOBB, "Number of basic-blocks.");
STATISTIC(NumOfPGOSplit, "Number of critical edge splits.");
STATISTIC(NumOfPGOFunc, "Number of functions having valid profile counts.");
STATISTIC(NumOfPGOMismatch, "Number of functions having mismatch profile.");
STATISTIC(NumOfPGOMissing, "Number of functions without profile.");
STATISTIC(NumOfPGOICall, "Number of indirect call value instrumentations.");
STATISTIC(NumOfCSPGOInstrument, "Number of edges instrumented in CSPGO.");
STATISTIC(NumOfCSPGOSelectInsts,
          "Number of select instruction instrumented in CSPGO.");
STATISTIC(NumOfCSPGOMemIntrinsics,
          "Number of mem intrinsics instrumented in CSPGO.");
STATISTIC(NumOfCSPGOEdge, "Number of edges in CSPGO.");
STATISTIC(NumOfCSPGOBB, "Number of basic-blocks in CSPGO.");
STATISTIC(NumOfCSPGOSplit, "Number of critical edge splits in CSPGO.");
STATISTIC(NumOfCSPGOFunc,
          "Number of functions having valid profile counts in CSPGO.");
STATISTIC(NumOfCSPGOMismatch,
          "Number of functions having mismatch profile in CSPGO.");
STATISTIC(NumOfCSPGOMissing, "Number of functions without profile in CSPGO.");

// Command line option to specify the file to read profile from. This is
// mainly used for testing.
static cl::opt<std::string>
    PGOTestProfileFile("pgo-test-profile-file", cl::init(""), cl::Hidden,
                       cl::value_desc("filename"),
                       cl::desc("Specify the path of profile data file. This is"
                                "mainly for test purpose."));
static cl::opt<std::string> PGOTestProfileRemappingFile(
    "pgo-test-profile-remapping-file", cl::init(""), cl::Hidden,
    cl::value_desc("filename"),
    cl::desc("Specify the path of profile remapping file. This is mainly for "
             "test purpose."));

// Command line option to disable value profiling. The default is false:
// i.e. value profiling is enabled by default. This is for debug purpose.
static cl::opt<bool> DisableValueProfiling("disable-vp", cl::init(false),
                                           cl::Hidden,
                                           cl::desc("Disable Value Profiling"));

// Command line option to set the maximum number of VP annotations to write to
// the metadata for a single indirect call callsite.
static cl::opt<unsigned> MaxNumAnnotations(
    "icp-max-annotations", cl::init(3), cl::Hidden, cl::ZeroOrMore,
    cl::desc("Max number of annotations for a single indirect "
             "call callsite"));

// Command line option to set the maximum number of value annotations
// to write to the metadata for a single memop intrinsic.
static cl::opt<unsigned> MaxNumMemOPAnnotations(
    "memop-max-annotations", cl::init(4), cl::Hidden, cl::ZeroOrMore,
    cl::desc("Max number of preicise value annotations for a single memop"
             "intrinsic"));

// Command line option to control appending FunctionHash to the name of a COMDAT
// function. This is to avoid the hash mismatch caused by the preinliner.
static cl::opt<bool> DoComdatRenaming(
    "do-comdat-renaming", cl::init(false), cl::Hidden,
    cl::desc("Append function hash to the name of COMDAT function to avoid "
             "function hash mismatch due to the preinliner"));

// Command line option to enable/disable the warning about missing profile
// information.
static cl::opt<bool>
    PGOWarnMissing("pgo-warn-missing-function", cl::init(false), cl::Hidden,
                   cl::desc("Use this option to turn on/off "
                            "warnings about missing profile data for "
                            "functions."));

// Command line option to enable/disable the warning about a hash mismatch in
// the profile data.
static cl::opt<bool>
    NoPGOWarnMismatch("no-pgo-warn-mismatch", cl::init(false), cl::Hidden,
                      cl::desc("Use this option to turn off/on "
                               "warnings about profile cfg mismatch."));

// Command line option to enable/disable the warning about a hash mismatch in
// the profile data for Comdat functions, which often turns out to be false
// positive due to the pre-instrumentation inline.
static cl::opt<bool>
    NoPGOWarnMismatchComdat("no-pgo-warn-mismatch-comdat", cl::init(true),
                            cl::Hidden,
                            cl::desc("The option is used to turn on/off "
                                     "warnings about hash mismatch for comdat "
                                     "functions."));

// Command line option to enable/disable select instruction instrumentation.
static cl::opt<bool>
    PGOInstrSelect("pgo-instr-select", cl::init(true), cl::Hidden,
                   cl::desc("Use this option to turn on/off SELECT "
                            "instruction instrumentation. "));

// Command line option to turn on CFG dot or text dump of raw profile counts
static cl::opt<PGOViewCountsType> PGOViewRawCounts(
    "pgo-view-raw-counts", cl::Hidden,
    cl::desc("A boolean option to show CFG dag or text "
             "with raw profile counts from "
             "profile data. See also option "
             "-pgo-view-counts. To limit graph "
             "display to only one function, use "
             "filtering option -view-bfi-func-name."),
    cl::values(clEnumValN(PGOVCT_None, "none", "do not show."),
               clEnumValN(PGOVCT_Graph, "graph", "show a graph."),
               clEnumValN(PGOVCT_Text, "text", "show in text.")));

// Command line option to enable/disable memop intrinsic call.size profiling.
static cl::opt<bool>
    PGOInstrMemOP("pgo-instr-memop", cl::init(true), cl::Hidden,
                  cl::desc("Use this option to turn on/off "
                           "memory intrinsic size profiling."));

// Emit branch probability as optimization remarks.
static cl::opt<bool>
    EmitBranchProbability("pgo-emit-branch-prob", cl::init(false), cl::Hidden,
                          cl::desc("When this option is on, the annotated "
                                   "branch probability will be emitted as "
                                   "optimization remarks: -{Rpass|"
                                   "pass-remarks}=pgo-instrumentation"));

// Command line option to turn on CFG dot dump after profile annotation.
// Defined in Analysis/BlockFrequencyInfo.cpp:  -pgo-view-counts
extern cl::opt<PGOViewCountsType> PGOViewCounts;

// Command line option to specify the name of the function for CFG dump
// Defined in Analysis/BlockFrequencyInfo.cpp:  -view-bfi-func-name=
extern cl::opt<std::string> ViewBlockFreqFuncName;

// Return a string describing the branch condition that can be
// used in static branch probability heuristics:
static std::string getBranchCondString(Instruction *TI) {
  BranchInst *BI = dyn_cast<BranchInst>(TI);
  if (!BI || !BI->isConditional())
    return std::string();

  Value *Cond = BI->getCondition();
  ICmpInst *CI = dyn_cast<ICmpInst>(Cond);
  if (!CI)
    return std::string();

  std::string result;
  raw_string_ostream OS(result);
  OS << CmpInst::getPredicateName(CI->getPredicate()) << "_";
  CI->getOperand(0)->getType()->print(OS, true);

  Value *RHS = CI->getOperand(1);
  ConstantInt *CV = dyn_cast<ConstantInt>(RHS);
  if (CV) {
    if (CV->isZero())
      OS << "_Zero";
    else if (CV->isOne())
      OS << "_One";
    else if (CV->isMinusOne())
      OS << "_MinusOne";
    else
      OS << "_Const";
  }
  OS.flush();
  return result;
}

namespace {

/// The select instruction visitor plays three roles specified
/// by the mode. In \c VM_counting mode, it simply counts the number of
/// select instructions. In \c VM_instrument mode, it inserts code to count
/// the number times TrueValue of select is taken. In \c VM_annotate mode,
/// it reads the profile data and annotate the select instruction with metadata.
enum VisitMode { VM_counting, VM_instrument, VM_annotate };
class PGOUseFunc;

/// Instruction Visitor class to visit select instructions.
struct SelectInstVisitor : public InstVisitor<SelectInstVisitor> {
  Function &F;
  unsigned NSIs = 0;             // Number of select instructions instrumented.
  VisitMode Mode = VM_counting;  // Visiting mode.
  unsigned *CurCtrIdx = nullptr; // Pointer to current counter index.
  unsigned TotalNumCtrs = 0;     // Total number of counters
  GlobalVariable *FuncNameVar = nullptr;
  uint64_t FuncHash = 0;
  PGOUseFunc *UseFunc = nullptr;

  SelectInstVisitor(Function &Func) : F(Func) {}

  void countSelects(Function &Func) {
    NSIs = 0;
    Mode = VM_counting;
    visit(Func);
  }

  // Visit the IR stream and instrument all select instructions. \p
  // Ind is a pointer to the counter index variable; \p TotalNC
  // is the total number of counters; \p FNV is the pointer to the
  // PGO function name var; \p FHash is the function hash.
  void instrumentSelects(Function &Func, unsigned *Ind, unsigned TotalNC,
                         GlobalVariable *FNV, uint64_t FHash) {
    Mode = VM_instrument;
    CurCtrIdx = Ind;
    TotalNumCtrs = TotalNC;
    FuncHash = FHash;
    FuncNameVar = FNV;
    visit(Func);
  }

  // Visit the IR stream and annotate all select instructions.
  void annotateSelects(Function &Func, PGOUseFunc *UF, unsigned *Ind) {
    Mode = VM_annotate;
    UseFunc = UF;
    CurCtrIdx = Ind;
    visit(Func);
  }

  void instrumentOneSelectInst(SelectInst &SI);
  void annotateOneSelectInst(SelectInst &SI);

  // Visit \p SI instruction and perform tasks according to visit mode.
  void visitSelectInst(SelectInst &SI);

  // Return the number of select instructions. This needs be called after
  // countSelects().
  unsigned getNumOfSelectInsts() const { return NSIs; }
};

/// Instruction Visitor class to visit memory intrinsic calls.
struct MemIntrinsicVisitor : public InstVisitor<MemIntrinsicVisitor> {
  Function &F;
  unsigned NMemIs = 0;          // Number of memIntrinsics instrumented.
  VisitMode Mode = VM_counting; // Visiting mode.
  unsigned CurCtrId = 0;        // Current counter index.
  unsigned TotalNumCtrs = 0;    // Total number of counters
  GlobalVariable *FuncNameVar = nullptr;
  uint64_t FuncHash = 0;
  PGOUseFunc *UseFunc = nullptr;
  std::vector<Instruction *> Candidates;

  MemIntrinsicVisitor(Function &Func) : F(Func) {}

  void countMemIntrinsics(Function &Func) {
    NMemIs = 0;
    Mode = VM_counting;
    visit(Func);
  }

  void instrumentMemIntrinsics(Function &Func, unsigned TotalNC,
                               GlobalVariable *FNV, uint64_t FHash) {
    Mode = VM_instrument;
    TotalNumCtrs = TotalNC;
    FuncHash = FHash;
    FuncNameVar = FNV;
    visit(Func);
  }

  std::vector<Instruction *> findMemIntrinsics(Function &Func) {
    Candidates.clear();
    Mode = VM_annotate;
    visit(Func);
    return Candidates;
  }

  // Visit the IR stream and annotate all mem intrinsic call instructions.
  void instrumentOneMemIntrinsic(MemIntrinsic &MI);

  // Visit \p MI instruction and perform tasks according to visit mode.
  void visitMemIntrinsic(MemIntrinsic &SI);

  unsigned getNumOfMemIntrinsics() const { return NMemIs; }
};

class PGOInstrumentationGenLegacyPass : public ModulePass {
public:
  static char ID;

  PGOInstrumentationGenLegacyPass(bool IsCS = false)
      : ModulePass(ID), IsCS(IsCS) {
    initializePGOInstrumentationGenLegacyPassPass(
        *PassRegistry::getPassRegistry());
  }

  StringRef getPassName() const override { return "PGOInstrumentationGenPass"; }

private:
  // Is this is context-sensitive instrumentation.
  bool IsCS;
  bool runOnModule(Module &M) override;

  void getAnalysisUsage(AnalysisUsage &AU) const override {
    AU.addRequired<BlockFrequencyInfoWrapperPass>();
  }
};

class PGOInstrumentationUseLegacyPass : public ModulePass {
public:
  static char ID;

  // Provide the profile filename as the parameter.
  PGOInstrumentationUseLegacyPass(std::string Filename = "", bool IsCS = false)
      : ModulePass(ID), ProfileFileName(std::move(Filename)), IsCS(IsCS) {
    if (!PGOTestProfileFile.empty())
      ProfileFileName = PGOTestProfileFile;
    initializePGOInstrumentationUseLegacyPassPass(
        *PassRegistry::getPassRegistry());
  }

  StringRef getPassName() const override { return "PGOInstrumentationUsePass"; }

private:
  std::string ProfileFileName;
  // Is this is context-sensitive instrumentation use.
  bool IsCS;

  bool runOnModule(Module &M) override;

  void getAnalysisUsage(AnalysisUsage &AU) const override {
    AU.addRequired<ProfileSummaryInfoWrapperPass>();
    AU.addRequired<BlockFrequencyInfoWrapperPass>();
  }
};

class PGOInstrumentationGenCreateVarLegacyPass : public ModulePass {
public:
  static char ID;
  StringRef getPassName() const override {
    return "PGOInstrumentationGenCreateVarPass";
  }
  PGOInstrumentationGenCreateVarLegacyPass(std::string CSInstrName = "")
      : ModulePass(ID), InstrProfileOutput(CSInstrName) {
    initializePGOInstrumentationGenCreateVarLegacyPassPass(
        *PassRegistry::getPassRegistry());
  }

private:
  bool runOnModule(Module &M) override {
    createProfileFileNameVar(M, InstrProfileOutput);
    createIRLevelProfileFlagVar(M, true);
    return false;
  }
  std::string InstrProfileOutput;
};

} // end anonymous namespace

char PGOInstrumentationGenLegacyPass::ID = 0;

INITIALIZE_PASS_BEGIN(PGOInstrumentationGenLegacyPass, "pgo-instr-gen",
                      "PGO instrumentation.", false, false)
INITIALIZE_PASS_DEPENDENCY(BlockFrequencyInfoWrapperPass)
INITIALIZE_PASS_DEPENDENCY(BranchProbabilityInfoWrapperPass)
INITIALIZE_PASS_END(PGOInstrumentationGenLegacyPass, "pgo-instr-gen",
                    "PGO instrumentation.", false, false)

ModulePass *llvm::createPGOInstrumentationGenLegacyPass(bool IsCS) {
  return new PGOInstrumentationGenLegacyPass(IsCS);
}

char PGOInstrumentationUseLegacyPass::ID = 0;

INITIALIZE_PASS_BEGIN(PGOInstrumentationUseLegacyPass, "pgo-instr-use",
                      "Read PGO instrumentation profile.", false, false)
INITIALIZE_PASS_DEPENDENCY(BlockFrequencyInfoWrapperPass)
INITIALIZE_PASS_DEPENDENCY(BranchProbabilityInfoWrapperPass)
INITIALIZE_PASS_DEPENDENCY(ProfileSummaryInfoWrapperPass)
INITIALIZE_PASS_END(PGOInstrumentationUseLegacyPass, "pgo-instr-use",
                    "Read PGO instrumentation profile.", false, false)

ModulePass *llvm::createPGOInstrumentationUseLegacyPass(StringRef Filename,
                                                        bool IsCS) {
  return new PGOInstrumentationUseLegacyPass(Filename.str(), IsCS);
}

char PGOInstrumentationGenCreateVarLegacyPass::ID = 0;

INITIALIZE_PASS(PGOInstrumentationGenCreateVarLegacyPass,
                "pgo-instr-gen-create-var",
                "Create PGO instrumentation version variable for CSPGO.", false,
                false)

ModulePass *
llvm::createPGOInstrumentationGenCreateVarLegacyPass(StringRef CSInstrName) {
  return new PGOInstrumentationGenCreateVarLegacyPass(CSInstrName);
}

namespace {

/// An MST based instrumentation for PGO
///
/// Implements a Minimum Spanning Tree (MST) based instrumentation for PGO
/// in the function level.
struct PGOEdge {
  // This class implements the CFG edges. Note the CFG can be a multi-graph.
  // So there might be multiple edges with same SrcBB and DestBB.
  const BasicBlock *SrcBB;
  const BasicBlock *DestBB;
  uint64_t Weight;
  bool InMST = false;
  bool Removed = false;
  bool IsCritical = false;

  PGOEdge(const BasicBlock *Src, const BasicBlock *Dest, uint64_t W = 1)
      : SrcBB(Src), DestBB(Dest), Weight(W) {}

  // Return the information string of an edge.
  const std::string infoString() const {
    return (Twine(Removed ? "-" : " ") + (InMST ? " " : "*") +
            (IsCritical ? "c" : " ") + "  W=" + Twine(Weight)).str();
  }
};

// This class stores the auxiliary information for each BB.
struct BBInfo {
  BBInfo *Group;
  uint32_t Index;
  uint32_t Rank = 0;

  BBInfo(unsigned IX) : Group(this), Index(IX) {}

  // Return the information string of this object.
  const std::string infoString() const {
    return (Twine("Index=") + Twine(Index)).str();
  }
};

// This class implements the CFG edges. Note the CFG can be a multi-graph.
template <class Edge, class BBInfo> class FuncPGOInstrumentation {
private:
  Function &F;

  // Is this is context-sensitive instrumentation.
  bool IsCS;

  // A map that stores the Comdat group in function F.
  std::unordered_multimap<Comdat *, GlobalValue *> &ComdatMembers;

  void computeCFGHash();
  void renameComdatFunction();

public:
  std::vector<std::vector<Instruction *>> ValueSites;
  SelectInstVisitor SIVisitor;
  MemIntrinsicVisitor MIVisitor;
  std::string FuncName;
  GlobalVariable *FuncNameVar;

  // CFG hash value for this function.
  uint64_t FunctionHash = 0;

  // The Minimum Spanning Tree of function CFG.
  CFGMST<Edge, BBInfo> MST;

  // Give an edge, find the BB that will be instrumented.
  // Return nullptr if there is no BB to be instrumented.
  BasicBlock *getInstrBB(Edge *E);

  // Return the auxiliary BB information.
  BBInfo &getBBInfo(const BasicBlock *BB) const { return MST.getBBInfo(BB); }

  // Return the auxiliary BB information if available.
  BBInfo *findBBInfo(const BasicBlock *BB) const { return MST.findBBInfo(BB); }

  // Dump edges and BB information.
  void dumpInfo(std::string Str = "") const {
    MST.dumpEdges(dbgs(), Twine("Dump Function ") + FuncName + " Hash: " +
                              Twine(FunctionHash) + "\t" + Str);
  }

  FuncPGOInstrumentation(
      Function &Func,
      std::unordered_multimap<Comdat *, GlobalValue *> &ComdatMembers,
      bool CreateGlobalVar = false, BranchProbabilityInfo *BPI = nullptr,
      BlockFrequencyInfo *BFI = nullptr, bool IsCS = false)
      : F(Func), IsCS(IsCS), ComdatMembers(ComdatMembers),
        ValueSites(IPVK_Last + 1), SIVisitor(Func), MIVisitor(Func),
        MST(F, BPI, BFI) {
    // This should be done before CFG hash computation.
    SIVisitor.countSelects(Func);
    MIVisitor.countMemIntrinsics(Func);
    if (!IsCS) {
      NumOfPGOSelectInsts += SIVisitor.getNumOfSelectInsts();
      NumOfPGOMemIntrinsics += MIVisitor.getNumOfMemIntrinsics();
      NumOfPGOBB += MST.BBInfos.size();
      ValueSites[IPVK_IndirectCallTarget] = findIndirectCalls(Func);
    } else {
      NumOfCSPGOSelectInsts += SIVisitor.getNumOfSelectInsts();
      NumOfCSPGOMemIntrinsics += MIVisitor.getNumOfMemIntrinsics();
      NumOfCSPGOBB += MST.BBInfos.size();
    }
    ValueSites[IPVK_MemOPSize] = MIVisitor.findMemIntrinsics(Func);

    FuncName = getPGOFuncName(F);
    computeCFGHash();
    if (!ComdatMembers.empty())
      renameComdatFunction();
    LLVM_DEBUG(dumpInfo("after CFGMST"));

    for (auto &E : MST.AllEdges) {
      if (E->Removed)
        continue;
      IsCS ? NumOfCSPGOEdge++ : NumOfPGOEdge++;
      if (!E->InMST)
        IsCS ? NumOfCSPGOInstrument++ : NumOfPGOInstrument++;
    }

    if (CreateGlobalVar)
      FuncNameVar = createPGOFuncNameVar(F, FuncName);
  }

  // Return the number of profile counters needed for the function.
  unsigned getNumCounters() {
    unsigned NumCounters = 0;
    for (auto &E : this->MST.AllEdges) {
      if (!E->InMST && !E->Removed)
        NumCounters++;
    }
    return NumCounters + SIVisitor.getNumOfSelectInsts();
  }
};

} // end anonymous namespace

// Compute Hash value for the CFG: the lower 32 bits are CRC32 of the index
// value of each BB in the CFG. The higher 32 bits record the number of edges.
template <class Edge, class BBInfo>
void FuncPGOInstrumentation<Edge, BBInfo>::computeCFGHash() {
  std::vector<char> Indexes;
  JamCRC JC;
  for (auto &BB : F) {
    const Instruction *TI = BB.getTerminator();
    for (unsigned I = 0, E = TI->getNumSuccessors(); I != E; ++I) {
      BasicBlock *Succ = TI->getSuccessor(I);
      auto BI = findBBInfo(Succ);
      if (BI == nullptr)
        continue;
      uint32_t Index = BI->Index;
      for (int J = 0; J < 4; J++)
        Indexes.push_back((char)(Index >> (J * 8)));
    }
  }
  JC.update(Indexes);

  // Hash format for context sensitive profile. Reserve 4 bits for other
  // information.
  FunctionHash = (uint64_t)SIVisitor.getNumOfSelectInsts() << 56 |
                 (uint64_t)ValueSites[IPVK_IndirectCallTarget].size() << 48 |
                 //(uint64_t)ValueSites[IPVK_MemOPSize].size() << 40 |
                 (uint64_t)MST.AllEdges.size() << 32 | JC.getCRC();
  // Reserve bit 60-63 for other information purpose.
  FunctionHash &= 0x0FFFFFFFFFFFFFFF;
  if (IsCS)
    NamedInstrProfRecord::setCSFlagInHash(FunctionHash);
  LLVM_DEBUG(dbgs() << "Function Hash Computation for " << F.getName() << ":\n"
                    << " CRC = " << JC.getCRC()
                    << ", Selects = " << SIVisitor.getNumOfSelectInsts()
                    << ", Edges = " << MST.AllEdges.size() << ", ICSites = "
                    << ValueSites[IPVK_IndirectCallTarget].size()
                    << ", Hash = " << FunctionHash << "\n";);
}

// Check if we can safely rename this Comdat function.
static bool canRenameComdat(
    Function &F,
    std::unordered_multimap<Comdat *, GlobalValue *> &ComdatMembers) {
  if (!DoComdatRenaming || !canRenameComdatFunc(F, true))
    return false;

  // FIXME: Current only handle those Comdat groups that only containing one
  // function and function aliases.
  // (1) For a Comdat group containing multiple functions, we need to have a
  // unique postfix based on the hashes for each function. There is a
  // non-trivial code refactoring to do this efficiently.
  // (2) Variables can not be renamed, so we can not rename Comdat function in a
  // group including global vars.
  Comdat *C = F.getComdat();
  for (auto &&CM : make_range(ComdatMembers.equal_range(C))) {
    if (dyn_cast<GlobalAlias>(CM.second))
      continue;
    Function *FM = dyn_cast<Function>(CM.second);
    if (FM != &F)
      return false;
  }
  return true;
}

// Append the CFGHash to the Comdat function name.
template <class Edge, class BBInfo>
void FuncPGOInstrumentation<Edge, BBInfo>::renameComdatFunction() {
  if (!canRenameComdat(F, ComdatMembers))
    return;
  std::string OrigName = F.getName().str();
  std::string NewFuncName =
      Twine(F.getName() + "." + Twine(FunctionHash)).str();
  F.setName(Twine(NewFuncName));
  GlobalAlias::create(GlobalValue::WeakAnyLinkage, OrigName, &F);
  FuncName = Twine(FuncName + "." + Twine(FunctionHash)).str();
  Comdat *NewComdat;
  Module *M = F.getParent();
  // For AvailableExternallyLinkage functions, change the linkage to
  // LinkOnceODR and put them into comdat. This is because after renaming, there
  // is no backup external copy available for the function.
  if (!F.hasComdat()) {
    assert(F.getLinkage() == GlobalValue::AvailableExternallyLinkage);
    NewComdat = M->getOrInsertComdat(StringRef(NewFuncName));
    F.setLinkage(GlobalValue::LinkOnceODRLinkage);
    F.setComdat(NewComdat);
    return;
  }

  // This function belongs to a single function Comdat group.
  Comdat *OrigComdat = F.getComdat();
  std::string NewComdatName =
      Twine(OrigComdat->getName() + "." + Twine(FunctionHash)).str();
  NewComdat = M->getOrInsertComdat(StringRef(NewComdatName));
  NewComdat->setSelectionKind(OrigComdat->getSelectionKind());

  for (auto &&CM : make_range(ComdatMembers.equal_range(OrigComdat))) {
    if (GlobalAlias *GA = dyn_cast<GlobalAlias>(CM.second)) {
      // For aliases, change the name directly.
      assert(dyn_cast<Function>(GA->getAliasee()->stripPointerCasts()) == &F);
      std::string OrigGAName = GA->getName().str();
      GA->setName(Twine(GA->getName() + "." + Twine(FunctionHash)));
      GlobalAlias::create(GlobalValue::WeakAnyLinkage, OrigGAName, GA);
      continue;
    }
    // Must be a function.
    Function *CF = dyn_cast<Function>(CM.second);
    assert(CF);
    CF->setComdat(NewComdat);
  }
}

// Given a CFG E to be instrumented, find which BB to place the instrumented
// code. The function will split the critical edge if necessary.
template <class Edge, class BBInfo>
BasicBlock *FuncPGOInstrumentation<Edge, BBInfo>::getInstrBB(Edge *E) {
  if (E->InMST || E->Removed)
    return nullptr;

  BasicBlock *SrcBB = const_cast<BasicBlock *>(E->SrcBB);
  BasicBlock *DestBB = const_cast<BasicBlock *>(E->DestBB);
  // For a fake edge, instrument the real BB.
  if (SrcBB == nullptr)
    return DestBB;
  if (DestBB == nullptr)
    return SrcBB;

  // Instrument the SrcBB if it has a single successor,
  // otherwise, the DestBB if this is not a critical edge.
  Instruction *TI = SrcBB->getTerminator();
  if (TI->getNumSuccessors() <= 1)
    return SrcBB;
  if (!E->IsCritical)
    return DestBB;

  // For a critical edge, we have to split. Instrument the newly
  // created BB.
  IsCS ? NumOfCSPGOSplit++ : NumOfPGOSplit++;
  LLVM_DEBUG(dbgs() << "Split critical edge: " << getBBInfo(SrcBB).Index
                    << " --> " << getBBInfo(DestBB).Index << "\n");
  unsigned SuccNum = GetSuccessorNumber(SrcBB, DestBB);
  BasicBlock *InstrBB = SplitCriticalEdge(TI, SuccNum);
  assert(InstrBB && "Critical edge is not split");

  E->Removed = true;
  return InstrBB;
}

// Visit all edge and instrument the edges not in MST, and do value profiling.
// Critical edges will be split.
static void instrumentOneFunc(
    Function &F, Module *M, BranchProbabilityInfo *BPI, BlockFrequencyInfo *BFI,
    std::unordered_multimap<Comdat *, GlobalValue *> &ComdatMembers,
    bool IsCS) {
  // Split indirectbr critical edges here before computing the MST rather than
  // later in getInstrBB() to avoid invalidating it.
  SplitIndirectBrCriticalEdges(F, BPI, BFI);

  FuncPGOInstrumentation<PGOEdge, BBInfo> FuncInfo(F, ComdatMembers, true, BPI,
                                                   BFI, IsCS);
  unsigned NumCounters = FuncInfo.getNumCounters();

  uint32_t I = 0;
  Type *I8PtrTy = Type::getInt8PtrTy(M->getContext());
  for (auto &E : FuncInfo.MST.AllEdges) {
    BasicBlock *InstrBB = FuncInfo.getInstrBB(E.get());
    if (!InstrBB)
      continue;

    IRBuilder<> Builder(InstrBB, InstrBB->getFirstInsertionPt());
    assert(Builder.GetInsertPoint() != InstrBB->end() &&
           "Cannot get the Instrumentation point");
    Builder.CreateCall(
        Intrinsic::getDeclaration(M, Intrinsic::instrprof_increment),
        {ConstantExpr::getBitCast(FuncInfo.FuncNameVar, I8PtrTy),
         Builder.getInt64(FuncInfo.FunctionHash), Builder.getInt32(NumCounters),
         Builder.getInt32(I++)});
  }

  // Now instrument select instructions:
  FuncInfo.SIVisitor.instrumentSelects(F, &I, NumCounters, FuncInfo.FuncNameVar,
                                       FuncInfo.FunctionHash);
  assert(I == NumCounters);

  if (DisableValueProfiling)
    return;

  unsigned NumIndirectCalls = 0;
  for (auto &I : FuncInfo.ValueSites[IPVK_IndirectCallTarget]) {
    CallSite CS(I);
    Value *Callee = CS.getCalledValue();
    LLVM_DEBUG(dbgs() << "Instrument one indirect call: CallSite Index = "
                      << NumIndirectCalls << "\n");
    IRBuilder<> Builder(I);
    assert(Builder.GetInsertPoint() != I->getParent()->end() &&
           "Cannot get the Instrumentation point");
    Builder.CreateCall(
        Intrinsic::getDeclaration(M, Intrinsic::instrprof_value_profile),
        {ConstantExpr::getBitCast(FuncInfo.FuncNameVar, I8PtrTy),
         Builder.getInt64(FuncInfo.FunctionHash),
         Builder.CreatePtrToInt(Callee, Builder.getInt64Ty()),
         Builder.getInt32(IPVK_IndirectCallTarget),
         Builder.getInt32(NumIndirectCalls++)});
  }
  NumOfPGOICall += NumIndirectCalls;

  // Now instrument memop intrinsic calls.
  FuncInfo.MIVisitor.instrumentMemIntrinsics(
      F, NumCounters, FuncInfo.FuncNameVar, FuncInfo.FunctionHash);
}

namespace {

// This class represents a CFG edge in profile use compilation.
struct PGOUseEdge : public PGOEdge {
  bool CountValid = false;
  uint64_t CountValue = 0;

  PGOUseEdge(const BasicBlock *Src, const BasicBlock *Dest, uint64_t W = 1)
      : PGOEdge(Src, Dest, W) {}

  // Set edge count value
  void setEdgeCount(uint64_t Value) {
    CountValue = Value;
    CountValid = true;
  }

  // Return the information string for this object.
  const std::string infoString() const {
    if (!CountValid)
      return PGOEdge::infoString();
    return (Twine(PGOEdge::infoString()) + "  Count=" + Twine(CountValue))
        .str();
  }
};

using DirectEdges = SmallVector<PGOUseEdge *, 2>;

// This class stores the auxiliary information for each BB.
struct UseBBInfo : public BBInfo {
  uint64_t CountValue = 0;
  bool CountValid;
  int32_t UnknownCountInEdge = 0;
  int32_t UnknownCountOutEdge = 0;
  DirectEdges InEdges;
  DirectEdges OutEdges;

  UseBBInfo(unsigned IX) : BBInfo(IX), CountValid(false) {}

  UseBBInfo(unsigned IX, uint64_t C)
      : BBInfo(IX), CountValue(C), CountValid(true) {}

  // Set the profile count value for this BB.
  void setBBInfoCount(uint64_t Value) {
    CountValue = Value;
    CountValid = true;
  }

  // Return the information string of this object.
  const std::string infoString() const {
    if (!CountValid)
      return BBInfo::infoString();
    return (Twine(BBInfo::infoString()) + "  Count=" + Twine(CountValue)).str();
  }
};

} // end anonymous namespace

// Sum up the count values for all the edges.
static uint64_t sumEdgeCount(const ArrayRef<PGOUseEdge *> Edges) {
  uint64_t Total = 0;
  for (auto &E : Edges) {
    if (E->Removed)
      continue;
    Total += E->CountValue;
  }
  return Total;
}

namespace {

class PGOUseFunc {
public:
  PGOUseFunc(Function &Func, Module *Modu,
             std::unordered_multimap<Comdat *, GlobalValue *> &ComdatMembers,
             BranchProbabilityInfo *BPI = nullptr,
             BlockFrequencyInfo *BFIin = nullptr, bool IsCS = false)
      : F(Func), M(Modu), BFI(BFIin),
        FuncInfo(Func, ComdatMembers, false, BPI, BFIin, IsCS),
        FreqAttr(FFA_Normal), IsCS(IsCS) {}

  // Read counts for the instrumented BB from profile.
  bool readCounters(IndexedInstrProfReader *PGOReader, bool &AllZeros);

  // Populate the counts for all BBs.
  void populateCounters();

  // Set the branch weights based on the count values.
  void setBranchWeights();

  // Annotate the value profile call sites for all value kind.
  void annotateValueSites();

  // Annotate the value profile call sites for one value kind.
  void annotateValueSites(uint32_t Kind);

  // Annotate the irreducible loop header weights.
  void annotateIrrLoopHeaderWeights();

  // The hotness of the function from the profile count.
  enum FuncFreqAttr { FFA_Normal, FFA_Cold, FFA_Hot };

  // Return the function hotness from the profile.
  FuncFreqAttr getFuncFreqAttr() const { return FreqAttr; }

  // Return the function hash.
  uint64_t getFuncHash() const { return FuncInfo.FunctionHash; }

  // Return the profile record for this function;
  InstrProfRecord &getProfileRecord() { return ProfileRecord; }

  // Return the auxiliary BB information.
  UseBBInfo &getBBInfo(const BasicBlock *BB) const {
    return FuncInfo.getBBInfo(BB);
  }

  // Return the auxiliary BB information if available.
  UseBBInfo *findBBInfo(const BasicBlock *BB) const {
    return FuncInfo.findBBInfo(BB);
  }

  Function &getFunc() const { return F; }

  void dumpInfo(std::string Str = "") const {
    FuncInfo.dumpInfo(Str);
  }

  uint64_t getProgramMaxCount() const { return ProgramMaxCount; }
private:
  Function &F;
  Module *M;
  BlockFrequencyInfo *BFI;

  // This member stores the shared information with class PGOGenFunc.
  FuncPGOInstrumentation<PGOUseEdge, UseBBInfo> FuncInfo;

  // The maximum count value in the profile. This is only used in PGO use
  // compilation.
  uint64_t ProgramMaxCount;

  // Position of counter that remains to be read.
  uint32_t CountPosition = 0;

  // Total size of the profile count for this function.
  uint32_t ProfileCountSize = 0;

  // ProfileRecord for this function.
  InstrProfRecord ProfileRecord;

  // Function hotness info derived from profile.
  FuncFreqAttr FreqAttr;

  // Is to use the context sensitive profile.
  bool IsCS;

  // Find the Instrumented BB and set the value. Return false on error.
  bool setInstrumentedCounts(const std::vector<uint64_t> &CountFromProfile);

  // Set the edge counter value for the unknown edge -- there should be only
  // one unknown edge.
  void setEdgeCount(DirectEdges &Edges, uint64_t Value);

  // Return FuncName string;
  const std::string getFuncName() const { return FuncInfo.FuncName; }

  // Set the hot/cold inline hints based on the count values.
  // FIXME: This function should be removed once the functionality in
  // the inliner is implemented.
  void markFunctionAttributes(uint64_t EntryCount, uint64_t MaxCount) {
    if (ProgramMaxCount == 0)
      return;
    // Threshold of the hot functions.
    const BranchProbability HotFunctionThreshold(1, 100);
    // Threshold of the cold functions.
    const BranchProbability ColdFunctionThreshold(2, 10000);
    if (EntryCount >= HotFunctionThreshold.scale(ProgramMaxCount))
      FreqAttr = FFA_Hot;
    else if (MaxCount <= ColdFunctionThreshold.scale(ProgramMaxCount))
      FreqAttr = FFA_Cold;
  }
};

} // end anonymous namespace

// Visit all the edges and assign the count value for the instrumented
// edges and the BB. Return false on error.
bool PGOUseFunc::setInstrumentedCounts(
    const std::vector<uint64_t> &CountFromProfile) {
  // The number of counters here should match the number of counters
  // in profile. Return if they mismatch.
  if (FuncInfo.getNumCounters() != CountFromProfile.size()) {
    return false;
  }
  // Use a worklist as we will update the vector during the iteration.
  std::vector<PGOUseEdge *> WorkList;
  for (auto &E : FuncInfo.MST.AllEdges)
    WorkList.push_back(E.get());

  uint32_t I = 0;
  for (auto &E : WorkList) {
    BasicBlock *InstrBB = FuncInfo.getInstrBB(E);
    if (!InstrBB)
      continue;
    uint64_t CountValue = CountFromProfile[I++];
    if (!E->Removed) {
      getBBInfo(InstrBB).setBBInfoCount(CountValue);
      E->setEdgeCount(CountValue);
      continue;
    }

    // Need to add two new edges.
    BasicBlock *SrcBB = const_cast<BasicBlock *>(E->SrcBB);
    BasicBlock *DestBB = const_cast<BasicBlock *>(E->DestBB);
    // Add new edge of SrcBB->InstrBB.
    PGOUseEdge &NewEdge = FuncInfo.MST.addEdge(SrcBB, InstrBB, 0);
    NewEdge.setEdgeCount(CountValue);
    // Add new edge of InstrBB->DestBB.
    PGOUseEdge &NewEdge1 = FuncInfo.MST.addEdge(InstrBB, DestBB, 0);
    NewEdge1.setEdgeCount(CountValue);
    NewEdge1.InMST = true;
    getBBInfo(InstrBB).setBBInfoCount(CountValue);
  }
  ProfileCountSize = CountFromProfile.size();
  CountPosition = I;
  return true;
}

// Set the count value for the unknown edge. There should be one and only one
// unknown edge in Edges vector.
void PGOUseFunc::setEdgeCount(DirectEdges &Edges, uint64_t Value) {
  for (auto &E : Edges) {
    if (E->CountValid)
      continue;
    E->setEdgeCount(Value);

    getBBInfo(E->SrcBB).UnknownCountOutEdge--;
    getBBInfo(E->DestBB).UnknownCountInEdge--;
    return;
  }
  llvm_unreachable("Cannot find the unknown count edge");
}

// Read the profile from ProfileFileName and assign the value to the
// instrumented BB and the edges. This function also updates ProgramMaxCount.
// Return true if the profile are successfully read, and false on errors.
bool PGOUseFunc::readCounters(IndexedInstrProfReader *PGOReader, bool &AllZeros) {
  auto &Ctx = M->getContext();
  Expected<InstrProfRecord> Result =
      PGOReader->getInstrProfRecord(FuncInfo.FuncName, FuncInfo.FunctionHash);
  if (Error E = Result.takeError()) {
    handleAllErrors(std::move(E), [&](const InstrProfError &IPE) {
      auto Err = IPE.get();
      bool SkipWarning = false;
      LLVM_DEBUG(dbgs() << "Error in reading profile for Func "
                        << FuncInfo.FuncName << ": ");
      if (Err == instrprof_error::unknown_function) {
        IsCS ? NumOfCSPGOMissing++ : NumOfPGOMissing++;
        SkipWarning = !PGOWarnMissing;
        LLVM_DEBUG(dbgs() << "unknown function");
      } else if (Err == instrprof_error::hash_mismatch ||
                 Err == instrprof_error::malformed) {
        IsCS ? NumOfCSPGOMismatch++ : NumOfPGOMismatch++;
        SkipWarning =
            NoPGOWarnMismatch ||
            (NoPGOWarnMismatchComdat &&
             (F.hasComdat() ||
              F.getLinkage() == GlobalValue::AvailableExternallyLinkage));
        LLVM_DEBUG(dbgs() << "hash mismatch (skip=" << SkipWarning << ")");
      }

      LLVM_DEBUG(dbgs() << " IsCS=" << IsCS << "\n");
      if (SkipWarning)
        return;

      std::string Msg = IPE.message() + std::string(" ") + F.getName().str() +
                        std::string(" Hash = ") +
                        std::to_string(FuncInfo.FunctionHash);

      Ctx.diagnose(
          DiagnosticInfoPGOProfile(M->getName().data(), Msg, DS_Warning));
    });
    return false;
  }
  ProfileRecord = std::move(Result.get());
  std::vector<uint64_t> &CountFromProfile = ProfileRecord.Counts;

  IsCS ? NumOfCSPGOFunc++ : NumOfPGOFunc++;
  LLVM_DEBUG(dbgs() << CountFromProfile.size() << " counts\n");
  uint64_t ValueSum = 0;
  for (unsigned I = 0, S = CountFromProfile.size(); I < S; I++) {
    LLVM_DEBUG(dbgs() << "  " << I << ": " << CountFromProfile[I] << "\n");
    ValueSum += CountFromProfile[I];
  }
  AllZeros = (ValueSum == 0);

  LLVM_DEBUG(dbgs() << "SUM =  " << ValueSum << "\n");

  getBBInfo(nullptr).UnknownCountOutEdge = 2;
  getBBInfo(nullptr).UnknownCountInEdge = 2;

  if (!setInstrumentedCounts(CountFromProfile)) {
    LLVM_DEBUG(
        dbgs() << "Inconsistent number of counts, skipping this function");
    Ctx.diagnose(DiagnosticInfoPGOProfile(
        M->getName().data(),
        Twine("Inconsistent number of counts in ") + F.getName().str()
        + Twine(": the profile may be stale or there is a function name collision."),
        DS_Warning));
    return false;
  }
  ProgramMaxCount = PGOReader->getMaximumFunctionCount(IsCS);
  return true;
}

// Populate the counters from instrumented BBs to all BBs.
// In the end of this operation, all BBs should have a valid count value.
void PGOUseFunc::populateCounters() {
  // First set up Count variable for all BBs.
  for (auto &E : FuncInfo.MST.AllEdges) {
    if (E->Removed)
      continue;

    const BasicBlock *SrcBB = E->SrcBB;
    const BasicBlock *DestBB = E->DestBB;
    UseBBInfo &SrcInfo = getBBInfo(SrcBB);
    UseBBInfo &DestInfo = getBBInfo(DestBB);
    SrcInfo.OutEdges.push_back(E.get());
    DestInfo.InEdges.push_back(E.get());
    SrcInfo.UnknownCountOutEdge++;
    DestInfo.UnknownCountInEdge++;

    if (!E->CountValid)
      continue;
    DestInfo.UnknownCountInEdge--;
    SrcInfo.UnknownCountOutEdge--;
  }

  bool Changes = true;
  unsigned NumPasses = 0;
  while (Changes) {
    NumPasses++;
    Changes = false;

    // For efficient traversal, it's better to start from the end as most
    // of the instrumented edges are at the end.
    for (auto &BB : reverse(F)) {
      UseBBInfo *Count = findBBInfo(&BB);
      if (Count == nullptr)
        continue;
      if (!Count->CountValid) {
        if (Count->UnknownCountOutEdge == 0) {
          Count->CountValue = sumEdgeCount(Count->OutEdges);
          Count->CountValid = true;
          Changes = true;
        } else if (Count->UnknownCountInEdge == 0) {
          Count->CountValue = sumEdgeCount(Count->InEdges);
          Count->CountValid = true;
          Changes = true;
        }
      }
      if (Count->CountValid) {
        if (Count->UnknownCountOutEdge == 1) {
          uint64_t Total = 0;
          uint64_t OutSum = sumEdgeCount(Count->OutEdges);
          // If the one of the successor block can early terminate (no-return),
          // we can end up with situation where out edge sum count is larger as
          // the source BB's count is collected by a post-dominated block.
          if (Count->CountValue > OutSum)
            Total = Count->CountValue - OutSum;
          setEdgeCount(Count->OutEdges, Total);
          Changes = true;
        }
        if (Count->UnknownCountInEdge == 1) {
          uint64_t Total = 0;
          uint64_t InSum = sumEdgeCount(Count->InEdges);
          if (Count->CountValue > InSum)
            Total = Count->CountValue - InSum;
          setEdgeCount(Count->InEdges, Total);
          Changes = true;
        }
      }
    }
  }

  LLVM_DEBUG(dbgs() << "Populate counts in " << NumPasses << " passes.\n");
#ifndef NDEBUG
  // Assert every BB has a valid counter.
  for (auto &BB : F) {
    auto BI = findBBInfo(&BB);
    if (BI == nullptr)
      continue;
    assert(BI->CountValid && "BB count is not valid");
  }
#endif
  uint64_t FuncEntryCount = getBBInfo(&*F.begin()).CountValue;
  F.setEntryCount(ProfileCount(FuncEntryCount, Function::PCT_Real));
  uint64_t FuncMaxCount = FuncEntryCount;
  for (auto &BB : F) {
    auto BI = findBBInfo(&BB);
    if (BI == nullptr)
      continue;
    FuncMaxCount = std::max(FuncMaxCount, BI->CountValue);
  }
  markFunctionAttributes(FuncEntryCount, FuncMaxCount);

  // Now annotate select instructions
  FuncInfo.SIVisitor.annotateSelects(F, this, &CountPosition);
  assert(CountPosition == ProfileCountSize);

  LLVM_DEBUG(FuncInfo.dumpInfo("after reading profile."));
}

// Assign the scaled count values to the BB with multiple out edges.
void PGOUseFunc::setBranchWeights() {
  // Generate MD_prof metadata for every branch instruction.
  LLVM_DEBUG(dbgs() << "\nSetting branch weights for func " << F.getName()
                    << " IsCS=" << IsCS << "\n");
  for (auto &BB : F) {
    Instruction *TI = BB.getTerminator();
    if (TI->getNumSuccessors() < 2)
      continue;
    if (!(isa<BranchInst>(TI) || isa<SwitchInst>(TI) ||
          isa<IndirectBrInst>(TI)))
      continue;

    if (getBBInfo(&BB).CountValue == 0)
      continue;

    // We have a non-zero Branch BB.
    const UseBBInfo &BBCountInfo = getBBInfo(&BB);
    unsigned Size = BBCountInfo.OutEdges.size();
    SmallVector<uint64_t, 2> EdgeCounts(Size, 0);
    uint64_t MaxCount = 0;
    for (unsigned s = 0; s < Size; s++) {
      const PGOUseEdge *E = BBCountInfo.OutEdges[s];
      const BasicBlock *SrcBB = E->SrcBB;
      const BasicBlock *DestBB = E->DestBB;
      if (DestBB == nullptr)
        continue;
      unsigned SuccNum = GetSuccessorNumber(SrcBB, DestBB);
      uint64_t EdgeCount = E->CountValue;
      if (EdgeCount > MaxCount)
        MaxCount = EdgeCount;
      EdgeCounts[SuccNum] = EdgeCount;
    }
    setProfMetadata(M, TI, EdgeCounts, MaxCount);
  }
}

static bool isIndirectBrTarget(BasicBlock *BB) {
  for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) {
    if (isa<IndirectBrInst>((*PI)->getTerminator()))
      return true;
  }
  return false;
}

void PGOUseFunc::annotateIrrLoopHeaderWeights() {
  LLVM_DEBUG(dbgs() << "\nAnnotating irreducible loop header weights.\n");
  // Find irr loop headers
  for (auto &BB : F) {
    // As a heuristic also annotate indrectbr targets as they have a high chance
    // to become an irreducible loop header after the indirectbr tail
    // duplication.
    if (BFI->isIrrLoopHeader(&BB) || isIndirectBrTarget(&BB)) {
      Instruction *TI = BB.getTerminator();
      const UseBBInfo &BBCountInfo = getBBInfo(&BB);
      setIrrLoopHeaderMetadata(M, TI, BBCountInfo.CountValue);
    }
  }
}

void SelectInstVisitor::instrumentOneSelectInst(SelectInst &SI) {
  Module *M = F.getParent();
  IRBuilder<> Builder(&SI);
  Type *Int64Ty = Builder.getInt64Ty();
  Type *I8PtrTy = Builder.getInt8PtrTy();
  auto *Step = Builder.CreateZExt(SI.getCondition(), Int64Ty);
  Builder.CreateCall(
      Intrinsic::getDeclaration(M, Intrinsic::instrprof_increment_step),
      {ConstantExpr::getBitCast(FuncNameVar, I8PtrTy),
       Builder.getInt64(FuncHash), Builder.getInt32(TotalNumCtrs),
       Builder.getInt32(*CurCtrIdx), Step});
  ++(*CurCtrIdx);
}

void SelectInstVisitor::annotateOneSelectInst(SelectInst &SI) {
  std::vector<uint64_t> &CountFromProfile = UseFunc->getProfileRecord().Counts;
  assert(*CurCtrIdx < CountFromProfile.size() &&
         "Out of bound access of counters");
  uint64_t SCounts[2];
  SCounts[0] = CountFromProfile[*CurCtrIdx]; // True count
  ++(*CurCtrIdx);
  uint64_t TotalCount = 0;
  auto BI = UseFunc->findBBInfo(SI.getParent());
  if (BI != nullptr)
    TotalCount = BI->CountValue;
  // False Count
  SCounts[1] = (TotalCount > SCounts[0] ? TotalCount - SCounts[0] : 0);
  uint64_t MaxCount = std::max(SCounts[0], SCounts[1]);
  if (MaxCount)
    setProfMetadata(F.getParent(), &SI, SCounts, MaxCount);
}

void SelectInstVisitor::visitSelectInst(SelectInst &SI) {
  if (!PGOInstrSelect)
    return;
  // FIXME: do not handle this yet.
  if (SI.getCondition()->getType()->isVectorTy())
    return;

  switch (Mode) {
  case VM_counting:
    NSIs++;
    return;
  case VM_instrument:
    instrumentOneSelectInst(SI);
    return;
  case VM_annotate:
    annotateOneSelectInst(SI);
    return;
  }

  llvm_unreachable("Unknown visiting mode");
}

void MemIntrinsicVisitor::instrumentOneMemIntrinsic(MemIntrinsic &MI) {
  Module *M = F.getParent();
  IRBuilder<> Builder(&MI);
  Type *Int64Ty = Builder.getInt64Ty();
  Type *I8PtrTy = Builder.getInt8PtrTy();
  Value *Length = MI.getLength();
  assert(!isa<ConstantInt>(Length));
  Builder.CreateCall(
      Intrinsic::getDeclaration(M, Intrinsic::instrprof_value_profile),
      {ConstantExpr::getBitCast(FuncNameVar, I8PtrTy),
       Builder.getInt64(FuncHash), Builder.CreateZExtOrTrunc(Length, Int64Ty),
       Builder.getInt32(IPVK_MemOPSize), Builder.getInt32(CurCtrId)});
  ++CurCtrId;
}

void MemIntrinsicVisitor::visitMemIntrinsic(MemIntrinsic &MI) {
  if (!PGOInstrMemOP)
    return;
  Value *Length = MI.getLength();
  // Not instrument constant length calls.
  if (dyn_cast<ConstantInt>(Length))
    return;

  switch (Mode) {
  case VM_counting:
    NMemIs++;
    return;
  case VM_instrument:
    instrumentOneMemIntrinsic(MI);
    return;
  case VM_annotate:
    Candidates.push_back(&MI);
    return;
  }
  llvm_unreachable("Unknown visiting mode");
}

// Traverse all valuesites and annotate the instructions for all value kind.
void PGOUseFunc::annotateValueSites() {
  if (DisableValueProfiling)
    return;

  // Create the PGOFuncName meta data.
  createPGOFuncNameMetadata(F, FuncInfo.FuncName);

  for (uint32_t Kind = IPVK_First; Kind <= IPVK_Last; ++Kind)
    annotateValueSites(Kind);
}

// Annotate the instructions for a specific value kind.
void PGOUseFunc::annotateValueSites(uint32_t Kind) {
  unsigned ValueSiteIndex = 0;
  auto &ValueSites = FuncInfo.ValueSites[Kind];
  unsigned NumValueSites = ProfileRecord.getNumValueSites(Kind);
  if (NumValueSites != ValueSites.size()) {
    auto &Ctx = M->getContext();
    Ctx.diagnose(DiagnosticInfoPGOProfile(
        M->getName().data(),
        Twine("Inconsistent number of value sites for kind = ") + Twine(Kind) +
            " in " + F.getName().str(),
        DS_Warning));
    return;
  }

  for (auto &I : ValueSites) {
    LLVM_DEBUG(dbgs() << "Read one value site profile (kind = " << Kind
                      << "): Index = " << ValueSiteIndex << " out of "
                      << NumValueSites << "\n");
    annotateValueSite(*M, *I, ProfileRecord,
                      static_cast<InstrProfValueKind>(Kind), ValueSiteIndex,
                      Kind == IPVK_MemOPSize ? MaxNumMemOPAnnotations
                                             : MaxNumAnnotations);
    ValueSiteIndex++;
  }
}

// Collect the set of members for each Comdat in module M and store
// in ComdatMembers.
static void collectComdatMembers(
    Module &M,
    std::unordered_multimap<Comdat *, GlobalValue *> &ComdatMembers) {
  if (!DoComdatRenaming)
    return;
  for (Function &F : M)
    if (Comdat *C = F.getComdat())
      ComdatMembers.insert(std::make_pair(C, &F));
  for (GlobalVariable &GV : M.globals())
    if (Comdat *C = GV.getComdat())
      ComdatMembers.insert(std::make_pair(C, &GV));
  for (GlobalAlias &GA : M.aliases())
    if (Comdat *C = GA.getComdat())
      ComdatMembers.insert(std::make_pair(C, &GA));
}

static bool InstrumentAllFunctions(
    Module &M, function_ref<BranchProbabilityInfo *(Function &)> LookupBPI,
    function_ref<BlockFrequencyInfo *(Function &)> LookupBFI, bool IsCS) {
  // For the context-sensitve instrumentation, we should have a separated pass
  // (before LTO/ThinLTO linking) to create these variables.
  if (!IsCS)
    createIRLevelProfileFlagVar(M, /* IsCS */ false);
  std::unordered_multimap<Comdat *, GlobalValue *> ComdatMembers;
  collectComdatMembers(M, ComdatMembers);

  for (auto &F : M) {
    if (F.isDeclaration())
      continue;
    auto *BPI = LookupBPI(F);
    auto *BFI = LookupBFI(F);
    instrumentOneFunc(F, &M, BPI, BFI, ComdatMembers, IsCS);
  }
  return true;
}

PreservedAnalyses
PGOInstrumentationGenCreateVar::run(Module &M, ModuleAnalysisManager &AM) {
  createProfileFileNameVar(M, CSInstrName);
  createIRLevelProfileFlagVar(M, /* IsCS */ true);
  return PreservedAnalyses::all();
}

bool PGOInstrumentationGenLegacyPass::runOnModule(Module &M) {
  if (skipModule(M))
    return false;

  auto LookupBPI = [this](Function &F) {
    return &this->getAnalysis<BranchProbabilityInfoWrapperPass>(F).getBPI();
  };
  auto LookupBFI = [this](Function &F) {
    return &this->getAnalysis<BlockFrequencyInfoWrapperPass>(F).getBFI();
  };
  return InstrumentAllFunctions(M, LookupBPI, LookupBFI, IsCS);
}

PreservedAnalyses PGOInstrumentationGen::run(Module &M,
                                             ModuleAnalysisManager &AM) {
  auto &FAM = AM.getResult<FunctionAnalysisManagerModuleProxy>(M).getManager();
  auto LookupBPI = [&FAM](Function &F) {
    return &FAM.getResult<BranchProbabilityAnalysis>(F);
  };

  auto LookupBFI = [&FAM](Function &F) {
    return &FAM.getResult<BlockFrequencyAnalysis>(F);
  };

  if (!InstrumentAllFunctions(M, LookupBPI, LookupBFI, IsCS))
    return PreservedAnalyses::all();

  return PreservedAnalyses::none();
}

static bool annotateAllFunctions(
    Module &M, StringRef ProfileFileName, StringRef ProfileRemappingFileName,
    function_ref<BranchProbabilityInfo *(Function &)> LookupBPI,
    function_ref<BlockFrequencyInfo *(Function &)> LookupBFI, bool IsCS) {
  LLVM_DEBUG(dbgs() << "Read in profile counters: ");
  auto &Ctx = M.getContext();
  // Read the counter array from file.
  auto ReaderOrErr =
      IndexedInstrProfReader::create(ProfileFileName, ProfileRemappingFileName);
  if (Error E = ReaderOrErr.takeError()) {
    handleAllErrors(std::move(E), [&](const ErrorInfoBase &EI) {
      Ctx.diagnose(
          DiagnosticInfoPGOProfile(ProfileFileName.data(), EI.message()));
    });
    return false;
  }

  std::unique_ptr<IndexedInstrProfReader> PGOReader =
      std::move(ReaderOrErr.get());
  if (!PGOReader) {
    Ctx.diagnose(DiagnosticInfoPGOProfile(ProfileFileName.data(),
                                          StringRef("Cannot get PGOReader")));
    return false;
  }
  if (!PGOReader->hasCSIRLevelProfile() && IsCS)
    return false;

  // TODO: might need to change the warning once the clang option is finalized.
  if (!PGOReader->isIRLevelProfile()) {
    Ctx.diagnose(DiagnosticInfoPGOProfile(
        ProfileFileName.data(), "Not an IR level instrumentation profile"));
    return false;
  }

  std::unordered_multimap<Comdat *, GlobalValue *> ComdatMembers;
  collectComdatMembers(M, ComdatMembers);
  std::vector<Function *> HotFunctions;
  std::vector<Function *> ColdFunctions;
  for (auto &F : M) {
    if (F.isDeclaration())
      continue;
    auto *BPI = LookupBPI(F);
    auto *BFI = LookupBFI(F);
    // Split indirectbr critical edges here before computing the MST rather than
    // later in getInstrBB() to avoid invalidating it.
    SplitIndirectBrCriticalEdges(F, BPI, BFI);
    PGOUseFunc Func(F, &M, ComdatMembers, BPI, BFI, IsCS);
    bool AllZeros = false;
    if (!Func.readCounters(PGOReader.get(), AllZeros))
      continue;
    if (AllZeros) {
      F.setEntryCount(ProfileCount(0, Function::PCT_Real));
      if (Func.getProgramMaxCount() != 0)
        ColdFunctions.push_back(&F);
      continue;
    }
    Func.populateCounters();
    Func.setBranchWeights();
    Func.annotateValueSites();
    Func.annotateIrrLoopHeaderWeights();
    PGOUseFunc::FuncFreqAttr FreqAttr = Func.getFuncFreqAttr();
    if (FreqAttr == PGOUseFunc::FFA_Cold)
      ColdFunctions.push_back(&F);
    else if (FreqAttr == PGOUseFunc::FFA_Hot)
      HotFunctions.push_back(&F);
    if (PGOViewCounts != PGOVCT_None &&
        (ViewBlockFreqFuncName.empty() ||
         F.getName().equals(ViewBlockFreqFuncName))) {
      LoopInfo LI{DominatorTree(F)};
      std::unique_ptr<BranchProbabilityInfo> NewBPI =
          llvm::make_unique<BranchProbabilityInfo>(F, LI);
      std::unique_ptr<BlockFrequencyInfo> NewBFI =
          llvm::make_unique<BlockFrequencyInfo>(F, *NewBPI, LI);
      if (PGOViewCounts == PGOVCT_Graph)
        NewBFI->view();
      else if (PGOViewCounts == PGOVCT_Text) {
        dbgs() << "pgo-view-counts: " << Func.getFunc().getName() << "\n";
        NewBFI->print(dbgs());
      }
    }
    if (PGOViewRawCounts != PGOVCT_None &&
        (ViewBlockFreqFuncName.empty() ||
         F.getName().equals(ViewBlockFreqFuncName))) {
      if (PGOViewRawCounts == PGOVCT_Graph)
        if (ViewBlockFreqFuncName.empty())
          WriteGraph(&Func, Twine("PGORawCounts_") + Func.getFunc().getName());
        else
          ViewGraph(&Func, Twine("PGORawCounts_") + Func.getFunc().getName());
      else if (PGOViewRawCounts == PGOVCT_Text) {
        dbgs() << "pgo-view-raw-counts: " << Func.getFunc().getName() << "\n";
        Func.dumpInfo();
      }
    }
  }
  M.setProfileSummary(PGOReader->getSummary(IsCS).getMD(M.getContext()),
                      IsCS ? ProfileSummary::PSK_CSInstr
                           : ProfileSummary::PSK_Instr);

  // Set function hotness attribute from the profile.
  // We have to apply these attributes at the end because their presence
  // can affect the BranchProbabilityInfo of any callers, resulting in an
  // inconsistent MST between prof-gen and prof-use.
  for (auto &F : HotFunctions) {
    F->addFnAttr(Attribute::InlineHint);
    LLVM_DEBUG(dbgs() << "Set inline attribute to function: " << F->getName()
                      << "\n");
  }
  for (auto &F : ColdFunctions) {
    F->addFnAttr(Attribute::Cold);
    LLVM_DEBUG(dbgs() << "Set cold attribute to function: " << F->getName()
                      << "\n");
  }
  return true;
}

PGOInstrumentationUse::PGOInstrumentationUse(std::string Filename,
                                             std::string RemappingFilename,
                                             bool IsCS)
    : ProfileFileName(std::move(Filename)),
      ProfileRemappingFileName(std::move(RemappingFilename)), IsCS(IsCS) {
  if (!PGOTestProfileFile.empty())
    ProfileFileName = PGOTestProfileFile;
  if (!PGOTestProfileRemappingFile.empty())
    ProfileRemappingFileName = PGOTestProfileRemappingFile;
}

PreservedAnalyses PGOInstrumentationUse::run(Module &M,
                                             ModuleAnalysisManager &AM) {

  auto &FAM = AM.getResult<FunctionAnalysisManagerModuleProxy>(M).getManager();
  auto LookupBPI = [&FAM](Function &F) {
    return &FAM.getResult<BranchProbabilityAnalysis>(F);
  };

  auto LookupBFI = [&FAM](Function &F) {
    return &FAM.getResult<BlockFrequencyAnalysis>(F);
  };

  if (!annotateAllFunctions(M, ProfileFileName, ProfileRemappingFileName,
                            LookupBPI, LookupBFI, IsCS))
    return PreservedAnalyses::all();

  return PreservedAnalyses::none();
}

bool PGOInstrumentationUseLegacyPass::runOnModule(Module &M) {
  if (skipModule(M))
    return false;

  auto LookupBPI = [this](Function &F) {
    return &this->getAnalysis<BranchProbabilityInfoWrapperPass>(F).getBPI();
  };
  auto LookupBFI = [this](Function &F) {
    return &this->getAnalysis<BlockFrequencyInfoWrapperPass>(F).getBFI();
  };

  return annotateAllFunctions(M, ProfileFileName, "", LookupBPI, LookupBFI,
                              IsCS);
}

static std::string getSimpleNodeName(const BasicBlock *Node) {
  if (!Node->getName().empty())
    return Node->getName();

  std::string SimpleNodeName;
  raw_string_ostream OS(SimpleNodeName);
  Node->printAsOperand(OS, false);
  return OS.str();
}

void llvm::setProfMetadata(Module *M, Instruction *TI,
                           ArrayRef<uint64_t> EdgeCounts,
                           uint64_t MaxCount) {
  MDBuilder MDB(M->getContext());
  assert(MaxCount > 0 && "Bad max count");
  uint64_t Scale = calculateCountScale(MaxCount);
  SmallVector<unsigned, 4> Weights;
  for (const auto &ECI : EdgeCounts)
    Weights.push_back(scaleBranchCount(ECI, Scale));

  LLVM_DEBUG(dbgs() << "Weight is: "; for (const auto &W
                                           : Weights) {
    dbgs() << W << " ";
  } dbgs() << "\n";);
  TI->setMetadata(LLVMContext::MD_prof, MDB.createBranchWeights(Weights));
  if (EmitBranchProbability) {
    std::string BrCondStr = getBranchCondString(TI);
    if (BrCondStr.empty())
      return;

    uint64_t WSum =
        std::accumulate(Weights.begin(), Weights.end(), (uint64_t)0,
                        [](uint64_t w1, uint64_t w2) { return w1 + w2; });
    uint64_t TotalCount =
        std::accumulate(EdgeCounts.begin(), EdgeCounts.end(), (uint64_t)0,
                        [](uint64_t c1, uint64_t c2) { return c1 + c2; });
    Scale = calculateCountScale(WSum);
    BranchProbability BP(scaleBranchCount(Weights[0], Scale),
                         scaleBranchCount(WSum, Scale));
    std::string BranchProbStr;
    raw_string_ostream OS(BranchProbStr);
    OS << BP;
    OS << " (total count : " << TotalCount << ")";
    OS.flush();
    Function *F = TI->getParent()->getParent();
    OptimizationRemarkEmitter ORE(F);
    ORE.emit([&]() {
      return OptimizationRemark(DEBUG_TYPE, "pgo-instrumentation", TI)
             << BrCondStr << " is true with probability : " << BranchProbStr;
    });
  }
}

namespace llvm {

void setIrrLoopHeaderMetadata(Module *M, Instruction *TI, uint64_t Count) {
  MDBuilder MDB(M->getContext());
  TI->setMetadata(llvm::LLVMContext::MD_irr_loop,
                  MDB.createIrrLoopHeaderWeight(Count));
}

template <> struct GraphTraits<PGOUseFunc *> {
  using NodeRef = const BasicBlock *;
  using ChildIteratorType = succ_const_iterator;
  using nodes_iterator = pointer_iterator<Function::const_iterator>;

  static NodeRef getEntryNode(const PGOUseFunc *G) {
    return &G->getFunc().front();
  }

  static ChildIteratorType child_begin(const NodeRef N) {
    return succ_begin(N);
  }

  static ChildIteratorType child_end(const NodeRef N) { return succ_end(N); }

  static nodes_iterator nodes_begin(const PGOUseFunc *G) {
    return nodes_iterator(G->getFunc().begin());
  }

  static nodes_iterator nodes_end(const PGOUseFunc *G) {
    return nodes_iterator(G->getFunc().end());
  }
};

template <> struct DOTGraphTraits<PGOUseFunc *> : DefaultDOTGraphTraits {
  explicit DOTGraphTraits(bool isSimple = false)
      : DefaultDOTGraphTraits(isSimple) {}

  static std::string getGraphName(const PGOUseFunc *G) {
    return G->getFunc().getName();
  }

  std::string getNodeLabel(const BasicBlock *Node, const PGOUseFunc *Graph) {
    std::string Result;
    raw_string_ostream OS(Result);

    OS << getSimpleNodeName(Node) << ":\\l";
    UseBBInfo *BI = Graph->findBBInfo(Node);
    OS << "Count : ";
    if (BI && BI->CountValid)
      OS << BI->CountValue << "\\l";
    else
      OS << "Unknown\\l";

    if (!PGOInstrSelect)
      return Result;

    for (auto BI = Node->begin(); BI != Node->end(); ++BI) {
      auto *I = &*BI;
      if (!isa<SelectInst>(I))
        continue;
      // Display scaled counts for SELECT instruction:
      OS << "SELECT : { T = ";
      uint64_t TC, FC;
      bool HasProf = I->extractProfMetadata(TC, FC);
      if (!HasProf)
        OS << "Unknown, F = Unknown }\\l";
      else
        OS << TC << ", F = " << FC << " }\\l";
    }
    return Result;
  }
};

} // end namespace llvm