llvm.org GIT mirror llvm / c0f00a9 include / llvm / Support / GenericDomTreeConstruction.h
c0f00a9

Tree @c0f00a9 (Download .tar.gz)

GenericDomTreeConstruction.h @c0f00a9raw · history · blame

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
//===- GenericDomTreeConstruction.h - Dominator Calculation ------*- C++ -*-==//
//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
/// \file
///
/// Generic dominator tree construction - This file provides routines to
/// construct immediate dominator information for a flow-graph based on the
/// Semi-NCA algorithm described in this dissertation:
///
///   Linear-Time Algorithms for Dominators and Related Problems
///   Loukas Georgiadis, Princeton University, November 2005, pp. 21-23:
///   ftp://ftp.cs.princeton.edu/reports/2005/737.pdf
///
/// This implements the O(n*log(n)) versions of EVAL and LINK, because it turns
/// out that the theoretically slower O(n*log(n)) implementation is actually
/// faster than the almost-linear O(n*alpha(n)) version, even for large CFGs.
///
/// The file uses the Depth Based Search algorithm to perform incremental
/// updates (insertion and deletions). The implemented algorithm is based on
/// this publication:
///
///   An Experimental Study of Dynamic Dominators
///   Loukas Georgiadis, et al., April 12 2016, pp. 5-7, 9-10:
///   https://arxiv.org/pdf/1604.02711.pdf
///
//===----------------------------------------------------------------------===//

#ifndef LLVM_SUPPORT_GENERICDOMTREECONSTRUCTION_H
#define LLVM_SUPPORT_GENERICDOMTREECONSTRUCTION_H

#include <queue>
#include "llvm/ADT/DenseSet.h"
#include "llvm/ADT/DepthFirstIterator.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/GenericDomTree.h"

#define DEBUG_TYPE "dom-tree-builder"

namespace llvm {
namespace DomTreeBuilder {

template <typename NodePtr, bool Inverse>
struct ChildrenGetter {
  static auto Get(NodePtr N) -> decltype(reverse(children<NodePtr>(N))) {
    return reverse(children<NodePtr>(N));
  }
};

template <typename NodePtr>
struct ChildrenGetter<NodePtr, true> {
  static auto Get(NodePtr N) -> decltype(inverse_children<NodePtr>(N)) {
    return inverse_children<NodePtr>(N);
  }
};

template <typename DomTreeT>
struct SemiNCAInfo {
  using NodePtr = typename DomTreeT::NodePtr;
  using NodeT = typename DomTreeT::NodeType;
  using TreeNodePtr = DomTreeNodeBase<NodeT> *;
  using RootsT = decltype(DomTreeT::Roots);
  static constexpr bool IsPostDom = DomTreeT::IsPostDominator;

  // Information record used by Semi-NCA during tree construction.
  struct InfoRec {
    unsigned DFSNum = 0;
    unsigned Parent = 0;
    unsigned Semi = 0;
    NodePtr Label = nullptr;
    NodePtr IDom = nullptr;
    SmallVector<NodePtr, 2> ReverseChildren;
  };

  // Number to node mapping is 1-based. Initialize the mapping to start with
  // a dummy element.
  std::vector<NodePtr> NumToNode = {nullptr};
  DenseMap<NodePtr, InfoRec> NodeToInfo;

  void clear() {
    NumToNode = {nullptr}; // Restore to initial state with a dummy start node.
    NodeToInfo.clear();
  }

  NodePtr getIDom(NodePtr BB) const {
    auto InfoIt = NodeToInfo.find(BB);
    if (InfoIt == NodeToInfo.end()) return nullptr;

    return InfoIt->second.IDom;
  }

  TreeNodePtr getNodeForBlock(NodePtr BB, DomTreeT &DT) {
    if (TreeNodePtr Node = DT.getNode(BB)) return Node;

    // Haven't calculated this node yet?  Get or calculate the node for the
    // immediate dominator.
    NodePtr IDom = getIDom(BB);

    assert(IDom || DT.DomTreeNodes[nullptr]);
    TreeNodePtr IDomNode = getNodeForBlock(IDom, DT);

    // Add a new tree node for this NodeT, and link it as a child of
    // IDomNode
    return (DT.DomTreeNodes[BB] = IDomNode->addChild(
        llvm::make_unique<DomTreeNodeBase<NodeT>>(BB, IDomNode)))
        .get();
  }

  static bool AlwaysDescend(NodePtr, NodePtr) { return true; }

  struct BlockNamePrinter {
    NodePtr N;

    BlockNamePrinter(NodePtr Block) : N(Block) {}
    BlockNamePrinter(TreeNodePtr TN) : N(TN ? TN->getBlock() : nullptr) {}

    friend raw_ostream &operator<<(raw_ostream &O, const BlockNamePrinter &BP) {
      if (!BP.N)
        O << "nullptr";
      else
        BP.N->printAsOperand(O, false);

      return O;
    }
  };

  // Custom DFS implementation which can skip nodes based on a provided
  // predicate. It also collects ReverseChildren so that we don't have to spend
  // time getting predecessors in SemiNCA.
  //
  // If IsReverse is set to true, the DFS walk will be performed backwards
  // relative to IsPostDom -- using reverse edges for dominators and forward
  // edges for postdominators.
  template <bool IsReverse = false, typename DescendCondition>
  unsigned runDFS(NodePtr V, unsigned LastNum, DescendCondition Condition,
                  unsigned AttachToNum) {
    assert(V);
    SmallVector<NodePtr, 64> WorkList = {V};
    if (NodeToInfo.count(V) != 0) NodeToInfo[V].Parent = AttachToNum;

    while (!WorkList.empty()) {
      const NodePtr BB = WorkList.pop_back_val();
      auto &BBInfo = NodeToInfo[BB];

      // Visited nodes always have positive DFS numbers.
      if (BBInfo.DFSNum != 0) continue;
      BBInfo.DFSNum = BBInfo.Semi = ++LastNum;
      BBInfo.Label = BB;
      NumToNode.push_back(BB);

      constexpr bool Direction = IsReverse != IsPostDom;  // XOR.
      for (const NodePtr Succ : ChildrenGetter<NodePtr, Direction>::Get(BB)) {
        const auto SIT = NodeToInfo.find(Succ);
        // Don't visit nodes more than once but remember to collect
        // ReverseChildren.
        if (SIT != NodeToInfo.end() && SIT->second.DFSNum != 0) {
          if (Succ != BB) SIT->second.ReverseChildren.push_back(BB);
          continue;
        }

        if (!Condition(BB, Succ)) continue;

        // It's fine to add Succ to the map, because we know that it will be
        // visited later.
        auto &SuccInfo = NodeToInfo[Succ];
        WorkList.push_back(Succ);
        SuccInfo.Parent = LastNum;
        SuccInfo.ReverseChildren.push_back(BB);
      }
    }

    return LastNum;
  }

  NodePtr eval(NodePtr VIn, unsigned LastLinked) {
    auto &VInInfo = NodeToInfo[VIn];
    if (VInInfo.DFSNum < LastLinked)
      return VIn;

    SmallVector<NodePtr, 32> Work;
    SmallPtrSet<NodePtr, 32> Visited;

    if (VInInfo.Parent >= LastLinked)
      Work.push_back(VIn);

    while (!Work.empty()) {
      NodePtr V = Work.back();
      auto &VInfo = NodeToInfo[V];
      NodePtr VAncestor = NumToNode[VInfo.Parent];

      // Process Ancestor first
      if (Visited.insert(VAncestor).second && VInfo.Parent >= LastLinked) {
        Work.push_back(VAncestor);
        continue;
      }
      Work.pop_back();

      // Update VInfo based on Ancestor info
      if (VInfo.Parent < LastLinked)
        continue;

      auto &VAInfo = NodeToInfo[VAncestor];
      NodePtr VAncestorLabel = VAInfo.Label;
      NodePtr VLabel = VInfo.Label;
      if (NodeToInfo[VAncestorLabel].Semi < NodeToInfo[VLabel].Semi)
        VInfo.Label = VAncestorLabel;
      VInfo.Parent = VAInfo.Parent;
    }

    return VInInfo.Label;
  }

  // This function requires DFS to be run before calling it.
  void runSemiNCA(DomTreeT &DT, const unsigned MinLevel = 0) {
    const unsigned NextDFSNum(NumToNode.size());
    // Initialize IDoms to spanning tree parents.
    for (unsigned i = 1; i < NextDFSNum; ++i) {
      const NodePtr V = NumToNode[i];
      auto &VInfo = NodeToInfo[V];
      VInfo.IDom = NumToNode[VInfo.Parent];
    }

    // Step #1: Calculate the semidominators of all vertices.
    for (unsigned i = NextDFSNum - 1; i >= 2; --i) {
      NodePtr W = NumToNode[i];
      auto &WInfo = NodeToInfo[W];

      // Initialize the semi dominator to point to the parent node.
      WInfo.Semi = WInfo.Parent;
      for (const auto &N : WInfo.ReverseChildren) {
        if (NodeToInfo.count(N) == 0)  // Skip unreachable predecessors.
          continue;

        const TreeNodePtr TN = DT.getNode(N);
        // Skip predecessors whose level is above the subtree we are processing.
        if (TN && TN->getLevel() < MinLevel)
          continue;

        unsigned SemiU = NodeToInfo[eval(N, i + 1)].Semi;
        if (SemiU < WInfo.Semi) WInfo.Semi = SemiU;
      }
    }

    // Step #2: Explicitly define the immediate dominator of each vertex.
    //          IDom[i] = NCA(SDom[i], SpanningTreeParent(i)).
    // Note that the parents were stored in IDoms and later got invalidated
    // during path compression in Eval.
    for (unsigned i = 2; i < NextDFSNum; ++i) {
      const NodePtr W = NumToNode[i];
      auto &WInfo = NodeToInfo[W];
      const unsigned SDomNum = NodeToInfo[NumToNode[WInfo.Semi]].DFSNum;
      NodePtr WIDomCandidate = WInfo.IDom;
      while (NodeToInfo[WIDomCandidate].DFSNum > SDomNum)
        WIDomCandidate = NodeToInfo[WIDomCandidate].IDom;

      WInfo.IDom = WIDomCandidate;
    }
  }

  // PostDominatorTree always has a virtual root that represents a virtual CFG
  // node that serves as a single exit from the function. All the other exits
  // (CFG nodes with terminators and nodes in infinite loops are logically
  // connected to this virtual CFG exit node).
  // This functions maps a nullptr CFG node to the virtual root tree node.
  void addVirtualRoot() {
    assert(IsPostDom && "Only postdominators have a virtual root");
    assert(NumToNode.size() == 1 && "SNCAInfo must be freshly constructed");

    auto &BBInfo = NodeToInfo[nullptr];
    BBInfo.DFSNum = BBInfo.Semi = 1;
    BBInfo.Label = nullptr;

    NumToNode.push_back(nullptr);  // NumToNode[1] = nullptr;
  }

  // For postdominators, nodes with no forward successors are trivial roots that
  // are always selected as tree roots. Roots with forward successors correspond
  // to CFG nodes within infinite loops.
  static bool HasForwardSuccessors(const NodePtr N) {
    assert(N && "N must be a valid node");
    using TraitsTy = GraphTraits<typename DomTreeT::ParentPtr>;
    return TraitsTy::child_begin(N) != TraitsTy::child_end(N);
  }

  static NodePtr GetEntryNode(const DomTreeT &DT) {
    assert(DT.Parent && "Parent not set");
    return GraphTraits<typename DomTreeT::ParentPtr>::getEntryNode(DT.Parent);
  }

  // Finds all roots without relaying on the set of roots already stored in the
  // tree.
  // We define roots to be some non-redundant set of the CFG nodes
  static RootsT FindRoots(const DomTreeT &DT) {
    assert(DT.Parent && "Parent pointer is not set");
    RootsT Roots;

    // For dominators, function entry CFG node is always a tree root node.
    if (!IsPostDom) {
      Roots.push_back(GetEntryNode(DT));
      return Roots;
    }

    SemiNCAInfo SNCA;

    // PostDominatorTree always has a virtual root.
    SNCA.addVirtualRoot();
    unsigned Num = 1;

    DEBUG(dbgs() << "\t\tLooking for trivial roots\n");

    // Step #1: Find all the trivial roots that are going to will definitely
    // remain tree roots.
    unsigned Total = 0;
    for (const NodePtr N : nodes(DT.Parent)) {
      ++Total;
      // If it has no *successors*, it is definitely a root.
      if (!HasForwardSuccessors(N)) {
        Roots.push_back(N);
        // Run DFS not to walk this part of CFG later.
        Num = SNCA.runDFS(N, Num, AlwaysDescend, 1);
        DEBUG(dbgs() << "Found a new trivial root: " << BlockNamePrinter(N)
                     << "\n");
        DEBUG(dbgs() << "Last visited node: "
                     << BlockNamePrinter(SNCA.NumToNode[Num]) << "\n");
      }
    }

    DEBUG(dbgs() << "\t\tLooking for non-trivial roots\n");

    // Step #2: Find all non-trivial root candidates. Those are CFG nodes that
    // are reverse-unreachable were not visited by previous DFS walks (i.e. CFG
    // nodes in infinite loops).
    bool HasNonTrivialRoots = false;
    // Accounting for the virtual exit, see if we had any reverse-unreachable
    // nodes.
    if (Total + 1 != Num) {
      HasNonTrivialRoots = true;
      // Make another DFS pass over all other nodes to find the
      // reverse-unreachable blocks, and find the furthest paths we'll be able
      // to make.
      // Note that this looks N^2, but it's really 2N worst case, if every node
      // is unreachable. This is because we are still going to only visit each
      // unreachable node once, we may just visit it in two directions,
      // depending on how lucky we get.
      SmallPtrSet<NodePtr, 4> ConnectToExitBlock;
      for (const NodePtr I : nodes(DT.Parent)) {
        if (SNCA.NodeToInfo.count(I) == 0) {
          DEBUG(dbgs() << "\t\t\tVisiting node " << BlockNamePrinter(I)
                       << "\n");
          // Find the furthest away we can get by following successors, then
          // follow them in reverse.  This gives us some reasonable answer about
          // the post-dom tree inside any infinite loop. In particular, it
          // guarantees we get to the farthest away point along *some*
          // path. This also matches the GCC's behavior.
          // If we really wanted a totally complete picture of dominance inside
          // this infinite loop, we could do it with SCC-like algorithms to find
          // the lowest and highest points in the infinite loop.  In theory, it
          // would be nice to give the canonical backedge for the loop, but it's
          // expensive and does not always lead to a minimal set of roots.
          DEBUG(dbgs() << "\t\t\tRunning forward DFS\n");

          const unsigned NewNum = SNCA.runDFS<true>(I, Num, AlwaysDescend, Num);
          const NodePtr FurthestAway = SNCA.NumToNode[NewNum];
          DEBUG(dbgs() << "\t\t\tFound a new furthest away node "
                       << "(non-trivial root): "
                       << BlockNamePrinter(FurthestAway) << "\n");
          ConnectToExitBlock.insert(FurthestAway);
          Roots.push_back(FurthestAway);
          DEBUG(dbgs() << "\t\t\tPrev DFSNum: " << Num << ", new DFSNum: "
                       << NewNum << "\n\t\t\tRemoving DFS info\n");
          for (unsigned i = NewNum; i > Num; --i) {
            const NodePtr N = SNCA.NumToNode[i];
            DEBUG(dbgs() << "\t\t\t\tRemoving DFS info for "
                         << BlockNamePrinter(N) << "\n");
            SNCA.NodeToInfo.erase(N);
            SNCA.NumToNode.pop_back();
          }
          const unsigned PrevNum = Num;
          DEBUG(dbgs() << "\t\t\tRunning reverse DFS\n");
          Num = SNCA.runDFS(FurthestAway, Num, AlwaysDescend, 1);
          for (unsigned i = PrevNum + 1; i <= Num; ++i)
            DEBUG(dbgs() << "\t\t\t\tfound node "
                         << BlockNamePrinter(SNCA.NumToNode[i]) << "\n");
        }
      }
    }

    DEBUG(dbgs() << "Total: " << Total << ", Num: " << Num << "\n");
    DEBUG(dbgs() << "Discovered CFG nodes:\n");
    DEBUG(for (size_t i = 0; i <= Num; ++i) dbgs()
          << i << ": " << BlockNamePrinter(SNCA.NumToNode[i]) << "\n");

    assert((Total + 1 == Num) && "Everything should have been visited");

    // Step #3: If we found some non-trivial roots, make them non-redundant.
    if (HasNonTrivialRoots) RemoveRedundantRoots(DT, Roots);

    DEBUG(dbgs() << "Found roots: ");
    DEBUG(for (auto *Root : Roots) dbgs() << BlockNamePrinter(Root) << " ");
    DEBUG(dbgs() << "\n");

    return Roots;
  }

  // This function only makes sense for postdominators.
  // We define roots to be some set of CFG nodes where (reverse) DFS walks have
  // to start in order to visit all the CFG nodes (including the
  // reverse-unreachable ones).
  // When the search for non-trivial roots is done it may happen that some of
  // the non-trivial roots are reverse-reachable from other non-trivial roots,
  // which makes them redundant. This function removes them from the set of
  // input roots.
  static void RemoveRedundantRoots(const DomTreeT &DT, RootsT &Roots) {
    assert(IsPostDom && "This function is for postdominators only");
    DEBUG(dbgs() << "Removing redundant roots\n");

    SemiNCAInfo SNCA;

    for (unsigned i = 0; i < Roots.size(); ++i) {
      auto &Root = Roots[i];
      // Trivial roots are always non-redundant.
      if (!HasForwardSuccessors(Root)) continue;
      DEBUG(dbgs() << "\tChecking if " << BlockNamePrinter(Root)
                   << " remains a root\n");
      SNCA.clear();
      // Do a forward walk looking for the other roots.
      const unsigned Num = SNCA.runDFS<true>(Root, 0, AlwaysDescend, 0);
      // Skip the start node and begin from the second one (note that DFS uses
      // 1-based indexing).
      for (unsigned x = 2; x <= Num; ++x) {
        const NodePtr N = SNCA.NumToNode[x];
        // If we wound another root in a (forward) DFS walk, remove the current
        // root from the set of roots, as it is reverse-reachable from the other
        // one.
        if (llvm::find(Roots, N) != Roots.end()) {
          DEBUG(dbgs() << "\tForward DFS walk found another root "
                       << BlockNamePrinter(N) << "\n\tRemoving root "
                       << BlockNamePrinter(Root) << "\n");
          std::swap(Root, Roots.back());
          Roots.pop_back();

          // Root at the back takes the current root's place.
          // Start the next loop iteration with the same index.
          --i;
          break;
        }
      }
    }
  }

  template <typename DescendCondition>
  void doFullDFSWalk(const DomTreeT &DT, DescendCondition DC) {
    if (!IsPostDom) {
      assert(DT.Roots.size() == 1 && "Dominators should have a singe root");
      runDFS(DT.Roots[0], 0, DC, 0);
      return;
    }

    addVirtualRoot();
    unsigned Num = 1;
    for (const NodePtr Root : DT.Roots) Num = runDFS(Root, Num, DC, 0);
  }

  void calculateFromScratch(DomTreeT &DT) {
    // Step #0: Number blocks in depth-first order and initialize variables used
    // in later stages of the algorithm.
    DT.Roots = FindRoots(DT);
    doFullDFSWalk(DT, AlwaysDescend);

    runSemiNCA(DT);

    if (DT.Roots.empty()) return;

    // Add a node for the root. If the tree is a PostDominatorTree it will be
    // the virtual exit (denoted by (BasicBlock *) nullptr) which postdominates
    // all real exits (including multiple exit blocks, infinite loops).
    NodePtr Root = IsPostDom ? nullptr : DT.Roots[0];

    DT.RootNode = (DT.DomTreeNodes[Root] =
                       llvm::make_unique<DomTreeNodeBase<NodeT>>(Root, nullptr))
        .get();
    attachNewSubtree(DT, DT.RootNode);
  }

  void attachNewSubtree(DomTreeT& DT, const TreeNodePtr AttachTo) {
    // Attach the first unreachable block to AttachTo.
    NodeToInfo[NumToNode[1]].IDom = AttachTo->getBlock();
    // Loop over all of the discovered blocks in the function...
    for (size_t i = 1, e = NumToNode.size(); i != e; ++i) {
      NodePtr W = NumToNode[i];
      DEBUG(dbgs() << "\tdiscovered a new reachable node "
                   << BlockNamePrinter(W) << "\n");

      // Don't replace this with 'count', the insertion side effect is important
      if (DT.DomTreeNodes[W]) continue;  // Haven't calculated this node yet?

      NodePtr ImmDom = getIDom(W);

      // Get or calculate the node for the immediate dominator.
      TreeNodePtr IDomNode = getNodeForBlock(ImmDom, DT);

      // Add a new tree node for this BasicBlock, and link it as a child of
      // IDomNode.
      DT.DomTreeNodes[W] = IDomNode->addChild(
          llvm::make_unique<DomTreeNodeBase<NodeT>>(W, IDomNode));
    }
  }

  void reattachExistingSubtree(DomTreeT &DT, const TreeNodePtr AttachTo) {
    NodeToInfo[NumToNode[1]].IDom = AttachTo->getBlock();
    for (size_t i = 1, e = NumToNode.size(); i != e; ++i) {
      const NodePtr N = NumToNode[i];
      const TreeNodePtr TN = DT.getNode(N);
      assert(TN);
      const TreeNodePtr NewIDom = DT.getNode(NodeToInfo[N].IDom);
      TN->setIDom(NewIDom);
    }
  }

  // Helper struct used during edge insertions.
  struct InsertionInfo {
    using BucketElementTy = std::pair<unsigned, TreeNodePtr>;
    struct DecreasingLevel {
      bool operator()(const BucketElementTy &First,
                      const BucketElementTy &Second) const {
        return First.first > Second.first;
      }
    };

    std::priority_queue<BucketElementTy, SmallVector<BucketElementTy, 8>,
        DecreasingLevel>
        Bucket;  // Queue of tree nodes sorted by level in descending order.
    SmallDenseSet<TreeNodePtr, 8> Affected;
    SmallDenseSet<TreeNodePtr, 8> Visited;
    SmallVector<TreeNodePtr, 8> AffectedQueue;
    SmallVector<TreeNodePtr, 8> VisitedNotAffectedQueue;
  };

  static void InsertEdge(DomTreeT &DT, const NodePtr From, const NodePtr To) {
    assert((From || IsPostDom) &&
           "From has to be a valid CFG node or a virtual root");
    assert(To && "Cannot be a nullptr");
    DEBUG(dbgs() << "Inserting edge " << BlockNamePrinter(From) << " -> "
                 << BlockNamePrinter(To) << "\n");
    TreeNodePtr FromTN = DT.getNode(From);

    if (!FromTN) {
      // Ignore edges from unreachable nodes for (forward) dominators.
      if (!IsPostDom) return;

      // The unreachable node becomes a new root -- a tree node for it.
      TreeNodePtr VirtualRoot = DT.getNode(nullptr);
      FromTN =
          (DT.DomTreeNodes[From] = VirtualRoot->addChild(
               llvm::make_unique<DomTreeNodeBase<NodeT>>(From, VirtualRoot)))
              .get();
      DT.Roots.push_back(From);
    }

    DT.DFSInfoValid = false;

    const TreeNodePtr ToTN = DT.getNode(To);
    if (!ToTN)
      InsertUnreachable(DT, FromTN, To);
    else
      InsertReachable(DT, FromTN, ToTN);
  }

  // Determines if some existing root becomes reverse-reachable after the
  // insertion. Rebuilds the whole tree if that situation happens.
  static bool UpdateRootsBeforeInsertion(DomTreeT &DT, const TreeNodePtr From,
                                         const TreeNodePtr To) {
    assert(IsPostDom && "This function is only for postdominators");
    // Destination node is not attached to the virtual root, so it cannot be a
    // root.
    if (!DT.isVirtualRoot(To->getIDom())) return false;

    auto RIt = llvm::find(DT.Roots, To->getBlock());
    if (RIt == DT.Roots.end())
      return false;  // To is not a root, nothing to update.

    DEBUG(dbgs() << "\t\tAfter the insertion, " << BlockNamePrinter(To)
                 << " is no longer a root\n\t\tRebuilding the tree!!!\n");

    DT.recalculate(*DT.Parent);
    return true;
  }

  // Updates the set of roots after insertion or deletion. This ensures that
  // roots are the same when after a series of updates and when the tree would
  // be built from scratch.
  static void UpdateRootsAfterUpdate(DomTreeT &DT) {
    assert(IsPostDom && "This function is only for postdominators");

    // The tree has only trivial roots -- nothing to update.
    if (std::none_of(DT.Roots.begin(), DT.Roots.end(), HasForwardSuccessors))
      return;

    // Recalculate the set of roots.
    DT.Roots = FindRoots(DT);
    for (const NodePtr R : DT.Roots) {
      const TreeNodePtr TN = DT.getNode(R);
      // A CFG node was selected as a tree root, but the corresponding tree node
      // is not connected to the virtual root. This is because the incremental
      // algorithm does not really know or use the set of roots and can make a
      // different (implicit) decision about which nodes within an infinite loop
      // becomes a root.
      if (DT.isVirtualRoot(TN->getIDom())) {
        DEBUG(dbgs() << "Root " << BlockNamePrinter(R)
                     << " is not virtual root's child\n"
                     << "The entire tree needs to be rebuilt\n");
        // It should be possible to rotate the subtree instead of recalculating
        // the whole tree, but this situation happens extremely rarely in
        // practice.
        DT.recalculate(*DT.Parent);
        return;
      }
    }
  }

  // Handles insertion to a node already in the dominator tree.
  static void InsertReachable(DomTreeT &DT, const TreeNodePtr From,
                              const TreeNodePtr To) {
    DEBUG(dbgs() << "\tReachable " << BlockNamePrinter(From->getBlock())
                 << " -> " << BlockNamePrinter(To->getBlock()) << "\n");
    if (IsPostDom && UpdateRootsBeforeInsertion(DT, From, To)) return;
    // DT.findNCD expects both pointers to be valid. When From is a virtual
    // root, then its CFG block pointer is a nullptr, so we have to 'compute'
    // the NCD manually.
    const NodePtr NCDBlock =
        (From->getBlock() && To->getBlock())
            ? DT.findNearestCommonDominator(From->getBlock(), To->getBlock())
            : nullptr;
    assert(NCDBlock || DT.isPostDominator());
    const TreeNodePtr NCD = DT.getNode(NCDBlock);
    assert(NCD);

    DEBUG(dbgs() << "\t\tNCA == " << BlockNamePrinter(NCD) << "\n");
    const TreeNodePtr ToIDom = To->getIDom();

    // Nothing affected -- NCA property holds.
    // (Based on the lemma 2.5 from the second paper.)
    if (NCD == To || NCD == ToIDom) return;

    // Identify and collect affected nodes.
    InsertionInfo II;
    DEBUG(dbgs() << "Marking " << BlockNamePrinter(To) << " as affected\n");
    II.Affected.insert(To);
    const unsigned ToLevel = To->getLevel();
    DEBUG(dbgs() << "Putting " << BlockNamePrinter(To) << " into a Bucket\n");
    II.Bucket.push({ToLevel, To});

    while (!II.Bucket.empty()) {
      const TreeNodePtr CurrentNode = II.Bucket.top().second;
      II.Bucket.pop();
      DEBUG(dbgs() << "\tAdding to Visited and AffectedQueue: "
                   << BlockNamePrinter(CurrentNode) << "\n");
      II.Visited.insert(CurrentNode);
      II.AffectedQueue.push_back(CurrentNode);

      // Discover and collect affected successors of the current node.
      VisitInsertion(DT, CurrentNode, CurrentNode->getLevel(), NCD, II);
    }

    // Finish by updating immediate dominators and levels.
    UpdateInsertion(DT, NCD, II);
  }

  // Visits an affected node and collect its affected successors.
  static void VisitInsertion(DomTreeT &DT, const TreeNodePtr TN,
                             const unsigned RootLevel, const TreeNodePtr NCD,
                             InsertionInfo &II) {
    const unsigned NCDLevel = NCD->getLevel();
    DEBUG(dbgs() << "Visiting " << BlockNamePrinter(TN) << "\n");

    SmallVector<TreeNodePtr, 8> Stack = {TN};
    assert(TN->getBlock() && II.Visited.count(TN) && "Preconditions!");

    do {
      TreeNodePtr Next = Stack.pop_back_val();

      for (const NodePtr Succ :
           ChildrenGetter<NodePtr, IsPostDom>::Get(Next->getBlock())) {
        const TreeNodePtr SuccTN = DT.getNode(Succ);
        assert(SuccTN && "Unreachable successor found at reachable insertion");
        const unsigned SuccLevel = SuccTN->getLevel();

        DEBUG(dbgs() << "\tSuccessor " << BlockNamePrinter(Succ)
                     << ", level = " << SuccLevel << "\n");

        // Succ dominated by subtree From -- not affected.
        // (Based on the lemma 2.5 from the second paper.)
        if (SuccLevel > RootLevel) {
          DEBUG(dbgs() << "\t\tDominated by subtree From\n");
          if (II.Visited.count(SuccTN) != 0)
            continue;

          DEBUG(dbgs() << "\t\tMarking visited not affected "
                       << BlockNamePrinter(Succ) << "\n");
          II.Visited.insert(SuccTN);
          II.VisitedNotAffectedQueue.push_back(SuccTN);
          Stack.push_back(SuccTN);
        } else if ((SuccLevel > NCDLevel + 1) &&
                   II.Affected.count(SuccTN) == 0) {
          DEBUG(dbgs() << "\t\tMarking affected and adding "
                       << BlockNamePrinter(Succ) << " to a Bucket\n");
          II.Affected.insert(SuccTN);
          II.Bucket.push({SuccLevel, SuccTN});
        }
      }
    } while (!Stack.empty());
  }

  // Updates immediate dominators and levels after insertion.
  static void UpdateInsertion(DomTreeT &DT, const TreeNodePtr NCD,
                              InsertionInfo &II) {
    DEBUG(dbgs() << "Updating NCD = " << BlockNamePrinter(NCD) << "\n");

    for (const TreeNodePtr TN : II.AffectedQueue) {
      DEBUG(dbgs() << "\tIDom(" << BlockNamePrinter(TN)
                   << ") = " << BlockNamePrinter(NCD) << "\n");
      TN->setIDom(NCD);
    }

    UpdateLevelsAfterInsertion(II);
    if (IsPostDom) UpdateRootsAfterUpdate(DT);
  }

  static void UpdateLevelsAfterInsertion(InsertionInfo &II) {
    DEBUG(dbgs() << "Updating levels for visited but not affected nodes\n");

    for (const TreeNodePtr TN : II.VisitedNotAffectedQueue) {
      DEBUG(dbgs() << "\tlevel(" << BlockNamePrinter(TN) << ") = ("
                   << BlockNamePrinter(TN->getIDom()) << ") "
                   << TN->getIDom()->getLevel() << " + 1\n");
      TN->UpdateLevel();
    }
  }

  // Handles insertion to previously unreachable nodes.
  static void InsertUnreachable(DomTreeT &DT, const TreeNodePtr From,
                                const NodePtr To) {
    DEBUG(dbgs() << "Inserting " << BlockNamePrinter(From)
                 << " -> (unreachable) " << BlockNamePrinter(To) << "\n");

    // Collect discovered edges to already reachable nodes.
    SmallVector<std::pair<NodePtr, TreeNodePtr>, 8> DiscoveredEdgesToReachable;
    // Discover and connect nodes that became reachable with the insertion.
    ComputeUnreachableDominators(DT, To, From, DiscoveredEdgesToReachable);

    DEBUG(dbgs() << "Inserted " << BlockNamePrinter(From)
                 << " -> (prev unreachable) " << BlockNamePrinter(To) << "\n");

    DEBUG(DT.print(dbgs()));

    // Used the discovered edges and inset discovered connecting (incoming)
    // edges.
    for (const auto &Edge : DiscoveredEdgesToReachable) {
      DEBUG(dbgs() << "\tInserting discovered connecting edge "
                   << BlockNamePrinter(Edge.first) << " -> "
                   << BlockNamePrinter(Edge.second) << "\n");
      InsertReachable(DT, DT.getNode(Edge.first), Edge.second);
    }
  }

  // Connects nodes that become reachable with an insertion.
  static void ComputeUnreachableDominators(
      DomTreeT &DT, const NodePtr Root, const TreeNodePtr Incoming,
      SmallVectorImpl<std::pair<NodePtr, TreeNodePtr>>
      &DiscoveredConnectingEdges) {
    assert(!DT.getNode(Root) && "Root must not be reachable");

    // Visit only previously unreachable nodes.
    auto UnreachableDescender = [&DT, &DiscoveredConnectingEdges](NodePtr From,
                                                                  NodePtr To) {
      const TreeNodePtr ToTN = DT.getNode(To);
      if (!ToTN) return true;

      DiscoveredConnectingEdges.push_back({From, ToTN});
      return false;
    };

    SemiNCAInfo SNCA;
    SNCA.runDFS(Root, 0, UnreachableDescender, 0);
    SNCA.runSemiNCA(DT);
    SNCA.attachNewSubtree(DT, Incoming);

    DEBUG(dbgs() << "After adding unreachable nodes\n");
    DEBUG(DT.print(dbgs()));
  }

  static void DeleteEdge(DomTreeT &DT, const NodePtr From, const NodePtr To) {
    assert(From && To && "Cannot disconnect nullptrs");
    DEBUG(dbgs() << "Deleting edge " << BlockNamePrinter(From) << " -> "
                 << BlockNamePrinter(To) << "\n");

#ifndef NDEBUG
    // Ensure that the edge was in fact deleted from the CFG before informing
    // the DomTree about it.
    // The check is O(N), so run it only in debug configuration.
    auto IsSuccessor = [](const NodePtr SuccCandidate, const NodePtr Of) {
      auto Successors = ChildrenGetter<NodePtr, IsPostDom>::Get(Of);
      return llvm::find(Successors, SuccCandidate) != Successors.end();
    };
    (void)IsSuccessor;
    assert(!IsSuccessor(To, From) && "Deleted edge still exists in the CFG!");
#endif

    const TreeNodePtr FromTN = DT.getNode(From);
    // Deletion in an unreachable subtree -- nothing to do.
    if (!FromTN) return;

    const TreeNodePtr ToTN = DT.getNode(To);
    assert(ToTN && "To already unreachable -- there is no edge to delete");
    const NodePtr NCDBlock = DT.findNearestCommonDominator(From, To);
    const TreeNodePtr NCD = DT.getNode(NCDBlock);

    // To dominates From -- nothing to do.
    if (ToTN == NCD) return;

    const TreeNodePtr ToIDom = ToTN->getIDom();
    DEBUG(dbgs() << "\tNCD " << BlockNamePrinter(NCD) << ", ToIDom "
                 << BlockNamePrinter(ToIDom) << "\n");

    // To remains reachable after deletion.
    // (Based on the caption under Figure 4. from the second paper.)
    if (FromTN != ToIDom || HasProperSupport(DT, ToTN))
      DeleteReachable(DT, FromTN, ToTN);
    else
      DeleteUnreachable(DT, ToTN);

    if (IsPostDom) UpdateRootsAfterUpdate(DT);
  }

  // Handles deletions that leave destination nodes reachable.
  static void DeleteReachable(DomTreeT &DT, const TreeNodePtr FromTN,
                              const TreeNodePtr ToTN) {
    DEBUG(dbgs() << "Deleting reachable " << BlockNamePrinter(FromTN) << " -> "
                 << BlockNamePrinter(ToTN) << "\n");
    DEBUG(dbgs() << "\tRebuilding subtree\n");

    // Find the top of the subtree that needs to be rebuilt.
    // (Based on the lemma 2.6 from the second paper.)
    const NodePtr ToIDom =
        DT.findNearestCommonDominator(FromTN->getBlock(), ToTN->getBlock());
    assert(ToIDom || DT.isPostDominator());
    const TreeNodePtr ToIDomTN = DT.getNode(ToIDom);
    assert(ToIDomTN);
    const TreeNodePtr PrevIDomSubTree = ToIDomTN->getIDom();
    // Top of the subtree to rebuild is the root node. Rebuild the tree from
    // scratch.
    if (!PrevIDomSubTree) {
      DEBUG(dbgs() << "The entire tree needs to be rebuilt\n");
      DT.recalculate(*DT.Parent);
      return;
    }

    // Only visit nodes in the subtree starting at To.
    const unsigned Level = ToIDomTN->getLevel();
    auto DescendBelow = [Level, &DT](NodePtr, NodePtr To) {
      return DT.getNode(To)->getLevel() > Level;
    };

    DEBUG(dbgs() << "\tTop of subtree: " << BlockNamePrinter(ToIDomTN) << "\n");

    SemiNCAInfo SNCA;
    SNCA.runDFS(ToIDom, 0, DescendBelow, 0);
    DEBUG(dbgs() << "\tRunning Semi-NCA\n");
    SNCA.runSemiNCA(DT, Level);
    SNCA.reattachExistingSubtree(DT, PrevIDomSubTree);
  }

  // Checks if a node has proper support, as defined on the page 3 and later
  // explained on the page 7 of the second paper.
  static bool HasProperSupport(DomTreeT &DT, const TreeNodePtr TN) {
    DEBUG(dbgs() << "IsReachableFromIDom " << BlockNamePrinter(TN) << "\n");
    for (const NodePtr Pred :
        ChildrenGetter<NodePtr, !IsPostDom>::Get(TN->getBlock())) {
      DEBUG(dbgs() << "\tPred " << BlockNamePrinter(Pred) << "\n");
      if (!DT.getNode(Pred)) continue;

      const NodePtr Support =
          DT.findNearestCommonDominator(TN->getBlock(), Pred);
      DEBUG(dbgs() << "\tSupport " << BlockNamePrinter(Support) << "\n");
      if (Support != TN->getBlock()) {
        DEBUG(dbgs() << "\t" << BlockNamePrinter(TN)
                     << " is reachable from support "
                     << BlockNamePrinter(Support) << "\n");
        return true;
      }
    }

    return false;
  }

  // Handle deletions that make destination node unreachable.
  // (Based on the lemma 2.7 from the second paper.)
  static void DeleteUnreachable(DomTreeT &DT, const TreeNodePtr ToTN) {
    DEBUG(dbgs() << "Deleting unreachable subtree " << BlockNamePrinter(ToTN)
                 << "\n");
    assert(ToTN);
    assert(ToTN->getBlock());

    if (IsPostDom) {
      // Deletion makes a region reverse-unreachable and creates a new root.
      // Simulate that by inserting an edge from the virtual root to ToTN and
      // adding it as a new root.
      DEBUG(dbgs() << "\tDeletion made a region reverse-unreachable\n");
      DEBUG(dbgs() << "\tAdding new root " << BlockNamePrinter(ToTN) << "\n");
      DT.Roots.push_back(ToTN->getBlock());
      InsertReachable(DT, DT.getNode(nullptr), ToTN);
      return;
    }

    SmallVector<NodePtr, 16> AffectedQueue;
    const unsigned Level = ToTN->getLevel();

    // Traverse destination node's descendants with greater level in the tree
    // and collect visited nodes.
    auto DescendAndCollect = [Level, &AffectedQueue, &DT](NodePtr, NodePtr To) {
      const TreeNodePtr TN = DT.getNode(To);
      assert(TN);
      if (TN->getLevel() > Level) return true;
      if (llvm::find(AffectedQueue, To) == AffectedQueue.end())
        AffectedQueue.push_back(To);

      return false;
    };

    SemiNCAInfo SNCA;
    unsigned LastDFSNum =
        SNCA.runDFS(ToTN->getBlock(), 0, DescendAndCollect, 0);

    TreeNodePtr MinNode = ToTN;

    // Identify the top of the subtree to rebuild by finding the NCD of all
    // the affected nodes.
    for (const NodePtr N : AffectedQueue) {
      const TreeNodePtr TN = DT.getNode(N);
      const NodePtr NCDBlock =
          DT.findNearestCommonDominator(TN->getBlock(), ToTN->getBlock());
      assert(NCDBlock || DT.isPostDominator());
      const TreeNodePtr NCD = DT.getNode(NCDBlock);
      assert(NCD);

      DEBUG(dbgs() << "Processing affected node " << BlockNamePrinter(TN)
                   << " with NCD = " << BlockNamePrinter(NCD)
                   << ", MinNode =" << BlockNamePrinter(MinNode) << "\n");
      if (NCD != TN && NCD->getLevel() < MinNode->getLevel()) MinNode = NCD;
    }

    // Root reached, rebuild the whole tree from scratch.
    if (!MinNode->getIDom()) {
      DEBUG(dbgs() << "The entire tree needs to be rebuilt\n");
      DT.recalculate(*DT.Parent);
      return;
    }

    // Erase the unreachable subtree in reverse preorder to process all children
    // before deleting their parent.
    for (unsigned i = LastDFSNum; i > 0; --i) {
      const NodePtr N = SNCA.NumToNode[i];
      const TreeNodePtr TN = DT.getNode(N);
      DEBUG(dbgs() << "Erasing node " << BlockNamePrinter(TN) << "\n");

      EraseNode(DT, TN);
    }

    // The affected subtree start at the To node -- there's no extra work to do.
    if (MinNode == ToTN) return;

    DEBUG(dbgs() << "DeleteUnreachable: running DFS with MinNode = "
                 << BlockNamePrinter(MinNode) << "\n");
    const unsigned MinLevel = MinNode->getLevel();
    const TreeNodePtr PrevIDom = MinNode->getIDom();
    assert(PrevIDom);
    SNCA.clear();

    // Identify nodes that remain in the affected subtree.
    auto DescendBelow = [MinLevel, &DT](NodePtr, NodePtr To) {
      const TreeNodePtr ToTN = DT.getNode(To);
      return ToTN && ToTN->getLevel() > MinLevel;
    };
    SNCA.runDFS(MinNode->getBlock(), 0, DescendBelow, 0);

    DEBUG(dbgs() << "Previous IDom(MinNode) = " << BlockNamePrinter(PrevIDom)
                 << "\nRunning Semi-NCA\n");

    // Rebuild the remaining part of affected subtree.
    SNCA.runSemiNCA(DT, MinLevel);
    SNCA.reattachExistingSubtree(DT, PrevIDom);
  }

  // Removes leaf tree nodes from the dominator tree.
  static void EraseNode(DomTreeT &DT, const TreeNodePtr TN) {
    assert(TN);
    assert(TN->getNumChildren() == 0 && "Not a tree leaf");

    const TreeNodePtr IDom = TN->getIDom();
    assert(IDom);

    auto ChIt = llvm::find(IDom->Children, TN);
    assert(ChIt != IDom->Children.end());
    std::swap(*ChIt, IDom->Children.back());
    IDom->Children.pop_back();

    DT.DomTreeNodes.erase(TN->getBlock());
  }

  //~~
  //===--------------- DomTree correctness verification ---------------------===
  //~~

  // Check if the tree has correct roots. A DominatorTree always has a single
  // root which is the function's entry node. A PostDominatorTree can have
  // multiple roots - one for each node with no successors and for infinite
  // loops.
  bool verifyRoots(const DomTreeT &DT) {
    if (!DT.Parent && !DT.Roots.empty()) {
      errs() << "Tree has no parent but has roots!\n";
      errs().flush();
      return false;
    }

    if (!IsPostDom) {
      if (DT.Roots.empty()) {
        errs() << "Tree doesn't have a root!\n";
        errs().flush();
        return false;
      }

      if (DT.getRoot() != GetEntryNode(DT)) {
        errs() << "Tree's root is not its parent's entry node!\n";
        errs().flush();
        return false;
      }
    }

    RootsT ComputedRoots = FindRoots(DT);
    if (DT.Roots.size() != ComputedRoots.size() ||
        !std::is_permutation(DT.Roots.begin(), DT.Roots.end(),
                             ComputedRoots.begin())) {
      errs() << "Tree has different roots than freshly computed ones!\n";
      errs() << "\tPDT roots: ";
      for (const NodePtr N : DT.Roots) errs() << BlockNamePrinter(N) << ", ";
      errs() << "\n\tComputed roots: ";
      for (const NodePtr N : ComputedRoots)
        errs() << BlockNamePrinter(N) << ", ";
      errs() << "\n";
      errs().flush();
      return false;
    }

    return true;
  }

  // Checks if the tree contains all reachable nodes in the input graph.
  bool verifyReachability(const DomTreeT &DT) {
    clear();
    doFullDFSWalk(DT, AlwaysDescend);

    for (auto &NodeToTN : DT.DomTreeNodes) {
      const TreeNodePtr TN = NodeToTN.second.get();
      const NodePtr BB = TN->getBlock();

      // Virtual root has a corresponding virtual CFG node.
      if (DT.isVirtualRoot(TN)) continue;

      if (NodeToInfo.count(BB) == 0) {
        errs() << "DomTree node " << BlockNamePrinter(BB)
               << " not found by DFS walk!\n";
        errs().flush();

        return false;
      }
    }

    for (const NodePtr N : NumToNode) {
      if (N && !DT.getNode(N)) {
        errs() << "CFG node " << BlockNamePrinter(N)
               << " not found in the DomTree!\n";
        errs().flush();

        return false;
      }
    }

    return true;
  }

  // Check if for every parent with a level L in the tree all of its children
  // have level L + 1.
  static bool VerifyLevels(const DomTreeT &DT) {
    for (auto &NodeToTN : DT.DomTreeNodes) {
      const TreeNodePtr TN = NodeToTN.second.get();
      const NodePtr BB = TN->getBlock();
      if (!BB) continue;

      const TreeNodePtr IDom = TN->getIDom();
      if (!IDom && TN->getLevel() != 0) {
        errs() << "Node without an IDom " << BlockNamePrinter(BB)
               << " has a nonzero level " << TN->getLevel() << "!\n";
        errs().flush();

        return false;
      }

      if (IDom && TN->getLevel() != IDom->getLevel() + 1) {
        errs() << "Node " << BlockNamePrinter(BB) << " has level "
               << TN->getLevel() << " while its IDom "
               << BlockNamePrinter(IDom->getBlock()) << " has level "
               << IDom->getLevel() << "!\n";
        errs().flush();

        return false;
      }
    }

    return true;
  }

  // Checks if for every edge From -> To in the graph
  //     NCD(From, To) == IDom(To) or To.
  bool verifyNCD(const DomTreeT &DT) {
    clear();
    doFullDFSWalk(DT, AlwaysDescend);

    for (auto &BlockToInfo : NodeToInfo) {
      auto &Info = BlockToInfo.second;

      const NodePtr From = NumToNode[Info.Parent];
      if (!From) continue;

      const NodePtr To = BlockToInfo.first;
      const TreeNodePtr ToTN = DT.getNode(To);
      assert(ToTN);

      const NodePtr NCD = DT.findNearestCommonDominator(From, To);
      const TreeNodePtr NCDTN = DT.getNode(NCD);
      const TreeNodePtr ToIDom = ToTN->getIDom();
      if (NCDTN != ToTN && NCDTN != ToIDom) {
        errs() << "NearestCommonDominator verification failed:\n\tNCD(From:"
               << BlockNamePrinter(From) << ", To:" << BlockNamePrinter(To)
               << ") = " << BlockNamePrinter(NCD)
               << ",\t (should be To or IDom[To]: " << BlockNamePrinter(ToIDom)
               << ")\n";
        errs().flush();

        return false;
      }
    }

    return true;
  }

  // The below routines verify the correctness of the dominator tree relative to
  // the CFG it's coming from.  A tree is a dominator tree iff it has two
  // properties, called the parent property and the sibling property.  Tarjan
  // and Lengauer prove (but don't explicitly name) the properties as part of
  // the proofs in their 1972 paper, but the proofs are mostly part of proving
  // things about semidominators and idoms, and some of them are simply asserted
  // based on even earlier papers (see, e.g., lemma 2).  Some papers refer to
  // these properties as "valid" and "co-valid".  See, e.g., "Dominators,
  // directed bipolar orders, and independent spanning trees" by Loukas
  // Georgiadis and Robert E. Tarjan, as well as "Dominator Tree Verification
  // and Vertex-Disjoint Paths " by the same authors.

  // A very simple and direct explanation of these properties can be found in
  // "An Experimental Study of Dynamic Dominators", found at
  // https://arxiv.org/abs/1604.02711

  // The easiest way to think of the parent property is that it's a requirement
  // of being a dominator.  Let's just take immediate dominators.  For PARENT to
  // be an immediate dominator of CHILD, all paths in the CFG must go through
  // PARENT before they hit CHILD.  This implies that if you were to cut PARENT
  // out of the CFG, there should be no paths to CHILD that are reachable.  If
  // there are, then you now have a path from PARENT to CHILD that goes around
  // PARENT and still reaches CHILD, which by definition, means PARENT can't be
  // a dominator of CHILD (let alone an immediate one).

  // The sibling property is similar.  It says that for each pair of sibling
  // nodes in the dominator tree (LEFT and RIGHT) , they must not dominate each
  // other.  If sibling LEFT dominated sibling RIGHT, it means there are no
  // paths in the CFG from sibling LEFT to sibling RIGHT that do not go through
  // LEFT, and thus, LEFT is really an ancestor (in the dominator tree) of
  // RIGHT, not a sibling.

  // It is possible to verify the parent and sibling properties in
  // linear time, but the algorithms are complex. Instead, we do it in a
  // straightforward N^2 and N^3 way below, using direct path reachability.


  // Checks if the tree has the parent property: if for all edges from V to W in
  // the input graph, such that V is reachable, the parent of W in the tree is
  // an ancestor of V in the tree.
  //
  // This means that if a node gets disconnected from the graph, then all of
  // the nodes it dominated previously will now become unreachable.
  bool verifyParentProperty(const DomTreeT &DT) {
    for (auto &NodeToTN : DT.DomTreeNodes) {
      const TreeNodePtr TN = NodeToTN.second.get();
      const NodePtr BB = TN->getBlock();
      if (!BB || TN->getChildren().empty()) continue;

      DEBUG(dbgs() << "Verifying parent property of node "
                   << BlockNamePrinter(TN) << "\n");
      clear();
      doFullDFSWalk(DT, [BB](NodePtr From, NodePtr To) {
        return From != BB && To != BB;
      });

      for (TreeNodePtr Child : TN->getChildren())
        if (NodeToInfo.count(Child->getBlock()) != 0) {
          errs() << "Child " << BlockNamePrinter(Child)
                 << " reachable after its parent " << BlockNamePrinter(BB)
                 << " is removed!\n";
          errs().flush();

          return false;
        }
    }

    return true;
  }

  // Check if the tree has sibling property: if a node V does not dominate a
  // node W for all siblings V and W in the tree.
  //
  // This means that if a node gets disconnected from the graph, then all of its
  // siblings will now still be reachable.
  bool verifySiblingProperty(const DomTreeT &DT) {
    for (auto &NodeToTN : DT.DomTreeNodes) {
      const TreeNodePtr TN = NodeToTN.second.get();
      const NodePtr BB = TN->getBlock();
      if (!BB || TN->getChildren().empty()) continue;

      const auto &Siblings = TN->getChildren();
      for (const TreeNodePtr N : Siblings) {
        clear();
        NodePtr BBN = N->getBlock();
        doFullDFSWalk(DT, [BBN](NodePtr From, NodePtr To) {
          return From != BBN && To != BBN;
        });

        for (const TreeNodePtr S : Siblings) {
          if (S == N) continue;

          if (NodeToInfo.count(S->getBlock()) == 0) {
            errs() << "Node " << BlockNamePrinter(S)
                   << " not reachable when its sibling " << BlockNamePrinter(N)
                   << " is removed!\n";
            errs().flush();

            return false;
          }
        }
      }
    }

    return true;
  }
};

template <class DomTreeT>
void Calculate(DomTreeT &DT) {
  SemiNCAInfo<DomTreeT> SNCA;
  SNCA.calculateFromScratch(DT);
}

template <class DomTreeT>
void InsertEdge(DomTreeT &DT, typename DomTreeT::NodePtr From,
                typename DomTreeT::NodePtr To) {
  if (DT.isPostDominator()) std::swap(From, To);
  SemiNCAInfo<DomTreeT>::InsertEdge(DT, From, To);
}

template <class DomTreeT>
void DeleteEdge(DomTreeT &DT, typename DomTreeT::NodePtr From,
                typename DomTreeT::NodePtr To) {
  if (DT.isPostDominator()) std::swap(From, To);
  SemiNCAInfo<DomTreeT>::DeleteEdge(DT, From, To);
}

template <class DomTreeT>
bool Verify(const DomTreeT &DT) {
  SemiNCAInfo<DomTreeT> SNCA;
  return SNCA.verifyRoots(DT) && SNCA.verifyReachability(DT) &&
         SNCA.VerifyLevels(DT) && SNCA.verifyNCD(DT) &&
         SNCA.verifyParentProperty(DT) && SNCA.verifySiblingProperty(DT);
}

}  // namespace DomTreeBuilder
}  // namespace llvm

#undef DEBUG_TYPE

#endif