llvm.org GIT mirror llvm / b29d4ba include / llvm / Support / JSON.h
b29d4ba

Tree @b29d4ba (Download .tar.gz)

JSON.h @b29d4baraw · history · blame

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
//===--- JSON.h - JSON values, parsing and serialization -------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===---------------------------------------------------------------------===//
///
/// \file
/// This file supports working with JSON data.
///
/// It comprises:
///
/// - classes which hold dynamically-typed parsed JSON structures
///   These are value types that can be composed, inspected, and modified.
///   See json::Value, and the related types json::Object and json::Array.
///
/// - functions to parse JSON text into Values, and to serialize Values to text.
///   See parse(), operator<<, and format_provider.
///
/// - a convention and helpers for mapping between json::Value and user-defined
///   types. See fromJSON(), ObjectMapper, and the class comment on Value.
///
/// - an output API json::OStream which can emit JSON without materializing
///   all structures as json::Value.
///
/// Typically, JSON data would be read from an external source, parsed into
/// a Value, and then converted into some native data structure before doing
/// real work on it. (And vice versa when writing).
///
/// Other serialization mechanisms you may consider:
///
/// - YAML is also text-based, and more human-readable than JSON. It's a more
///   complex format and data model, and YAML parsers aren't ubiquitous.
///   YAMLParser.h is a streaming parser suitable for parsing large documents
///   (including JSON, as YAML is a superset). It can be awkward to use
///   directly. YAML I/O (YAMLTraits.h) provides data mapping that is more
///   declarative than the toJSON/fromJSON conventions here.
///
/// - LLVM bitstream is a space- and CPU- efficient binary format. Typically it
///   encodes LLVM IR ("bitcode"), but it can be a container for other data.
///   Low-level reader/writer libraries are in Bitstream/Bitstream*.h
///
//===---------------------------------------------------------------------===//

#ifndef LLVM_SUPPORT_JSON_H
#define LLVM_SUPPORT_JSON_H

#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/StringRef.h"
#include "llvm/Support/Error.h"
#include "llvm/Support/FormatVariadic.h"
#include "llvm/Support/raw_ostream.h"
#include <map>

namespace llvm {
namespace json {

// === String encodings ===
//
// JSON strings are character sequences (not byte sequences like std::string).
// We need to know the encoding, and for simplicity only support UTF-8.
//
//   - When parsing, invalid UTF-8 is a syntax error like any other
//
//   - When creating Values from strings, callers must ensure they are UTF-8.
//        with asserts on, invalid UTF-8 will crash the program
//        with asserts off, we'll substitute the replacement character (U+FFFD)
//     Callers can use json::isUTF8() and json::fixUTF8() for validation.
//
//   - When retrieving strings from Values (e.g. asString()), the result will
//     always be valid UTF-8.

/// Returns true if \p S is valid UTF-8, which is required for use as JSON.
/// If it returns false, \p Offset is set to a byte offset near the first error.
bool isUTF8(llvm::StringRef S, size_t *ErrOffset = nullptr);
/// Replaces invalid UTF-8 sequences in \p S with the replacement character
/// (U+FFFD). The returned string is valid UTF-8.
/// This is much slower than isUTF8, so test that first.
std::string fixUTF8(llvm::StringRef S);

class Array;
class ObjectKey;
class Value;
template <typename T> Value toJSON(const llvm::Optional<T> &Opt);

/// An Object is a JSON object, which maps strings to heterogenous JSON values.
/// It simulates DenseMap<ObjectKey, Value>. ObjectKey is a maybe-owned string.
class Object {
  using Storage = DenseMap<ObjectKey, Value, llvm::DenseMapInfo<StringRef>>;
  Storage M;

public:
  using key_type = ObjectKey;
  using mapped_type = Value;
  using value_type = Storage::value_type;
  using iterator = Storage::iterator;
  using const_iterator = Storage::const_iterator;

  Object() = default;
  // KV is a trivial key-value struct for list-initialization.
  // (using std::pair forces extra copies).
  struct KV;
  explicit Object(std::initializer_list<KV> Properties);

  iterator begin() { return M.begin(); }
  const_iterator begin() const { return M.begin(); }
  iterator end() { return M.end(); }
  const_iterator end() const { return M.end(); }

  bool empty() const { return M.empty(); }
  size_t size() const { return M.size(); }

  void clear() { M.clear(); }
  std::pair<iterator, bool> insert(KV E);
  template <typename... Ts>
  std::pair<iterator, bool> try_emplace(const ObjectKey &K, Ts &&... Args) {
    return M.try_emplace(K, std::forward<Ts>(Args)...);
  }
  template <typename... Ts>
  std::pair<iterator, bool> try_emplace(ObjectKey &&K, Ts &&... Args) {
    return M.try_emplace(std::move(K), std::forward<Ts>(Args)...);
  }

  iterator find(StringRef K) { return M.find_as(K); }
  const_iterator find(StringRef K) const { return M.find_as(K); }
  // operator[] acts as if Value was default-constructible as null.
  Value &operator[](const ObjectKey &K);
  Value &operator[](ObjectKey &&K);
  // Look up a property, returning nullptr if it doesn't exist.
  Value *get(StringRef K);
  const Value *get(StringRef K) const;
  // Typed accessors return None/nullptr if
  //   - the property doesn't exist
  //   - or it has the wrong type
  llvm::Optional<std::nullptr_t> getNull(StringRef K) const;
  llvm::Optional<bool> getBoolean(StringRef K) const;
  llvm::Optional<double> getNumber(StringRef K) const;
  llvm::Optional<int64_t> getInteger(StringRef K) const;
  llvm::Optional<llvm::StringRef> getString(StringRef K) const;
  const json::Object *getObject(StringRef K) const;
  json::Object *getObject(StringRef K);
  const json::Array *getArray(StringRef K) const;
  json::Array *getArray(StringRef K);
};
bool operator==(const Object &LHS, const Object &RHS);
inline bool operator!=(const Object &LHS, const Object &RHS) {
  return !(LHS == RHS);
}

/// An Array is a JSON array, which contains heterogeneous JSON values.
/// It simulates std::vector<Value>.
class Array {
  std::vector<Value> V;

public:
  using value_type = Value;
  using iterator = std::vector<Value>::iterator;
  using const_iterator = std::vector<Value>::const_iterator;

  Array() = default;
  explicit Array(std::initializer_list<Value> Elements);
  template <typename Collection> explicit Array(const Collection &C) {
    for (const auto &V : C)
      emplace_back(V);
  }

  Value &operator[](size_t I) { return V[I]; }
  const Value &operator[](size_t I) const { return V[I]; }
  Value &front() { return V.front(); }
  const Value &front() const { return V.front(); }
  Value &back() { return V.back(); }
  const Value &back() const { return V.back(); }
  Value *data() { return V.data(); }
  const Value *data() const { return V.data(); }

  iterator begin() { return V.begin(); }
  const_iterator begin() const { return V.begin(); }
  iterator end() { return V.end(); }
  const_iterator end() const { return V.end(); }

  bool empty() const { return V.empty(); }
  size_t size() const { return V.size(); }
  void reserve(size_t S) { V.reserve(S); }

  void clear() { V.clear(); }
  void push_back(const Value &E) { V.push_back(E); }
  void push_back(Value &&E) { V.push_back(std::move(E)); }
  template <typename... Args> void emplace_back(Args &&... A) {
    V.emplace_back(std::forward<Args>(A)...);
  }
  void pop_back() { V.pop_back(); }
  // FIXME: insert() takes const_iterator since C++11, old libstdc++ disagrees.
  iterator insert(iterator P, const Value &E) { return V.insert(P, E); }
  iterator insert(iterator P, Value &&E) {
    return V.insert(P, std::move(E));
  }
  template <typename It> iterator insert(iterator P, It A, It Z) {
    return V.insert(P, A, Z);
  }
  template <typename... Args> iterator emplace(const_iterator P, Args &&... A) {
    return V.emplace(P, std::forward<Args>(A)...);
  }

  friend bool operator==(const Array &L, const Array &R) { return L.V == R.V; }
};
inline bool operator!=(const Array &L, const Array &R) { return !(L == R); }

/// A Value is an JSON value of unknown type.
/// They can be copied, but should generally be moved.
///
/// === Composing values ===
///
/// You can implicitly construct Values from:
///   - strings: std::string, SmallString, formatv, StringRef, char*
///              (char*, and StringRef are references, not copies!)
///   - numbers
///   - booleans
///   - null: nullptr
///   - arrays: {"foo", 42.0, false}
///   - serializable things: types with toJSON(const T&)->Value, found by ADL
///
/// They can also be constructed from object/array helpers:
///   - json::Object is a type like map<ObjectKey, Value>
///   - json::Array is a type like vector<Value>
/// These can be list-initialized, or used to build up collections in a loop.
/// json::ary(Collection) converts all items in a collection to Values.
///
/// === Inspecting values ===
///
/// Each Value is one of the JSON kinds:
///   null    (nullptr_t)
///   boolean (bool)
///   number  (double or int64)
///   string  (StringRef)
///   array   (json::Array)
///   object  (json::Object)
///
/// The kind can be queried directly, or implicitly via the typed accessors:
///   if (Optional<StringRef> S = E.getAsString()
///     assert(E.kind() == Value::String);
///
/// Array and Object also have typed indexing accessors for easy traversal:
///   Expected<Value> E = parse(R"( {"options": {"font": "sans-serif"}} )");
///   if (Object* O = E->getAsObject())
///     if (Object* Opts = O->getObject("options"))
///       if (Optional<StringRef> Font = Opts->getString("font"))
///         assert(Opts->at("font").kind() == Value::String);
///
/// === Converting JSON values to C++ types ===
///
/// The convention is to have a deserializer function findable via ADL:
///     fromJSON(const json::Value&, T&)->bool
/// Deserializers are provided for:
///   - bool
///   - int and int64_t
///   - double
///   - std::string
///   - vector<T>, where T is deserializable
///   - map<string, T>, where T is deserializable
///   - Optional<T>, where T is deserializable
/// ObjectMapper can help writing fromJSON() functions for object types.
///
/// For conversion in the other direction, the serializer function is:
///    toJSON(const T&) -> json::Value
/// If this exists, then it also allows constructing Value from T, and can
/// be used to serialize vector<T>, map<string, T>, and Optional<T>.
///
/// === Serialization ===
///
/// Values can be serialized to JSON:
///   1) raw_ostream << Value                    // Basic formatting.
///   2) raw_ostream << formatv("{0}", Value)    // Basic formatting.
///   3) raw_ostream << formatv("{0:2}", Value)  // Pretty-print with indent 2.
///
/// And parsed:
///   Expected<Value> E = json::parse("[1, 2, null]");
///   assert(E && E->kind() == Value::Array);
class Value {
public:
  enum Kind {
    Null,
    Boolean,
    /// Number values can store both int64s and doubles at full precision,
    /// depending on what they were constructed/parsed from.
    Number,
    String,
    Array,
    Object,
  };

  // It would be nice to have Value() be null. But that would make {} null too.
  Value(const Value &M) { copyFrom(M); }
  Value(Value &&M) { moveFrom(std::move(M)); }
  Value(std::initializer_list<Value> Elements);
  Value(json::Array &&Elements) : Type(T_Array) {
    create<json::Array>(std::move(Elements));
  }
  template <typename Elt>
  Value(const std::vector<Elt> &C) : Value(json::Array(C)) {}
  Value(json::Object &&Properties) : Type(T_Object) {
    create<json::Object>(std::move(Properties));
  }
  template <typename Elt>
  Value(const std::map<std::string, Elt> &C) : Value(json::Object(C)) {}
  // Strings: types with value semantics. Must be valid UTF-8.
  Value(std::string V) : Type(T_String) {
    if (LLVM_UNLIKELY(!isUTF8(V))) {
      assert(false && "Invalid UTF-8 in value used as JSON");
      V = fixUTF8(std::move(V));
    }
    create<std::string>(std::move(V));
  }
  Value(const llvm::SmallVectorImpl<char> &V)
      : Value(std::string(V.begin(), V.end())) {}
  Value(const llvm::formatv_object_base &V) : Value(V.str()) {}
  // Strings: types with reference semantics. Must be valid UTF-8.
  Value(StringRef V) : Type(T_StringRef) {
    create<llvm::StringRef>(V);
    if (LLVM_UNLIKELY(!isUTF8(V))) {
      assert(false && "Invalid UTF-8 in value used as JSON");
      *this = Value(fixUTF8(V));
    }
  }
  Value(const char *V) : Value(StringRef(V)) {}
  Value(std::nullptr_t) : Type(T_Null) {}
  // Boolean (disallow implicit conversions).
  // (The last template parameter is a dummy to keep templates distinct.)
  template <
      typename T,
      typename = typename std::enable_if<std::is_same<T, bool>::value>::type,
      bool = false>
  Value(T B) : Type(T_Boolean) {
    create<bool>(B);
  }
  // Integers (except boolean). Must be non-narrowing convertible to int64_t.
  template <
      typename T,
      typename = typename std::enable_if<std::is_integral<T>::value>::type,
      typename = typename std::enable_if<!std::is_same<T, bool>::value>::type>
  Value(T I) : Type(T_Integer) {
    create<int64_t>(int64_t{I});
  }
  // Floating point. Must be non-narrowing convertible to double.
  template <typename T,
            typename =
                typename std::enable_if<std::is_floating_point<T>::value>::type,
            double * = nullptr>
  Value(T D) : Type(T_Double) {
    create<double>(double{D});
  }
  // Serializable types: with a toJSON(const T&)->Value function, found by ADL.
  template <typename T,
            typename = typename std::enable_if<std::is_same<
                Value, decltype(toJSON(*(const T *)nullptr))>::value>,
            Value * = nullptr>
  Value(const T &V) : Value(toJSON(V)) {}

  Value &operator=(const Value &M) {
    destroy();
    copyFrom(M);
    return *this;
  }
  Value &operator=(Value &&M) {
    destroy();
    moveFrom(std::move(M));
    return *this;
  }
  ~Value() { destroy(); }

  Kind kind() const {
    switch (Type) {
    case T_Null:
      return Null;
    case T_Boolean:
      return Boolean;
    case T_Double:
    case T_Integer:
      return Number;
    case T_String:
    case T_StringRef:
      return String;
    case T_Object:
      return Object;
    case T_Array:
      return Array;
    }
    llvm_unreachable("Unknown kind");
  }

  // Typed accessors return None/nullptr if the Value is not of this type.
  llvm::Optional<std::nullptr_t> getAsNull() const {
    if (LLVM_LIKELY(Type == T_Null))
      return nullptr;
    return llvm::None;
  }
  llvm::Optional<bool> getAsBoolean() const {
    if (LLVM_LIKELY(Type == T_Boolean))
      return as<bool>();
    return llvm::None;
  }
  llvm::Optional<double> getAsNumber() const {
    if (LLVM_LIKELY(Type == T_Double))
      return as<double>();
    if (LLVM_LIKELY(Type == T_Integer))
      return as<int64_t>();
    return llvm::None;
  }
  // Succeeds if the Value is a Number, and exactly representable as int64_t.
  llvm::Optional<int64_t> getAsInteger() const {
    if (LLVM_LIKELY(Type == T_Integer))
      return as<int64_t>();
    if (LLVM_LIKELY(Type == T_Double)) {
      double D = as<double>();
      if (LLVM_LIKELY(std::modf(D, &D) == 0.0 &&
                      D >= double(std::numeric_limits<int64_t>::min()) &&
                      D <= double(std::numeric_limits<int64_t>::max())))
        return D;
    }
    return llvm::None;
  }
  llvm::Optional<llvm::StringRef> getAsString() const {
    if (Type == T_String)
      return llvm::StringRef(as<std::string>());
    if (LLVM_LIKELY(Type == T_StringRef))
      return as<llvm::StringRef>();
    return llvm::None;
  }
  const json::Object *getAsObject() const {
    return LLVM_LIKELY(Type == T_Object) ? &as<json::Object>() : nullptr;
  }
  json::Object *getAsObject() {
    return LLVM_LIKELY(Type == T_Object) ? &as<json::Object>() : nullptr;
  }
  const json::Array *getAsArray() const {
    return LLVM_LIKELY(Type == T_Array) ? &as<json::Array>() : nullptr;
  }
  json::Array *getAsArray() {
    return LLVM_LIKELY(Type == T_Array) ? &as<json::Array>() : nullptr;
  }

private:
  void destroy();
  void copyFrom(const Value &M);
  // We allow moving from *const* Values, by marking all members as mutable!
  // This hack is needed to support initializer-list syntax efficiently.
  // (std::initializer_list<T> is a container of const T).
  void moveFrom(const Value &&M);
  friend class Array;
  friend class Object;

  template <typename T, typename... U> void create(U &&... V) {
    new (reinterpret_cast<T *>(Union.buffer)) T(std::forward<U>(V)...);
  }
  template <typename T> T &as() const {
    // Using this two-step static_cast via void * instead of reinterpret_cast
    // silences a -Wstrict-aliasing false positive from GCC6 and earlier.
    void *Storage = static_cast<void *>(Union.buffer);
    return *static_cast<T *>(Storage);
  }

  friend class OStream;

  enum ValueType : char {
    T_Null,
    T_Boolean,
    T_Double,
    T_Integer,
    T_StringRef,
    T_String,
    T_Object,
    T_Array,
  };
  // All members mutable, see moveFrom().
  mutable ValueType Type;
  mutable llvm::AlignedCharArrayUnion<bool, double, int64_t, llvm::StringRef,
                                      std::string, json::Array, json::Object>
      Union;
  friend bool operator==(const Value &, const Value &);
};

bool operator==(const Value &, const Value &);
inline bool operator!=(const Value &L, const Value &R) { return !(L == R); }

/// ObjectKey is a used to capture keys in Object. Like Value but:
///   - only strings are allowed
///   - it's optimized for the string literal case (Owned == nullptr)
/// Like Value, strings must be UTF-8. See isUTF8 documentation for details.
class ObjectKey {
public:
  ObjectKey(const char *S) : ObjectKey(StringRef(S)) {}
  ObjectKey(std::string S) : Owned(new std::string(std::move(S))) {
    if (LLVM_UNLIKELY(!isUTF8(*Owned))) {
      assert(false && "Invalid UTF-8 in value used as JSON");
      *Owned = fixUTF8(std::move(*Owned));
    }
    Data = *Owned;
  }
  ObjectKey(llvm::StringRef S) : Data(S) {
    if (LLVM_UNLIKELY(!isUTF8(Data))) {
      assert(false && "Invalid UTF-8 in value used as JSON");
      *this = ObjectKey(fixUTF8(S));
    }
  }
  ObjectKey(const llvm::SmallVectorImpl<char> &V)
      : ObjectKey(std::string(V.begin(), V.end())) {}
  ObjectKey(const llvm::formatv_object_base &V) : ObjectKey(V.str()) {}

  ObjectKey(const ObjectKey &C) { *this = C; }
  ObjectKey(ObjectKey &&C) : ObjectKey(static_cast<const ObjectKey &&>(C)) {}
  ObjectKey &operator=(const ObjectKey &C) {
    if (C.Owned) {
      Owned.reset(new std::string(*C.Owned));
      Data = *Owned;
    } else {
      Data = C.Data;
    }
    return *this;
  }
  ObjectKey &operator=(ObjectKey &&) = default;

  operator llvm::StringRef() const { return Data; }
  std::string str() const { return Data.str(); }

private:
  // FIXME: this is unneccesarily large (3 pointers). Pointer + length + owned
  // could be 2 pointers at most.
  std::unique_ptr<std::string> Owned;
  llvm::StringRef Data;
};

inline bool operator==(const ObjectKey &L, const ObjectKey &R) {
  return llvm::StringRef(L) == llvm::StringRef(R);
}
inline bool operator!=(const ObjectKey &L, const ObjectKey &R) {
  return !(L == R);
}
inline bool operator<(const ObjectKey &L, const ObjectKey &R) {
  return StringRef(L) < StringRef(R);
}

struct Object::KV {
  ObjectKey K;
  Value V;
};

inline Object::Object(std::initializer_list<KV> Properties) {
  for (const auto &P : Properties) {
    auto R = try_emplace(P.K, nullptr);
    if (R.second)
      R.first->getSecond().moveFrom(std::move(P.V));
  }
}
inline std::pair<Object::iterator, bool> Object::insert(KV E) {
  return try_emplace(std::move(E.K), std::move(E.V));
}

// Standard deserializers are provided for primitive types.
// See comments on Value.
inline bool fromJSON(const Value &E, std::string &Out) {
  if (auto S = E.getAsString()) {
    Out = *S;
    return true;
  }
  return false;
}
inline bool fromJSON(const Value &E, int &Out) {
  if (auto S = E.getAsInteger()) {
    Out = *S;
    return true;
  }
  return false;
}
inline bool fromJSON(const Value &E, int64_t &Out) {
  if (auto S = E.getAsInteger()) {
    Out = *S;
    return true;
  }
  return false;
}
inline bool fromJSON(const Value &E, double &Out) {
  if (auto S = E.getAsNumber()) {
    Out = *S;
    return true;
  }
  return false;
}
inline bool fromJSON(const Value &E, bool &Out) {
  if (auto S = E.getAsBoolean()) {
    Out = *S;
    return true;
  }
  return false;
}
template <typename T> bool fromJSON(const Value &E, llvm::Optional<T> &Out) {
  if (E.getAsNull()) {
    Out = llvm::None;
    return true;
  }
  T Result;
  if (!fromJSON(E, Result))
    return false;
  Out = std::move(Result);
  return true;
}
template <typename T> bool fromJSON(const Value &E, std::vector<T> &Out) {
  if (auto *A = E.getAsArray()) {
    Out.clear();
    Out.resize(A->size());
    for (size_t I = 0; I < A->size(); ++I)
      if (!fromJSON((*A)[I], Out[I]))
        return false;
    return true;
  }
  return false;
}
template <typename T>
bool fromJSON(const Value &E, std::map<std::string, T> &Out) {
  if (auto *O = E.getAsObject()) {
    Out.clear();
    for (const auto &KV : *O)
      if (!fromJSON(KV.second, Out[llvm::StringRef(KV.first)]))
        return false;
    return true;
  }
  return false;
}

// Allow serialization of Optional<T> for supported T.
template <typename T> Value toJSON(const llvm::Optional<T> &Opt) {
  return Opt ? Value(*Opt) : Value(nullptr);
}

/// Helper for mapping JSON objects onto protocol structs.
///
/// Example:
/// \code
///   bool fromJSON(const Value &E, MyStruct &R) {
///     ObjectMapper O(E);
///     if (!O || !O.map("mandatory_field", R.MandatoryField))
///       return false;
///     O.map("optional_field", R.OptionalField);
///     return true;
///   }
/// \endcode
class ObjectMapper {
public:
  ObjectMapper(const Value &E) : O(E.getAsObject()) {}

  /// True if the expression is an object.
  /// Must be checked before calling map().
  operator bool() { return O; }

  /// Maps a property to a field, if it exists.
  template <typename T> bool map(StringRef Prop, T &Out) {
    assert(*this && "Must check this is an object before calling map()");
    if (const Value *E = O->get(Prop))
      return fromJSON(*E, Out);
    return false;
  }

  /// Maps a property to a field, if it exists.
  /// (Optional requires special handling, because missing keys are OK).
  template <typename T> bool map(StringRef Prop, llvm::Optional<T> &Out) {
    assert(*this && "Must check this is an object before calling map()");
    if (const Value *E = O->get(Prop))
      return fromJSON(*E, Out);
    Out = llvm::None;
    return true;
  }

private:
  const Object *O;
};

/// Parses the provided JSON source, or returns a ParseError.
/// The returned Value is self-contained and owns its strings (they do not refer
/// to the original source).
llvm::Expected<Value> parse(llvm::StringRef JSON);

class ParseError : public llvm::ErrorInfo<ParseError> {
  const char *Msg;
  unsigned Line, Column, Offset;

public:
  static char ID;
  ParseError(const char *Msg, unsigned Line, unsigned Column, unsigned Offset)
      : Msg(Msg), Line(Line), Column(Column), Offset(Offset) {}
  void log(llvm::raw_ostream &OS) const override {
    OS << llvm::formatv("[{0}:{1}, byte={2}]: {3}", Line, Column, Offset, Msg);
  }
  std::error_code convertToErrorCode() const override {
    return llvm::inconvertibleErrorCode();
  }
};

/// json::OStream allows writing well-formed JSON without materializing
/// all structures as json::Value ahead of time.
/// It's faster, lower-level, and less safe than OS << json::Value.
///
/// Only one "top-level" object can be written to a stream.
/// Simplest usage involves passing lambdas (Blocks) to fill in containers:
///
///   json::OStream J(OS);
///   J.array([&]{
///     for (const Event &E : Events)
///       J.object([&] {
///         J.attribute("timestamp", int64_t(E.Time));
///         J.attributeArray("participants", [&] {
///           for (const Participant &P : E.Participants)
///             J.string(P.toString());
///         });
///       });
///   });
///
/// This would produce JSON like:
///
///   [
///     {
///       "timestamp": 19287398741,
///       "participants": [
///         "King Kong",
///         "Miley Cyrus",
///         "Cleopatra"
///       ]
///     },
///     ...
///   ]
///
/// The lower level begin/end methods (arrayBegin()) are more flexible but
/// care must be taken to pair them correctly:
///
///   json::OStream J(OS);
//    J.arrayBegin();
///   for (const Event &E : Events) {
///     J.objectBegin();
///     J.attribute("timestamp", int64_t(E.Time));
///     J.attributeBegin("participants");
///     for (const Participant &P : E.Participants)
///       J.value(P.toString());
///     J.attributeEnd();
///     J.objectEnd();
///   }
///   J.arrayEnd();
///
/// If the call sequence isn't valid JSON, asserts will fire in debug mode.
/// This can be mismatched begin()/end() pairs, trying to emit attributes inside
/// an array, and so on.
/// With asserts disabled, this is undefined behavior.
class OStream {
 public:
  using Block = llvm::function_ref<void()>;
  // If IndentSize is nonzero, output is pretty-printed.
  explicit OStream(llvm::raw_ostream &OS, unsigned IndentSize = 0)
      : OS(OS), IndentSize(IndentSize) {
    Stack.emplace_back();
  }
  ~OStream() {
    assert(Stack.size() == 1 && "Unmatched begin()/end()");
    assert(Stack.back().Ctx == Singleton);
    assert(Stack.back().HasValue && "Did not write top-level value");
  }

  /// Flushes the underlying ostream. OStream does not buffer internally.
  void flush() { OS.flush(); }

  // High level functions to output a value.
  // Valid at top-level (exactly once), in an attribute value (exactly once),
  // or in an array (any number of times).

  /// Emit a self-contained value (number, string, vector<string> etc).
  void value(const Value &V);
  /// Emit an array whose elements are emitted in the provided Block.
  void array(Block Contents) {
    arrayBegin();
    Contents();
    arrayEnd();
  }
  /// Emit an object whose elements are emitted in the provided Block.
  void object(Block Contents) {
    objectBegin();
    Contents();
    objectEnd();
  }

  // High level functions to output object attributes.
  // Valid only within an object (any number of times).

  /// Emit an attribute whose value is self-contained (number, vector<int> etc).
  void attribute(llvm::StringRef Key, const Value& Contents) {
    attributeImpl(Key, [&] { value(Contents); });
  }
  /// Emit an attribute whose value is an array with elements from the Block.
  void attributeArray(llvm::StringRef Key, Block Contents) {
    attributeImpl(Key, [&] { array(Contents); });
  }
  /// Emit an attribute whose value is an object with attributes from the Block.
  void attributeObject(llvm::StringRef Key, Block Contents) {
    attributeImpl(Key, [&] { object(Contents); });
  }

  // Low-level begin/end functions to output arrays, objects, and attributes.
  // Must be correctly paired. Allowed contexts are as above.

  void arrayBegin();
  void arrayEnd();
  void objectBegin();
  void objectEnd();
  void attributeBegin(llvm::StringRef Key);
  void attributeEnd();

 private:
  void attributeImpl(llvm::StringRef Key, Block Contents) {
    attributeBegin(Key);
    Contents();
    attributeEnd();
  }

  void valueBegin();
  void newline();

  enum Context {
    Singleton, // Top level, or object attribute.
    Array,
    Object,
  };
  struct State {
    Context Ctx = Singleton;
    bool HasValue = false;
  };
  llvm::SmallVector<State, 16> Stack; // Never empty.
  llvm::raw_ostream &OS;
  unsigned IndentSize;
  unsigned Indent = 0;
};

/// Serializes this Value to JSON, writing it to the provided stream.
/// The formatting is compact (no extra whitespace) and deterministic.
/// For pretty-printing, use the formatv() format_provider below.
inline llvm::raw_ostream &operator<<(llvm::raw_ostream &OS, const Value &V) {
  OStream(OS).value(V);
  return OS;
}
} // namespace json

/// Allow printing json::Value with formatv().
/// The default style is basic/compact formatting, like operator<<.
/// A format string like formatv("{0:2}", Value) pretty-prints with indent 2.
template <> struct format_provider<llvm::json::Value> {
  static void format(const llvm::json::Value &, raw_ostream &, StringRef);
};
} // namespace llvm

#endif