llvm.org GIT mirror llvm / 9f998de lib / CodeGen / StackMaps.cpp
9f998de

Tree @9f998de (Download .tar.gz)

StackMaps.cpp @9f998deraw · history · blame

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
//===---------------------------- StackMaps.cpp ---------------------------===//
//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//

#define DEBUG_TYPE "stackmaps"

#include "llvm/CodeGen/StackMaps.h"
#include "llvm/CodeGen/AsmPrinter.h"
#include "llvm/CodeGen/MachineFrameInfo.h"
#include "llvm/CodeGen/MachineFunction.h"
#include "llvm/CodeGen/MachineInstr.h"
#include "llvm/IR/DataLayout.h"
#include "llvm/MC/MCContext.h"
#include "llvm/MC/MCExpr.h"
#include "llvm/MC/MCObjectFileInfo.h"
#include "llvm/MC/MCSectionMachO.h"
#include "llvm/MC/MCStreamer.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Target/TargetMachine.h"
#include "llvm/Target/TargetOpcodes.h"
#include "llvm/Target/TargetRegisterInfo.h"
#include <iterator>

using namespace llvm;

PatchPointOpers::PatchPointOpers(const MachineInstr *MI)
  : MI(MI),
    HasDef(MI->getOperand(0).isReg() && MI->getOperand(0).isDef() &&
           !MI->getOperand(0).isImplicit()),
    IsAnyReg(MI->getOperand(getMetaIdx(CCPos)).getImm() == CallingConv::AnyReg)
{
#ifndef NDEBUG
  unsigned CheckStartIdx = 0, e = MI->getNumOperands();
  while (CheckStartIdx < e && MI->getOperand(CheckStartIdx).isReg() &&
         MI->getOperand(CheckStartIdx).isDef() &&
         !MI->getOperand(CheckStartIdx).isImplicit())
    ++CheckStartIdx;

  assert(getMetaIdx() == CheckStartIdx &&
         "Unexpected additional definition in Patchpoint intrinsic.");
#endif
}

unsigned PatchPointOpers::getNextScratchIdx(unsigned StartIdx) const {
  if (!StartIdx)
    StartIdx = getVarIdx();

  // Find the next scratch register (implicit def and early clobber)
  unsigned ScratchIdx = StartIdx, e = MI->getNumOperands();
  while (ScratchIdx < e &&
         !(MI->getOperand(ScratchIdx).isReg() &&
           MI->getOperand(ScratchIdx).isDef() &&
           MI->getOperand(ScratchIdx).isImplicit() &&
           MI->getOperand(ScratchIdx).isEarlyClobber()))
    ++ScratchIdx;

  assert(ScratchIdx != e && "No scratch register available");
  return ScratchIdx;
}

MachineInstr::const_mop_iterator
StackMaps::parseOperand(MachineInstr::const_mop_iterator MOI,
                        MachineInstr::const_mop_iterator MOE,
                        LocationVec &Locs, LiveOutVec &LiveOuts) const {
  if (MOI->isImm()) {
    switch (MOI->getImm()) {
    default: llvm_unreachable("Unrecognized operand type.");
    case StackMaps::DirectMemRefOp: {
      unsigned Size = AP.TM.getDataLayout()->getPointerSizeInBits();
      assert((Size % 8) == 0 && "Need pointer size in bytes.");
      Size /= 8;
      unsigned Reg = (++MOI)->getReg();
      int64_t Imm = (++MOI)->getImm();
      Locs.push_back(Location(StackMaps::Location::Direct, Size, Reg, Imm));
      break;
    }
    case StackMaps::IndirectMemRefOp: {
      int64_t Size = (++MOI)->getImm();
      assert(Size > 0 && "Need a valid size for indirect memory locations.");
      unsigned Reg = (++MOI)->getReg();
      int64_t Imm = (++MOI)->getImm();
      Locs.push_back(Location(StackMaps::Location::Indirect, Size, Reg, Imm));
      break;
    }
    case StackMaps::ConstantOp: {
      ++MOI;
      assert(MOI->isImm() && "Expected constant operand.");
      int64_t Imm = MOI->getImm();
      Locs.push_back(Location(Location::Constant, sizeof(int64_t), 0, Imm));
      break;
    }
    }
    return ++MOI;
  }

  // The physical register number will ultimately be encoded as a DWARF regno.
  // The stack map also records the size of a spill slot that can hold the
  // register content. (The runtime can track the actual size of the data type
  // if it needs to.)
  if (MOI->isReg()) {
    // Skip implicit registers (this includes our scratch registers)
    if (MOI->isImplicit())
      return ++MOI;

    assert(TargetRegisterInfo::isPhysicalRegister(MOI->getReg()) &&
           "Virtreg operands should have been rewritten before now.");
    const TargetRegisterClass *RC =
      AP.TM.getRegisterInfo()->getMinimalPhysRegClass(MOI->getReg());
    assert(!MOI->getSubReg() && "Physical subreg still around.");
    Locs.push_back(
      Location(Location::Register, RC->getSize(), MOI->getReg(), 0));
    return ++MOI;
  }

  if (MOI->isRegLiveOut())
    LiveOuts = parseRegisterLiveOutMask(MOI->getRegLiveOut());

  return ++MOI;
}

/// Go up the super-register chain until we hit a valid dwarf register number.
static unsigned getDwarfRegNum(unsigned Reg, const TargetRegisterInfo *TRI) {
  int RegNo = TRI->getDwarfRegNum(Reg, false);
  for (MCSuperRegIterator SR(Reg, TRI); SR.isValid() && RegNo < 0; ++SR)
    RegNo = TRI->getDwarfRegNum(*SR, false);

  assert(RegNo >= 0 && "Invalid Dwarf register number.");
  return (unsigned) RegNo;
}

/// Create a live-out register record for the given register Reg.
StackMaps::LiveOutReg
StackMaps::createLiveOutReg(unsigned Reg, const TargetRegisterInfo *TRI) const {
  unsigned RegNo = getDwarfRegNum(Reg, TRI);
  unsigned Size = TRI->getMinimalPhysRegClass(Reg)->getSize();
  return LiveOutReg(Reg, RegNo, Size);
}

/// Parse the register live-out mask and return a vector of live-out registers
/// that need to be recorded in the stackmap.
StackMaps::LiveOutVec
StackMaps::parseRegisterLiveOutMask(const uint32_t *Mask) const {
  assert(Mask && "No register mask specified");
  const TargetRegisterInfo *TRI = AP.TM.getRegisterInfo();
  LiveOutVec LiveOuts;

  // Create a LiveOutReg for each bit that is set in the register mask.
  for (unsigned Reg = 0, NumRegs = TRI->getNumRegs(); Reg != NumRegs; ++Reg)
    if ((Mask[Reg / 32] >> Reg % 32) & 1)
      LiveOuts.push_back(createLiveOutReg(Reg, TRI));

  // We don't need to keep track of a register if its super-register is already
  // in the list. Merge entries that refer to the same dwarf register and use
  // the maximum size that needs to be spilled.
  std::sort(LiveOuts.begin(), LiveOuts.end());
  for (LiveOutVec::iterator I = LiveOuts.begin(), E = LiveOuts.end();
       I != E; ++I) {
    for (LiveOutVec::iterator II = std::next(I); II != E; ++II) {
      if (I->RegNo != II->RegNo) {
        // Skip all the now invalid entries.
        I = --II;
        break;
      }
      I->Size = std::max(I->Size, II->Size);
      if (TRI->isSuperRegister(I->Reg, II->Reg))
        I->Reg = II->Reg;
      II->MarkInvalid();
    }
  }
  LiveOuts.erase(std::remove_if(LiveOuts.begin(), LiveOuts.end(),
                                LiveOutReg::IsInvalid), LiveOuts.end());
  return LiveOuts;
}

void StackMaps::recordStackMapOpers(const MachineInstr &MI, uint64_t ID,
                                    MachineInstr::const_mop_iterator MOI,
                                    MachineInstr::const_mop_iterator MOE,
                                    bool recordResult) {

  MCContext &OutContext = AP.OutStreamer.getContext();
  MCSymbol *MILabel = OutContext.CreateTempSymbol();
  AP.OutStreamer.EmitLabel(MILabel);

  LocationVec Locations;
  LiveOutVec LiveOuts;

  if (recordResult) {
    assert(PatchPointOpers(&MI).hasDef() && "Stackmap has no return value.");
    parseOperand(MI.operands_begin(), std::next(MI.operands_begin()),
                 Locations, LiveOuts);
  }

  // Parse operands.
  while (MOI != MOE) {
    MOI = parseOperand(MOI, MOE, Locations, LiveOuts);
  }

  // Move large constants into the constant pool.
  for (LocationVec::iterator I = Locations.begin(), E = Locations.end();
       I != E; ++I) {
    // Constants are encoded as sign-extended integers.
    // -1 is directly encoded as .long 0xFFFFFFFF with no constant pool.
    if (I->LocType == Location::Constant &&
        ((I->Offset + (int64_t(1)<<31)) >> 32) != 0) {
      I->LocType = Location::ConstantIndex;
      I->Offset = ConstPool.getConstantIndex(I->Offset);
    }
  }

  // Create an expression to calculate the offset of the callsite from function
  // entry.
  const MCExpr *CSOffsetExpr = MCBinaryExpr::CreateSub(
    MCSymbolRefExpr::Create(MILabel, OutContext),
    MCSymbolRefExpr::Create(AP.CurrentFnSym, OutContext),
    OutContext);

  CSInfos.push_back(CallsiteInfo(CSOffsetExpr, ID, Locations, LiveOuts));

  // Record the stack size of the current function.
  const MachineFrameInfo *MFI = AP.MF->getFrameInfo();
  FnStackSize[AP.CurrentFnSym] =
    MFI->hasVarSizedObjects() ? ~0U : MFI->getStackSize();
}

void StackMaps::recordStackMap(const MachineInstr &MI) {
  assert(MI.getOpcode() == TargetOpcode::STACKMAP && "expected stackmap");

  int64_t ID = MI.getOperand(0).getImm();
  recordStackMapOpers(MI, ID, std::next(MI.operands_begin(), 2),
                      MI.operands_end());
}

void StackMaps::recordPatchPoint(const MachineInstr &MI) {
  assert(MI.getOpcode() == TargetOpcode::PATCHPOINT && "expected patchpoint");

  PatchPointOpers opers(&MI);
  int64_t ID = opers.getMetaOper(PatchPointOpers::IDPos).getImm();

  MachineInstr::const_mop_iterator MOI =
    std::next(MI.operands_begin(), opers.getStackMapStartIdx());
  recordStackMapOpers(MI, ID, MOI, MI.operands_end(),
                      opers.isAnyReg() && opers.hasDef());

#ifndef NDEBUG
  // verify anyregcc
  LocationVec &Locations = CSInfos.back().Locations;
  if (opers.isAnyReg()) {
    unsigned NArgs = opers.getMetaOper(PatchPointOpers::NArgPos).getImm();
    for (unsigned i = 0, e = (opers.hasDef() ? NArgs+1 : NArgs); i != e; ++i)
      assert(Locations[i].LocType == Location::Register &&
             "anyreg arg must be in reg.");
  }
#endif
}

/// serializeToStackMapSection conceptually populates the following fields:
///
/// uint32 : Reserved (header)
/// uint32 : NumFunctions
/// StkSizeRecord[NumFunctions] {
///   uint32 : Function Offset
///   uint32 : Stack Size
/// }
/// uint32 : NumConstants
/// int64  : Constants[NumConstants]
/// uint32 : NumRecords
/// StkMapRecord[NumRecords] {
///   uint64 : PatchPoint ID
///   uint32 : Instruction Offset
///   uint16 : Reserved (record flags)
///   uint16 : NumLocations
///   Location[NumLocations] {
///     uint8  : Register | Direct | Indirect | Constant | ConstantIndex
///     uint8  : Size in Bytes
///     uint16 : Dwarf RegNum
///     int32  : Offset
///   }
///   uint16 : NumLiveOuts
///   LiveOuts[NumLiveOuts]
///     uint16 : Dwarf RegNum
///     uint8  : Reserved
///     uint8  : Size in Bytes
/// }
///
/// Location Encoding, Type, Value:
///   0x1, Register, Reg                 (value in register)
///   0x2, Direct, Reg + Offset          (frame index)
///   0x3, Indirect, [Reg + Offset]      (spilled value)
///   0x4, Constant, Offset              (small constant)
///   0x5, ConstIndex, Constants[Offset] (large constant)
///
void StackMaps::serializeToStackMapSection() {
  // Bail out if there's no stack map data.
  if (CSInfos.empty())
    return;

  MCContext &OutContext = AP.OutStreamer.getContext();
  const TargetRegisterInfo *TRI = AP.TM.getRegisterInfo();

  // Create the section.
  const MCSection *StackMapSection =
    OutContext.getObjectFileInfo()->getStackMapSection();
  AP.OutStreamer.SwitchSection(StackMapSection);

  // Emit a dummy symbol to force section inclusion.
  AP.OutStreamer.EmitLabel(
    OutContext.GetOrCreateSymbol(Twine("__LLVM_StackMaps")));

  // Serialize data.
  const char *WSMP = "Stack Maps: ";
  (void)WSMP;

  DEBUG(dbgs() << "********** Stack Map Output **********\n");

  // Header.
  AP.OutStreamer.EmitIntValue(0, 4);

  // Num functions.
  AP.OutStreamer.EmitIntValue(FnStackSize.size(), 4);

  // Stack size entries.
  for (FnStackSizeMap::iterator I = FnStackSize.begin(), E = FnStackSize.end();
       I != E; ++I) {
    AP.OutStreamer.EmitSymbolValue(I->first, 4);
    AP.OutStreamer.EmitIntValue(I->second, 4);
  }

  // Num constants.
  AP.OutStreamer.EmitIntValue(ConstPool.getNumConstants(), 4);

  // Constant pool entries.
  for (unsigned i = 0; i < ConstPool.getNumConstants(); ++i)
    AP.OutStreamer.EmitIntValue(ConstPool.getConstant(i), 8);

  DEBUG(dbgs() << WSMP << "#callsites = " << CSInfos.size() << "\n");
  AP.OutStreamer.EmitIntValue(CSInfos.size(), 4);

  for (CallsiteInfoList::const_iterator CSII = CSInfos.begin(),
                                        CSIE = CSInfos.end();
       CSII != CSIE; ++CSII) {

    uint64_t CallsiteID = CSII->ID;
    const LocationVec &CSLocs = CSII->Locations;
    const LiveOutVec &LiveOuts = CSII->LiveOuts;

    DEBUG(dbgs() << WSMP << "callsite " << CallsiteID << "\n");

    // Verify stack map entry. It's better to communicate a problem to the
    // runtime than crash in case of in-process compilation. Currently, we do
    // simple overflow checks, but we may eventually communicate other
    // compilation errors this way.
    if (CSLocs.size() > UINT16_MAX || LiveOuts.size() > UINT16_MAX) {
      AP.OutStreamer.EmitIntValue(UINT64_MAX, 8); // Invalid ID.
      AP.OutStreamer.EmitValue(CSII->CSOffsetExpr, 4);
      AP.OutStreamer.EmitIntValue(0, 2); // Reserved.
      AP.OutStreamer.EmitIntValue(0, 2); // 0 locations.
      AP.OutStreamer.EmitIntValue(0, 2); // 0 live-out registers.
      continue;
    }

    AP.OutStreamer.EmitIntValue(CallsiteID, 8);
    AP.OutStreamer.EmitValue(CSII->CSOffsetExpr, 4);

    // Reserved for flags.
    AP.OutStreamer.EmitIntValue(0, 2);

    DEBUG(dbgs() << WSMP << "  has " << CSLocs.size() << " locations\n");

    AP.OutStreamer.EmitIntValue(CSLocs.size(), 2);

    unsigned operIdx = 0;
    for (LocationVec::const_iterator LocI = CSLocs.begin(), LocE = CSLocs.end();
         LocI != LocE; ++LocI, ++operIdx) {
      const Location &Loc = *LocI;
      unsigned RegNo = 0;
      int Offset = Loc.Offset;
      if(Loc.Reg) {
        RegNo = getDwarfRegNum(Loc.Reg, TRI);

        // If this is a register location, put the subregister byte offset in
        // the location offset.
        if (Loc.LocType == Location::Register) {
          assert(!Loc.Offset && "Register location should have zero offset");
          unsigned LLVMRegNo = TRI->getLLVMRegNum(RegNo, false);
          unsigned SubRegIdx = TRI->getSubRegIndex(LLVMRegNo, Loc.Reg);
          if (SubRegIdx)
            Offset = TRI->getSubRegIdxOffset(SubRegIdx);
        }
      }
      else {
        assert(Loc.LocType != Location::Register &&
               "Missing location register");
      }

      DEBUG(
        dbgs() << WSMP << "  Loc " << operIdx << ": ";
        switch (Loc.LocType) {
        case Location::Unprocessed:
          dbgs() << "<Unprocessed operand>";
          break;
        case Location::Register:
          dbgs() << "Register " << TRI->getName(Loc.Reg);
          break;
        case Location::Direct:
          dbgs() << "Direct " << TRI->getName(Loc.Reg);
          if (Loc.Offset)
            dbgs() << " + " << Loc.Offset;
          break;
        case Location::Indirect:
          dbgs() << "Indirect " << TRI->getName(Loc.Reg)
                 << " + " << Loc.Offset;
          break;
        case Location::Constant:
          dbgs() << "Constant " << Loc.Offset;
          break;
        case Location::ConstantIndex:
          dbgs() << "Constant Index " << Loc.Offset;
          break;
        }
        dbgs() << "     [encoding: .byte " << Loc.LocType
               << ", .byte " << Loc.Size
               << ", .short " << RegNo
               << ", .int " << Offset << "]\n";
      );

      AP.OutStreamer.EmitIntValue(Loc.LocType, 1);
      AP.OutStreamer.EmitIntValue(Loc.Size, 1);
      AP.OutStreamer.EmitIntValue(RegNo, 2);
      AP.OutStreamer.EmitIntValue(Offset, 4);
    }

    DEBUG(dbgs() << WSMP << "  has " << LiveOuts.size()
                 << " live-out registers\n");

    AP.OutStreamer.EmitIntValue(LiveOuts.size(), 2);

    operIdx = 0;
    for (LiveOutVec::const_iterator LI = LiveOuts.begin(), LE = LiveOuts.end();
         LI != LE; ++LI, ++operIdx) {
      DEBUG(dbgs() << WSMP << "  LO " << operIdx << ": "
                   << TRI->getName(LI->Reg)
                   << "     [encoding: .short " << LI->RegNo
                   << ", .byte 0, .byte " << LI->Size << "]\n");

      AP.OutStreamer.EmitIntValue(LI->RegNo, 2);
      AP.OutStreamer.EmitIntValue(0, 1);
      AP.OutStreamer.EmitIntValue(LI->Size, 1);
    }
  }

  AP.OutStreamer.AddBlankLine();

  CSInfos.clear();
}