llvm.org GIT mirror llvm / 9f23ac3 lib / Fuzzer / FuzzerMutate.cpp
9f23ac3

Tree @9f23ac3 (Download .tar.gz)

FuzzerMutate.cpp @9f23ac3raw · history · blame

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
//===- FuzzerMutate.cpp - Mutate a test input -----------------------------===//
//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
// Mutate a test input.
//===----------------------------------------------------------------------===//

#include "FuzzerCorpus.h"
#include "FuzzerDefs.h"
#include "FuzzerExtFunctions.h"
#include "FuzzerIO.h"
#include "FuzzerMutate.h"
#include "FuzzerOptions.h"

namespace fuzzer {

const size_t Dictionary::kMaxDictSize;

static void PrintASCII(const Word &W, const char *PrintAfter) {
  PrintASCII(W.data(), W.size(), PrintAfter);
}

MutationDispatcher::MutationDispatcher(Random &Rand,
                                       const FuzzingOptions &Options)
    : Rand(Rand), Options(Options) {
  DefaultMutators.insert(
      DefaultMutators.begin(),
      {
          {&MutationDispatcher::Mutate_EraseBytes, "EraseBytes"},
          {&MutationDispatcher::Mutate_InsertByte, "InsertByte"},
          {&MutationDispatcher::Mutate_InsertRepeatedBytes,
           "InsertRepeatedBytes"},
          {&MutationDispatcher::Mutate_ChangeByte, "ChangeByte"},
          {&MutationDispatcher::Mutate_ChangeBit, "ChangeBit"},
          {&MutationDispatcher::Mutate_ShuffleBytes, "ShuffleBytes"},
          {&MutationDispatcher::Mutate_ChangeASCIIInteger, "ChangeASCIIInt"},
          {&MutationDispatcher::Mutate_ChangeBinaryInteger, "ChangeBinInt"},
          {&MutationDispatcher::Mutate_CopyPart, "CopyPart"},
          {&MutationDispatcher::Mutate_CrossOver, "CrossOver"},
          {&MutationDispatcher::Mutate_AddWordFromManualDictionary,
           "ManualDict"},
          {&MutationDispatcher::Mutate_AddWordFromTemporaryAutoDictionary,
           "TempAutoDict"},
          {&MutationDispatcher::Mutate_AddWordFromPersistentAutoDictionary,
           "PersAutoDict"},
      });
  if(Options.UseCmp)
    DefaultMutators.push_back(
        {&MutationDispatcher::Mutate_AddWordFromTORC, "CMP"});

  if (EF->LLVMFuzzerCustomMutator)
    Mutators.push_back({&MutationDispatcher::Mutate_Custom, "Custom"});
  else
    Mutators = DefaultMutators;

  if (EF->LLVMFuzzerCustomCrossOver)
    Mutators.push_back(
        {&MutationDispatcher::Mutate_CustomCrossOver, "CustomCrossOver"});
}

static char RandCh(Random &Rand) {
  if (Rand.RandBool()) return Rand(256);
  const char *Special = "!*'();:@&=+$,/?%#[]012Az-`~.\xff\x00";
  return Special[Rand(sizeof(Special) - 1)];
}

size_t MutationDispatcher::Mutate_Custom(uint8_t *Data, size_t Size,
                                         size_t MaxSize) {
  return EF->LLVMFuzzerCustomMutator(Data, Size, MaxSize, Rand.Rand());
}

size_t MutationDispatcher::Mutate_CustomCrossOver(uint8_t *Data, size_t Size,
                                                  size_t MaxSize) {
  if (!Corpus || Corpus->size() < 2 || Size == 0)
    return 0;
  size_t Idx = Rand(Corpus->size());
  const Unit &Other = (*Corpus)[Idx];
  if (Other.empty())
    return 0;
  CustomCrossOverInPlaceHere.resize(MaxSize);
  auto &U = CustomCrossOverInPlaceHere;
  size_t NewSize = EF->LLVMFuzzerCustomCrossOver(
      Data, Size, Other.data(), Other.size(), U.data(), U.size(), Rand.Rand());
  if (!NewSize)
    return 0;
  assert(NewSize <= MaxSize && "CustomCrossOver returned overisized unit");
  memcpy(Data, U.data(), NewSize);
  return NewSize;
}

size_t MutationDispatcher::Mutate_ShuffleBytes(uint8_t *Data, size_t Size,
                                               size_t MaxSize) {
  if (Size > MaxSize || Size == 0) return 0;
  size_t ShuffleAmount =
      Rand(std::min(Size, (size_t)8)) + 1; // [1,8] and <= Size.
  size_t ShuffleStart = Rand(Size - ShuffleAmount);
  assert(ShuffleStart + ShuffleAmount <= Size);
  std::shuffle(Data + ShuffleStart, Data + ShuffleStart + ShuffleAmount, Rand);
  return Size;
}

size_t MutationDispatcher::Mutate_EraseBytes(uint8_t *Data, size_t Size,
                                             size_t MaxSize) {
  if (Size <= 1) return 0;
  size_t N = Rand(Size / 2) + 1;
  assert(N < Size);
  size_t Idx = Rand(Size - N + 1);
  // Erase Data[Idx:Idx+N].
  memmove(Data + Idx, Data + Idx + N, Size - Idx - N);
  // Printf("Erase: %zd %zd => %zd; Idx %zd\n", N, Size, Size - N, Idx);
  return Size - N;
}

size_t MutationDispatcher::Mutate_InsertByte(uint8_t *Data, size_t Size,
                                             size_t MaxSize) {
  if (Size >= MaxSize) return 0;
  size_t Idx = Rand(Size + 1);
  // Insert new value at Data[Idx].
  memmove(Data + Idx + 1, Data + Idx, Size - Idx);
  Data[Idx] = RandCh(Rand);
  return Size + 1;
}

size_t MutationDispatcher::Mutate_InsertRepeatedBytes(uint8_t *Data,
                                                      size_t Size,
                                                      size_t MaxSize) {
  const size_t kMinBytesToInsert = 3;
  if (Size + kMinBytesToInsert >= MaxSize) return 0;
  size_t MaxBytesToInsert = std::min(MaxSize - Size, (size_t)128);
  size_t N = Rand(MaxBytesToInsert - kMinBytesToInsert + 1) + kMinBytesToInsert;
  assert(Size + N <= MaxSize && N);
  size_t Idx = Rand(Size + 1);
  // Insert new values at Data[Idx].
  memmove(Data + Idx + N, Data + Idx, Size - Idx);
  // Give preference to 0x00 and 0xff.
  uint8_t Byte = Rand.RandBool() ? Rand(256) : (Rand.RandBool() ? 0 : 255);
  for (size_t i = 0; i < N; i++)
    Data[Idx + i] = Byte;
  return Size + N;
}

size_t MutationDispatcher::Mutate_ChangeByte(uint8_t *Data, size_t Size,
                                             size_t MaxSize) {
  if (Size > MaxSize) return 0;
  size_t Idx = Rand(Size);
  Data[Idx] = RandCh(Rand);
  return Size;
}

size_t MutationDispatcher::Mutate_ChangeBit(uint8_t *Data, size_t Size,
                                            size_t MaxSize) {
  if (Size > MaxSize) return 0;
  size_t Idx = Rand(Size);
  Data[Idx] ^= 1 << Rand(8);
  return Size;
}

size_t MutationDispatcher::Mutate_AddWordFromManualDictionary(uint8_t *Data,
                                                              size_t Size,
                                                              size_t MaxSize) {
  return AddWordFromDictionary(ManualDictionary, Data, Size, MaxSize);
}

size_t MutationDispatcher::Mutate_AddWordFromTemporaryAutoDictionary(
    uint8_t *Data, size_t Size, size_t MaxSize) {
  return AddWordFromDictionary(TempAutoDictionary, Data, Size, MaxSize);
}

size_t MutationDispatcher::ApplyDictionaryEntry(uint8_t *Data, size_t Size,
                                                size_t MaxSize,
                                                DictionaryEntry &DE) {
  const Word &W = DE.GetW();
  bool UsePositionHint = DE.HasPositionHint() &&
                         DE.GetPositionHint() + W.size() < Size &&
                         Rand.RandBool();
  if (Rand.RandBool()) {  // Insert W.
    if (Size + W.size() > MaxSize) return 0;
    size_t Idx = UsePositionHint ? DE.GetPositionHint() : Rand(Size + 1);
    memmove(Data + Idx + W.size(), Data + Idx, Size - Idx);
    memcpy(Data + Idx, W.data(), W.size());
    Size += W.size();
  } else {  // Overwrite some bytes with W.
    if (W.size() > Size) return 0;
    size_t Idx = UsePositionHint ? DE.GetPositionHint() : Rand(Size - W.size());
    memcpy(Data + Idx, W.data(), W.size());
  }
  return Size;
}

// Somewhere in the past we have observed a comparison instructions
// with arguments Arg1 Arg2. This function tries to guess a dictionary
// entry that will satisfy that comparison.
// It first tries to find one of the arguments (possibly swapped) in the
// input and if it succeeds it creates a DE with a position hint.
// Otherwise it creates a DE with one of the arguments w/o a position hint.
DictionaryEntry MutationDispatcher::MakeDictionaryEntryFromCMP(
    const void *Arg1, const void *Arg2,
    const void *Arg1Mutation, const void *Arg2Mutation,
    size_t ArgSize, const uint8_t *Data,
    size_t Size) {
  ScopedDoingMyOwnMemOrStr scoped_doing_my_own_mem_os_str;
  bool HandleFirst = Rand.RandBool();
  const void *ExistingBytes, *DesiredBytes;
  Word W;
  const uint8_t *End = Data + Size;
  for (int Arg = 0; Arg < 2; Arg++) {
    ExistingBytes = HandleFirst ? Arg1 : Arg2;
    DesiredBytes = HandleFirst ? Arg2Mutation : Arg1Mutation;
    HandleFirst = !HandleFirst;
    W.Set(reinterpret_cast<const uint8_t*>(DesiredBytes), ArgSize);
    const size_t kMaxNumPositions = 8;
    size_t Positions[kMaxNumPositions];
    size_t NumPositions = 0;
    for (const uint8_t *Cur = Data;
         Cur < End && NumPositions < kMaxNumPositions; Cur++) {
      Cur =
          (const uint8_t *)SearchMemory(Cur, End - Cur, ExistingBytes, ArgSize);
      if (!Cur) break;
      Positions[NumPositions++] = Cur - Data;
    }
    if (!NumPositions) continue;
    return DictionaryEntry(W, Positions[Rand(NumPositions)]);
  }
  DictionaryEntry DE(W);
  return DE;
}


template <class T>
DictionaryEntry MutationDispatcher::MakeDictionaryEntryFromCMP(
    T Arg1, T Arg2, const uint8_t *Data, size_t Size) {
  if (Rand.RandBool()) Arg1 = Bswap(Arg1);
  if (Rand.RandBool()) Arg2 = Bswap(Arg2);
  T Arg1Mutation = Arg1 + Rand(-1, 1);
  T Arg2Mutation = Arg2 + Rand(-1, 1);
  return MakeDictionaryEntryFromCMP(&Arg1, &Arg2, &Arg1Mutation, &Arg2Mutation,
                                    sizeof(Arg1), Data, Size);
}

DictionaryEntry MutationDispatcher::MakeDictionaryEntryFromCMP(
    const Word &Arg1, const Word &Arg2, const uint8_t *Data, size_t Size) {
  return MakeDictionaryEntryFromCMP(Arg1.data(), Arg2.data(), Arg1.data(),
                                    Arg2.data(), Arg1.size(), Data, Size);
}

size_t MutationDispatcher::Mutate_AddWordFromTORC(
    uint8_t *Data, size_t Size, size_t MaxSize) {
  Word W;
  DictionaryEntry DE;
  switch (Rand(3)) {
  case 0: {
    auto X = TPC.TORC8.Get(Rand.Rand());
    DE = MakeDictionaryEntryFromCMP(X.A, X.B, Data, Size);
  } break;
  case 1: {
    auto X = TPC.TORC4.Get(Rand.Rand());
    if ((X.A >> 16) == 0 && (X.B >> 16) == 0 && Rand.RandBool())
      DE = MakeDictionaryEntryFromCMP((uint16_t)X.A, (uint16_t)X.B, Data, Size);
    else
      DE = MakeDictionaryEntryFromCMP(X.A, X.B, Data, Size);
  } break;
  case 2: {
    auto X = TPC.TORCW.Get(Rand.Rand());
    DE = MakeDictionaryEntryFromCMP(X.A, X.B, Data, Size);
  } break;
  default:
    assert(0);
  }
  if (!DE.GetW().size()) return 0;
  Size = ApplyDictionaryEntry(Data, Size, MaxSize, DE);
  if (!Size) return 0;
  DictionaryEntry &DERef =
      CmpDictionaryEntriesDeque[CmpDictionaryEntriesDequeIdx++ %
                                kCmpDictionaryEntriesDequeSize];
  DERef = DE;
  CurrentDictionaryEntrySequence.push_back(&DERef);
  return Size;
}

size_t MutationDispatcher::Mutate_AddWordFromPersistentAutoDictionary(
    uint8_t *Data, size_t Size, size_t MaxSize) {
  return AddWordFromDictionary(PersistentAutoDictionary, Data, Size, MaxSize);
}

size_t MutationDispatcher::AddWordFromDictionary(Dictionary &D, uint8_t *Data,
                                                 size_t Size, size_t MaxSize) {
  if (Size > MaxSize) return 0;
  if (D.empty()) return 0;
  DictionaryEntry &DE = D[Rand(D.size())];
  Size = ApplyDictionaryEntry(Data, Size, MaxSize, DE);
  if (!Size) return 0;
  DE.IncUseCount();
  CurrentDictionaryEntrySequence.push_back(&DE);
  return Size;
}

// Overwrites part of To[0,ToSize) with a part of From[0,FromSize).
// Returns ToSize.
size_t MutationDispatcher::CopyPartOf(const uint8_t *From, size_t FromSize,
                                      uint8_t *To, size_t ToSize) {
  // Copy From[FromBeg, FromBeg + CopySize) into To[ToBeg, ToBeg + CopySize).
  size_t ToBeg = Rand(ToSize);
  size_t CopySize = Rand(ToSize - ToBeg) + 1;
  assert(ToBeg + CopySize <= ToSize);
  CopySize = std::min(CopySize, FromSize);
  size_t FromBeg = Rand(FromSize - CopySize + 1);
  assert(FromBeg + CopySize <= FromSize);
  memmove(To + ToBeg, From + FromBeg, CopySize);
  return ToSize;
}

// Inserts part of From[0,ToSize) into To.
// Returns new size of To on success or 0 on failure.
size_t MutationDispatcher::InsertPartOf(const uint8_t *From, size_t FromSize,
                                        uint8_t *To, size_t ToSize,
                                        size_t MaxToSize) {
  if (ToSize >= MaxToSize) return 0;
  size_t AvailableSpace = MaxToSize - ToSize;
  size_t MaxCopySize = std::min(AvailableSpace, FromSize);
  size_t CopySize = Rand(MaxCopySize) + 1;
  size_t FromBeg = Rand(FromSize - CopySize + 1);
  assert(FromBeg + CopySize <= FromSize);
  size_t ToInsertPos = Rand(ToSize + 1);
  assert(ToInsertPos + CopySize <= MaxToSize);
  size_t TailSize = ToSize - ToInsertPos;
  if (To == From) {
    MutateInPlaceHere.resize(MaxToSize);
    memcpy(MutateInPlaceHere.data(), From + FromBeg, CopySize);
    memmove(To + ToInsertPos + CopySize, To + ToInsertPos, TailSize);
    memmove(To + ToInsertPos, MutateInPlaceHere.data(), CopySize);
  } else {
    memmove(To + ToInsertPos + CopySize, To + ToInsertPos, TailSize);
    memmove(To + ToInsertPos, From + FromBeg, CopySize);
  }
  return ToSize + CopySize;
}

size_t MutationDispatcher::Mutate_CopyPart(uint8_t *Data, size_t Size,
                                           size_t MaxSize) {
  if (Size > MaxSize || Size == 0) return 0;
  if (Rand.RandBool())
    return CopyPartOf(Data, Size, Data, Size);
  else
    return InsertPartOf(Data, Size, Data, Size, MaxSize);
}

size_t MutationDispatcher::Mutate_ChangeASCIIInteger(uint8_t *Data, size_t Size,
                                                     size_t MaxSize) {
  if (Size > MaxSize) return 0;
  size_t B = Rand(Size);
  while (B < Size && !isdigit(Data[B])) B++;
  if (B == Size) return 0;
  size_t E = B;
  while (E < Size && isdigit(Data[E])) E++;
  assert(B < E);
  // now we have digits in [B, E).
  // strtol and friends don't accept non-zero-teminated data, parse it manually.
  uint64_t Val = Data[B] - '0';
  for (size_t i = B + 1; i < E; i++)
    Val = Val * 10 + Data[i] - '0';

  // Mutate the integer value.
  switch(Rand(5)) {
    case 0: Val++; break;
    case 1: Val--; break;
    case 2: Val /= 2; break;
    case 3: Val *= 2; break;
    case 4: Val = Rand(Val * Val); break;
    default: assert(0);
  }
  // Just replace the bytes with the new ones, don't bother moving bytes.
  for (size_t i = B; i < E; i++) {
    size_t Idx = E + B - i - 1;
    assert(Idx >= B && Idx < E);
    Data[Idx] = (Val % 10) + '0';
    Val /= 10;
  }
  return Size;
}

template<class T>
size_t ChangeBinaryInteger(uint8_t *Data, size_t Size, Random &Rand) {
  if (Size < sizeof(T)) return 0;
  size_t Off = Rand(Size - sizeof(T) + 1);
  assert(Off + sizeof(T) <= Size);
  T Val;
  if (Off < 64 && !Rand(4)) {
    Val = Size;
    if (Rand.RandBool())
      Val = Bswap(Val);
  } else {
    memcpy(&Val, Data + Off, sizeof(Val));
    T Add = Rand(21);
    Add -= 10;
    if (Rand.RandBool())
      Val = Bswap(T(Bswap(Val) + Add)); // Add assuming different endiannes.
    else
      Val = Val + Add;               // Add assuming current endiannes.
    if (Add == 0 || Rand.RandBool()) // Maybe negate.
      Val = -Val;
  }
  memcpy(Data + Off, &Val, sizeof(Val));
  return Size;
}

size_t MutationDispatcher::Mutate_ChangeBinaryInteger(uint8_t *Data,
                                                      size_t Size,
                                                      size_t MaxSize) {
  if (Size > MaxSize) return 0;
  switch (Rand(4)) {
    case 3: return ChangeBinaryInteger<uint64_t>(Data, Size, Rand);
    case 2: return ChangeBinaryInteger<uint32_t>(Data, Size, Rand);
    case 1: return ChangeBinaryInteger<uint16_t>(Data, Size, Rand);
    case 0: return ChangeBinaryInteger<uint8_t>(Data, Size, Rand);
    default: assert(0);
  }
  return 0;
}

size_t MutationDispatcher::Mutate_CrossOver(uint8_t *Data, size_t Size,
                                            size_t MaxSize) {
  if (Size > MaxSize) return 0;
  if (!Corpus || Corpus->size() < 2 || Size == 0) return 0;
  size_t Idx = Rand(Corpus->size());
  const Unit &O = (*Corpus)[Idx];
  if (O.empty()) return 0;
  MutateInPlaceHere.resize(MaxSize);
  auto &U = MutateInPlaceHere;
  size_t NewSize = 0;
  switch(Rand(3)) {
    case 0:
      NewSize = CrossOver(Data, Size, O.data(), O.size(), U.data(), U.size());
      break;
    case 1:
      NewSize = InsertPartOf(O.data(), O.size(), U.data(), U.size(), MaxSize);
      if (!NewSize)
        NewSize = CopyPartOf(O.data(), O.size(), U.data(), U.size());
      break;
    case 2:
      NewSize = CopyPartOf(O.data(), O.size(), U.data(), U.size());
      break;
    default: assert(0);
  }
  assert(NewSize > 0 && "CrossOver returned empty unit");
  assert(NewSize <= MaxSize && "CrossOver returned overisized unit");
  memcpy(Data, U.data(), NewSize);
  return NewSize;
}

void MutationDispatcher::StartMutationSequence() {
  CurrentMutatorSequence.clear();
  CurrentDictionaryEntrySequence.clear();
}

// Copy successful dictionary entries to PersistentAutoDictionary.
void MutationDispatcher::RecordSuccessfulMutationSequence() {
  for (auto DE : CurrentDictionaryEntrySequence) {
    // PersistentAutoDictionary.AddWithSuccessCountOne(DE);
    DE->IncSuccessCount();
    assert(DE->GetW().size());
    // Linear search is fine here as this happens seldom.
    if (!PersistentAutoDictionary.ContainsWord(DE->GetW()))
      PersistentAutoDictionary.push_back({DE->GetW(), 1});
  }
}

void MutationDispatcher::PrintRecommendedDictionary() {
  std::vector<DictionaryEntry> V;
  for (auto &DE : PersistentAutoDictionary)
    if (!ManualDictionary.ContainsWord(DE.GetW()))
      V.push_back(DE);
  if (V.empty()) return;
  Printf("###### Recommended dictionary. ######\n");
  for (auto &DE: V) {
    assert(DE.GetW().size());
    Printf("\"");
    PrintASCII(DE.GetW(), "\"");
    Printf(" # Uses: %zd\n", DE.GetUseCount());
  }
  Printf("###### End of recommended dictionary. ######\n");
}

void MutationDispatcher::PrintMutationSequence() {
  Printf("MS: %zd ", CurrentMutatorSequence.size());
  for (auto M : CurrentMutatorSequence)
    Printf("%s-", M.Name);
  if (!CurrentDictionaryEntrySequence.empty()) {
    Printf(" DE: ");
    for (auto DE : CurrentDictionaryEntrySequence) {
      Printf("\"");
      PrintASCII(DE->GetW(), "\"-");
    }
  }
}

size_t MutationDispatcher::Mutate(uint8_t *Data, size_t Size, size_t MaxSize) {
  return MutateImpl(Data, Size, MaxSize, Mutators);
}

size_t MutationDispatcher::DefaultMutate(uint8_t *Data, size_t Size,
                                         size_t MaxSize) {
  return MutateImpl(Data, Size, MaxSize, DefaultMutators);
}

// Mutates Data in place, returns new size.
size_t MutationDispatcher::MutateImpl(uint8_t *Data, size_t Size,
                                      size_t MaxSize,
                                      const std::vector<Mutator> &Mutators) {
  assert(MaxSize > 0);
  // Some mutations may fail (e.g. can't insert more bytes if Size == MaxSize),
  // in which case they will return 0.
  // Try several times before returning un-mutated data.
  for (int Iter = 0; Iter < 100; Iter++) {
    auto M = Mutators[Rand(Mutators.size())];
    size_t NewSize = (this->*(M.Fn))(Data, Size, MaxSize);
    if (NewSize && NewSize <= MaxSize) {
      if (Options.OnlyASCII)
        ToASCII(Data, NewSize);
      CurrentMutatorSequence.push_back(M);
      return NewSize;
    }
  }
  *Data = ' ';
  return 1;   // Fallback, should not happen frequently.
}

void MutationDispatcher::AddWordToManualDictionary(const Word &W) {
  ManualDictionary.push_back(
      {W, std::numeric_limits<size_t>::max()});
}

void MutationDispatcher::AddWordToAutoDictionary(DictionaryEntry DE) {
  static const size_t kMaxAutoDictSize = 1 << 14;
  if (TempAutoDictionary.size() >= kMaxAutoDictSize) return;
  TempAutoDictionary.push_back(DE);
}

void MutationDispatcher::ClearAutoDictionary() {
  TempAutoDictionary.clear();
}

}  // namespace fuzzer