llvm.org GIT mirror llvm / 9bc96a5 lib / Target / ARM / ARMInstrInfo.cpp
9bc96a5

Tree @9bc96a5 (Download .tar.gz)

ARMInstrInfo.cpp @9bc96a5raw · history · blame

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
//===- ARMInstrInfo.cpp - ARM Instruction Information -----------*- C++ -*-===//
//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file contains the ARM implementation of the TargetInstrInfo class.
//
//===----------------------------------------------------------------------===//

#include "ARMInstrInfo.h"
#include "ARM.h"
#include "ARMAddressingModes.h"
#include "ARMGenInstrInfo.inc"
#include "ARMMachineFunctionInfo.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/CodeGen/LiveVariables.h"
#include "llvm/CodeGen/MachineFrameInfo.h"
#include "llvm/CodeGen/MachineInstrBuilder.h"
#include "llvm/CodeGen/MachineJumpTableInfo.h"
#include "llvm/Target/TargetAsmInfo.h"
#include "llvm/Support/CommandLine.h"
using namespace llvm;

static cl::opt<bool> EnableARM3Addr("enable-arm-3-addr-conv", cl::Hidden,
                                  cl::desc("Enable ARM 2-addr to 3-addr conv"));

static inline
const MachineInstrBuilder &AddDefaultPred(const MachineInstrBuilder &MIB) {
  return MIB.addImm((int64_t)ARMCC::AL).addReg(0);
}

static inline
const MachineInstrBuilder &AddDefaultCC(const MachineInstrBuilder &MIB) {
  return MIB.addReg(0);
}

ARMInstrInfo::ARMInstrInfo(const ARMSubtarget &STI)
  : TargetInstrInfoImpl(ARMInsts, array_lengthof(ARMInsts)),
    RI(*this, STI) {
}

const TargetRegisterClass *ARMInstrInfo::getPointerRegClass() const {
  return &ARM::GPRRegClass;
}

/// Return true if the instruction is a register to register move and
/// leave the source and dest operands in the passed parameters.
///
bool ARMInstrInfo::isMoveInstr(const MachineInstr &MI,
                               unsigned &SrcReg, unsigned &DstReg,
                               unsigned& SrcSubIdx, unsigned& DstSubIdx) const {
  SrcSubIdx = DstSubIdx = 0; // No sub-registers.

  unsigned oc = MI.getOpcode();
  switch (oc) {
  default:
    return false;
  case ARM::FCPYS:
  case ARM::FCPYD:
    SrcReg = MI.getOperand(1).getReg();
    DstReg = MI.getOperand(0).getReg();
    return true;
  case ARM::MOVr:
  case ARM::tMOVr:
    assert(MI.getDesc().getNumOperands() >= 2 &&
           MI.getOperand(0).isReg() &&
           MI.getOperand(1).isReg() &&
           "Invalid ARM MOV instruction");
    SrcReg = MI.getOperand(1).getReg();
    DstReg = MI.getOperand(0).getReg();
    return true;
  }
}

unsigned ARMInstrInfo::isLoadFromStackSlot(const MachineInstr *MI,
                                           int &FrameIndex) const {
  switch (MI->getOpcode()) {
  default: break;
  case ARM::LDR:
    if (MI->getOperand(1).isFI() &&
        MI->getOperand(2).isReg() &&
        MI->getOperand(3).isImm() &&
        MI->getOperand(2).getReg() == 0 &&
        MI->getOperand(3).getImm() == 0) {
      FrameIndex = MI->getOperand(1).getIndex();
      return MI->getOperand(0).getReg();
    }
    break;
  case ARM::FLDD:
  case ARM::FLDS:
    if (MI->getOperand(1).isFI() &&
        MI->getOperand(2).isImm() &&
        MI->getOperand(2).getImm() == 0) {
      FrameIndex = MI->getOperand(1).getIndex();
      return MI->getOperand(0).getReg();
    }
    break;
  case ARM::tRestore:
    if (MI->getOperand(1).isFI() &&
        MI->getOperand(2).isImm() &&
        MI->getOperand(2).getImm() == 0) {
      FrameIndex = MI->getOperand(1).getIndex();
      return MI->getOperand(0).getReg();
    }
    break;
  }
  return 0;
}

unsigned ARMInstrInfo::isStoreToStackSlot(const MachineInstr *MI,
                                          int &FrameIndex) const {
  switch (MI->getOpcode()) {
  default: break;
  case ARM::STR:
    if (MI->getOperand(1).isFI() &&
        MI->getOperand(2).isReg() &&
        MI->getOperand(3).isImm() &&
        MI->getOperand(2).getReg() == 0 &&
        MI->getOperand(3).getImm() == 0) {
      FrameIndex = MI->getOperand(1).getIndex();
      return MI->getOperand(0).getReg();
    }
    break;
  case ARM::FSTD:
  case ARM::FSTS:
    if (MI->getOperand(1).isFI() &&
        MI->getOperand(2).isImm() &&
        MI->getOperand(2).getImm() == 0) {
      FrameIndex = MI->getOperand(1).getIndex();
      return MI->getOperand(0).getReg();
    }
    break;
  case ARM::tSpill:
    if (MI->getOperand(1).isFI() &&
        MI->getOperand(2).isImm() &&
        MI->getOperand(2).getImm() == 0) {
      FrameIndex = MI->getOperand(1).getIndex();
      return MI->getOperand(0).getReg();
    }
    break;
  }
  return 0;
}

void ARMInstrInfo::reMaterialize(MachineBasicBlock &MBB,
                                 MachineBasicBlock::iterator I,
                                 unsigned DestReg,
                                 const MachineInstr *Orig) const {
  if (Orig->getOpcode() == ARM::MOVi2pieces) {
    RI.emitLoadConstPool(MBB, I, DestReg, Orig->getOperand(1).getImm(),
                         Orig->getOperand(2).getImm(),
                         Orig->getOperand(3).getReg(), this, false);
    return;
  }

  MachineInstr *MI = MBB.getParent()->CloneMachineInstr(Orig);
  MI->getOperand(0).setReg(DestReg);
  MBB.insert(I, MI);
}

static unsigned getUnindexedOpcode(unsigned Opc) {
  switch (Opc) {
  default: break;
  case ARM::LDR_PRE:
  case ARM::LDR_POST:
    return ARM::LDR;
  case ARM::LDRH_PRE:
  case ARM::LDRH_POST:
    return ARM::LDRH;
  case ARM::LDRB_PRE:
  case ARM::LDRB_POST:
    return ARM::LDRB;
  case ARM::LDRSH_PRE:
  case ARM::LDRSH_POST:
    return ARM::LDRSH;
  case ARM::LDRSB_PRE:
  case ARM::LDRSB_POST:
    return ARM::LDRSB;
  case ARM::STR_PRE:
  case ARM::STR_POST:
    return ARM::STR;
  case ARM::STRH_PRE:
  case ARM::STRH_POST:
    return ARM::STRH;
  case ARM::STRB_PRE:
  case ARM::STRB_POST:
    return ARM::STRB;
  }
  return 0;
}

MachineInstr *
ARMInstrInfo::convertToThreeAddress(MachineFunction::iterator &MFI,
                                    MachineBasicBlock::iterator &MBBI,
                                    LiveVariables *LV) const {
  if (!EnableARM3Addr)
    return NULL;

  MachineInstr *MI = MBBI;
  MachineFunction &MF = *MI->getParent()->getParent();
  unsigned TSFlags = MI->getDesc().TSFlags;
  bool isPre = false;
  switch ((TSFlags & ARMII::IndexModeMask) >> ARMII::IndexModeShift) {
  default: return NULL;
  case ARMII::IndexModePre:
    isPre = true;
    break;
  case ARMII::IndexModePost:
    break;
  }

  // Try spliting an indexed load / store to a un-indexed one plus an add/sub
  // operation.
  unsigned MemOpc = getUnindexedOpcode(MI->getOpcode());
  if (MemOpc == 0)
    return NULL;

  MachineInstr *UpdateMI = NULL;
  MachineInstr *MemMI = NULL;
  unsigned AddrMode = (TSFlags & ARMII::AddrModeMask);
  const TargetInstrDesc &TID = MI->getDesc();
  unsigned NumOps = TID.getNumOperands();
  bool isLoad = !TID.mayStore();
  const MachineOperand &WB = isLoad ? MI->getOperand(1) : MI->getOperand(0);
  const MachineOperand &Base = MI->getOperand(2);
  const MachineOperand &Offset = MI->getOperand(NumOps-3);
  unsigned WBReg = WB.getReg();
  unsigned BaseReg = Base.getReg();
  unsigned OffReg = Offset.getReg();
  unsigned OffImm = MI->getOperand(NumOps-2).getImm();
  ARMCC::CondCodes Pred = (ARMCC::CondCodes)MI->getOperand(NumOps-1).getImm();
  switch (AddrMode) {
  default:
    assert(false && "Unknown indexed op!");
    return NULL;
  case ARMII::AddrMode2: {
    bool isSub = ARM_AM::getAM2Op(OffImm) == ARM_AM::sub;
    unsigned Amt = ARM_AM::getAM2Offset(OffImm);
    if (OffReg == 0) {
      int SOImmVal = ARM_AM::getSOImmVal(Amt);
      if (SOImmVal == -1)
        // Can't encode it in a so_imm operand. This transformation will
        // add more than 1 instruction. Abandon!
        return NULL;
      UpdateMI = BuildMI(MF, get(isSub ? ARM::SUBri : ARM::ADDri), WBReg)
        .addReg(BaseReg).addImm(SOImmVal)
        .addImm(Pred).addReg(0).addReg(0);
    } else if (Amt != 0) {
      ARM_AM::ShiftOpc ShOpc = ARM_AM::getAM2ShiftOpc(OffImm);
      unsigned SOOpc = ARM_AM::getSORegOpc(ShOpc, Amt);
      UpdateMI = BuildMI(MF, get(isSub ? ARM::SUBrs : ARM::ADDrs), WBReg)
        .addReg(BaseReg).addReg(OffReg).addReg(0).addImm(SOOpc)
        .addImm(Pred).addReg(0).addReg(0);
    } else 
      UpdateMI = BuildMI(MF, get(isSub ? ARM::SUBrr : ARM::ADDrr), WBReg)
        .addReg(BaseReg).addReg(OffReg)
        .addImm(Pred).addReg(0).addReg(0);
    break;
  }
  case ARMII::AddrMode3 : {
    bool isSub = ARM_AM::getAM3Op(OffImm) == ARM_AM::sub;
    unsigned Amt = ARM_AM::getAM3Offset(OffImm);
    if (OffReg == 0)
      // Immediate is 8-bits. It's guaranteed to fit in a so_imm operand.
      UpdateMI = BuildMI(MF, get(isSub ? ARM::SUBri : ARM::ADDri), WBReg)
        .addReg(BaseReg).addImm(Amt)
        .addImm(Pred).addReg(0).addReg(0);
    else
      UpdateMI = BuildMI(MF, get(isSub ? ARM::SUBrr : ARM::ADDrr), WBReg)
        .addReg(BaseReg).addReg(OffReg)
        .addImm(Pred).addReg(0).addReg(0);
    break;
  }
  }

  std::vector<MachineInstr*> NewMIs;
  if (isPre) {
    if (isLoad)
      MemMI = BuildMI(MF, get(MemOpc), MI->getOperand(0).getReg())
        .addReg(WBReg).addReg(0).addImm(0).addImm(Pred);
    else
      MemMI = BuildMI(MF, get(MemOpc)).addReg(MI->getOperand(1).getReg())
        .addReg(WBReg).addReg(0).addImm(0).addImm(Pred);
    NewMIs.push_back(MemMI);
    NewMIs.push_back(UpdateMI);
  } else {
    if (isLoad)
      MemMI = BuildMI(MF, get(MemOpc), MI->getOperand(0).getReg())
        .addReg(BaseReg).addReg(0).addImm(0).addImm(Pred);
    else
      MemMI = BuildMI(MF, get(MemOpc)).addReg(MI->getOperand(1).getReg())
        .addReg(BaseReg).addReg(0).addImm(0).addImm(Pred);
    if (WB.isDead())
      UpdateMI->getOperand(0).setIsDead();
    NewMIs.push_back(UpdateMI);
    NewMIs.push_back(MemMI);
  }
  
  // Transfer LiveVariables states, kill / dead info.
  if (LV) {
    for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
      MachineOperand &MO = MI->getOperand(i);
      if (MO.isReg() && MO.getReg() &&
          TargetRegisterInfo::isVirtualRegister(MO.getReg())) {
        unsigned Reg = MO.getReg();
      
        LiveVariables::VarInfo &VI = LV->getVarInfo(Reg);
        if (MO.isDef()) {
          MachineInstr *NewMI = (Reg == WBReg) ? UpdateMI : MemMI;
          if (MO.isDead())
            LV->addVirtualRegisterDead(Reg, NewMI);
        }
        if (MO.isUse() && MO.isKill()) {
          for (unsigned j = 0; j < 2; ++j) {
            // Look at the two new MI's in reverse order.
            MachineInstr *NewMI = NewMIs[j];
            if (!NewMI->readsRegister(Reg))
              continue;
            LV->addVirtualRegisterKilled(Reg, NewMI);
            if (VI.removeKill(MI))
              VI.Kills.push_back(NewMI);
            break;
          }
        }
      }
    }
  }

  MFI->insert(MBBI, NewMIs[1]);
  MFI->insert(MBBI, NewMIs[0]);
  return NewMIs[0];
}

// Branch analysis.
bool ARMInstrInfo::AnalyzeBranch(MachineBasicBlock &MBB,MachineBasicBlock *&TBB,
                                 MachineBasicBlock *&FBB,
                                 SmallVectorImpl<MachineOperand> &Cond) const {
  // If the block has no terminators, it just falls into the block after it.
  MachineBasicBlock::iterator I = MBB.end();
  if (I == MBB.begin() || !isUnpredicatedTerminator(--I))
    return false;
  
  // Get the last instruction in the block.
  MachineInstr *LastInst = I;
  
  // If there is only one terminator instruction, process it.
  unsigned LastOpc = LastInst->getOpcode();
  if (I == MBB.begin() || !isUnpredicatedTerminator(--I)) {
    if (LastOpc == ARM::B || LastOpc == ARM::tB) {
      TBB = LastInst->getOperand(0).getMBB();
      return false;
    }
    if (LastOpc == ARM::Bcc || LastOpc == ARM::tBcc) {
      // Block ends with fall-through condbranch.
      TBB = LastInst->getOperand(0).getMBB();
      Cond.push_back(LastInst->getOperand(1));
      Cond.push_back(LastInst->getOperand(2));
      return false;
    }
    return true;  // Can't handle indirect branch.
  }
  
  // Get the instruction before it if it is a terminator.
  MachineInstr *SecondLastInst = I;
  
  // If there are three terminators, we don't know what sort of block this is.
  if (SecondLastInst && I != MBB.begin() && isUnpredicatedTerminator(--I))
    return true;
  
  // If the block ends with ARM::B/ARM::tB and a ARM::Bcc/ARM::tBcc, handle it.
  unsigned SecondLastOpc = SecondLastInst->getOpcode();
  if ((SecondLastOpc == ARM::Bcc && LastOpc == ARM::B) ||
      (SecondLastOpc == ARM::tBcc && LastOpc == ARM::tB)) {
    TBB =  SecondLastInst->getOperand(0).getMBB();
    Cond.push_back(SecondLastInst->getOperand(1));
    Cond.push_back(SecondLastInst->getOperand(2));
    FBB = LastInst->getOperand(0).getMBB();
    return false;
  }
  
  // If the block ends with two unconditional branches, handle it.  The second 
  // one is not executed, so remove it.
  if ((SecondLastOpc == ARM::B || SecondLastOpc==ARM::tB) &&
      (LastOpc == ARM::B || LastOpc == ARM::tB)) {
    TBB = SecondLastInst->getOperand(0).getMBB();
    I = LastInst;
    I->eraseFromParent();
    return false;
  }

  // Likewise if it ends with a branch table followed by an unconditional branch.
  // The branch folder can create these, and we must get rid of them for
  // correctness of Thumb constant islands.
  if ((SecondLastOpc == ARM::BR_JTr || SecondLastOpc==ARM::BR_JTm ||
       SecondLastOpc == ARM::BR_JTadd || SecondLastOpc==ARM::tBR_JTr) &&
      (LastOpc == ARM::B || LastOpc == ARM::tB)) {
    I = LastInst;
    I->eraseFromParent();
    return true;
  } 

  // Otherwise, can't handle this.
  return true;
}


unsigned ARMInstrInfo::RemoveBranch(MachineBasicBlock &MBB) const {
  MachineFunction &MF = *MBB.getParent();
  ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
  int BOpc   = AFI->isThumbFunction() ? ARM::tB : ARM::B;
  int BccOpc = AFI->isThumbFunction() ? ARM::tBcc : ARM::Bcc;

  MachineBasicBlock::iterator I = MBB.end();
  if (I == MBB.begin()) return 0;
  --I;
  if (I->getOpcode() != BOpc && I->getOpcode() != BccOpc)
    return 0;
  
  // Remove the branch.
  I->eraseFromParent();
  
  I = MBB.end();
  
  if (I == MBB.begin()) return 1;
  --I;
  if (I->getOpcode() != BccOpc)
    return 1;
  
  // Remove the branch.
  I->eraseFromParent();
  return 2;
}

unsigned ARMInstrInfo::InsertBranch(MachineBasicBlock &MBB, MachineBasicBlock *TBB,
                                MachineBasicBlock *FBB,
                            const SmallVectorImpl<MachineOperand> &Cond) const {
  MachineFunction &MF = *MBB.getParent();
  ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
  int BOpc   = AFI->isThumbFunction() ? ARM::tB : ARM::B;
  int BccOpc = AFI->isThumbFunction() ? ARM::tBcc : ARM::Bcc;

  // Shouldn't be a fall through.
  assert(TBB && "InsertBranch must not be told to insert a fallthrough");
  assert((Cond.size() == 2 || Cond.size() == 0) &&
         "ARM branch conditions have two components!");
  
  if (FBB == 0) {
    if (Cond.empty()) // Unconditional branch?
      BuildMI(&MBB, get(BOpc)).addMBB(TBB);
    else
      BuildMI(&MBB, get(BccOpc)).addMBB(TBB)
        .addImm(Cond[0].getImm()).addReg(Cond[1].getReg());
    return 1;
  }
  
  // Two-way conditional branch.
  BuildMI(&MBB, get(BccOpc)).addMBB(TBB)
    .addImm(Cond[0].getImm()).addReg(Cond[1].getReg());
  BuildMI(&MBB, get(BOpc)).addMBB(FBB);
  return 2;
}

bool ARMInstrInfo::copyRegToReg(MachineBasicBlock &MBB,
                                   MachineBasicBlock::iterator I,
                                   unsigned DestReg, unsigned SrcReg,
                                   const TargetRegisterClass *DestRC,
                                   const TargetRegisterClass *SrcRC) const {
  if (DestRC != SrcRC) {
    // Not yet supported!
    return false;
  }

  if (DestRC == ARM::GPRRegisterClass) {
    MachineFunction &MF = *MBB.getParent();
    ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
    if (AFI->isThumbFunction())
      BuildMI(MBB, I, get(ARM::tMOVr), DestReg).addReg(SrcReg);
    else
      AddDefaultCC(AddDefaultPred(BuildMI(MBB, I, get(ARM::MOVr), DestReg)
                                  .addReg(SrcReg)));
  } else if (DestRC == ARM::SPRRegisterClass)
    AddDefaultPred(BuildMI(MBB, I, get(ARM::FCPYS), DestReg)
                   .addReg(SrcReg));
  else if (DestRC == ARM::DPRRegisterClass)
    AddDefaultPred(BuildMI(MBB, I, get(ARM::FCPYD), DestReg)
                   .addReg(SrcReg));
  else
    return false;
  
  return true;
}

static const MachineInstrBuilder &ARMInstrAddOperand(MachineInstrBuilder &MIB,
                                                     MachineOperand &MO) {
  if (MO.isReg())
    MIB = MIB.addReg(MO.getReg(), MO.isDef(), MO.isImplicit());
  else if (MO.isImm())
    MIB = MIB.addImm(MO.getImm());
  else if (MO.isFI())
    MIB = MIB.addFrameIndex(MO.getIndex());
  else
    assert(0 && "Unknown operand for ARMInstrAddOperand!");

  return MIB;
}

void ARMInstrInfo::
storeRegToStackSlot(MachineBasicBlock &MBB, MachineBasicBlock::iterator I,
                    unsigned SrcReg, bool isKill, int FI,
                    const TargetRegisterClass *RC) const {
  if (RC == ARM::GPRRegisterClass) {
    MachineFunction &MF = *MBB.getParent();
    ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
    if (AFI->isThumbFunction())
      BuildMI(MBB, I, get(ARM::tSpill)).addReg(SrcReg, false, false, isKill)
        .addFrameIndex(FI).addImm(0);
    else
      AddDefaultPred(BuildMI(MBB, I, get(ARM::STR))
                     .addReg(SrcReg, false, false, isKill)
                     .addFrameIndex(FI).addReg(0).addImm(0));
  } else if (RC == ARM::DPRRegisterClass) {
    AddDefaultPred(BuildMI(MBB, I, get(ARM::FSTD))
                   .addReg(SrcReg, false, false, isKill)
                   .addFrameIndex(FI).addImm(0));
  } else {
    assert(RC == ARM::SPRRegisterClass && "Unknown regclass!");
    AddDefaultPred(BuildMI(MBB, I, get(ARM::FSTS))
                   .addReg(SrcReg, false, false, isKill)
                   .addFrameIndex(FI).addImm(0));
  }
}

void ARMInstrInfo::storeRegToAddr(MachineFunction &MF, unsigned SrcReg,
                                     bool isKill,
                                     SmallVectorImpl<MachineOperand> &Addr,
                                     const TargetRegisterClass *RC,
                                 SmallVectorImpl<MachineInstr*> &NewMIs) const {
  unsigned Opc = 0;
  if (RC == ARM::GPRRegisterClass) {
    ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
    if (AFI->isThumbFunction()) {
      Opc = Addr[0].isFI() ? ARM::tSpill : ARM::tSTR;
      MachineInstrBuilder MIB = 
        BuildMI(MF, get(Opc)).addReg(SrcReg, false, false, isKill);
      for (unsigned i = 0, e = Addr.size(); i != e; ++i)
        MIB = ARMInstrAddOperand(MIB, Addr[i]);
      NewMIs.push_back(MIB);
      return;
    }
    Opc = ARM::STR;
  } else if (RC == ARM::DPRRegisterClass) {
    Opc = ARM::FSTD;
  } else {
    assert(RC == ARM::SPRRegisterClass && "Unknown regclass!");
    Opc = ARM::FSTS;
  }

  MachineInstrBuilder MIB = 
    BuildMI(MF, get(Opc)).addReg(SrcReg, false, false, isKill);
  for (unsigned i = 0, e = Addr.size(); i != e; ++i)
    MIB = ARMInstrAddOperand(MIB, Addr[i]);
  AddDefaultPred(MIB);
  NewMIs.push_back(MIB);
  return;
}

void ARMInstrInfo::
loadRegFromStackSlot(MachineBasicBlock &MBB, MachineBasicBlock::iterator I,
                     unsigned DestReg, int FI,
                     const TargetRegisterClass *RC) const {
  if (RC == ARM::GPRRegisterClass) {
    MachineFunction &MF = *MBB.getParent();
    ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
    if (AFI->isThumbFunction())
      BuildMI(MBB, I, get(ARM::tRestore), DestReg)
        .addFrameIndex(FI).addImm(0);
    else
      AddDefaultPred(BuildMI(MBB, I, get(ARM::LDR), DestReg)
                     .addFrameIndex(FI).addReg(0).addImm(0));
  } else if (RC == ARM::DPRRegisterClass) {
    AddDefaultPred(BuildMI(MBB, I, get(ARM::FLDD), DestReg)
                   .addFrameIndex(FI).addImm(0));
  } else {
    assert(RC == ARM::SPRRegisterClass && "Unknown regclass!");
    AddDefaultPred(BuildMI(MBB, I, get(ARM::FLDS), DestReg)
                   .addFrameIndex(FI).addImm(0));
  }
}

void ARMInstrInfo::loadRegFromAddr(MachineFunction &MF, unsigned DestReg,
                                      SmallVectorImpl<MachineOperand> &Addr,
                                      const TargetRegisterClass *RC,
                                 SmallVectorImpl<MachineInstr*> &NewMIs) const {
  unsigned Opc = 0;
  if (RC == ARM::GPRRegisterClass) {
    ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
    if (AFI->isThumbFunction()) {
      Opc = Addr[0].isFI() ? ARM::tRestore : ARM::tLDR;
      MachineInstrBuilder MIB = BuildMI(MF, get(Opc), DestReg);
      for (unsigned i = 0, e = Addr.size(); i != e; ++i)
        MIB = ARMInstrAddOperand(MIB, Addr[i]);
      NewMIs.push_back(MIB);
      return;
    }
    Opc = ARM::LDR;
  } else if (RC == ARM::DPRRegisterClass) {
    Opc = ARM::FLDD;
  } else {
    assert(RC == ARM::SPRRegisterClass && "Unknown regclass!");
    Opc = ARM::FLDS;
  }

  MachineInstrBuilder MIB =  BuildMI(MF, get(Opc), DestReg);
  for (unsigned i = 0, e = Addr.size(); i != e; ++i)
    MIB = ARMInstrAddOperand(MIB, Addr[i]);
  AddDefaultPred(MIB);
  NewMIs.push_back(MIB);
  return;
}

bool ARMInstrInfo::spillCalleeSavedRegisters(MachineBasicBlock &MBB,
                                                MachineBasicBlock::iterator MI,
                                const std::vector<CalleeSavedInfo> &CSI) const {
  MachineFunction &MF = *MBB.getParent();
  ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
  if (!AFI->isThumbFunction() || CSI.empty())
    return false;

  MachineInstrBuilder MIB = BuildMI(MBB, MI, get(ARM::tPUSH));
  for (unsigned i = CSI.size(); i != 0; --i) {
    unsigned Reg = CSI[i-1].getReg();
    // Add the callee-saved register as live-in. It's killed at the spill.
    MBB.addLiveIn(Reg);
    MIB.addReg(Reg, false/*isDef*/,false/*isImp*/,true/*isKill*/);
  }
  return true;
}

bool ARMInstrInfo::restoreCalleeSavedRegisters(MachineBasicBlock &MBB,
                                                 MachineBasicBlock::iterator MI,
                                const std::vector<CalleeSavedInfo> &CSI) const {
  MachineFunction &MF = *MBB.getParent();
  ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
  if (!AFI->isThumbFunction() || CSI.empty())
    return false;

  bool isVarArg = AFI->getVarArgsRegSaveSize() > 0;
  MachineInstr *PopMI = MF.CreateMachineInstr(get(ARM::tPOP),MI->getDebugLoc());
  MBB.insert(MI, PopMI);
  for (unsigned i = CSI.size(); i != 0; --i) {
    unsigned Reg = CSI[i-1].getReg();
    if (Reg == ARM::LR) {
      // Special epilogue for vararg functions. See emitEpilogue
      if (isVarArg)
        continue;
      Reg = ARM::PC;
      PopMI->setDesc(get(ARM::tPOP_RET));
      MBB.erase(MI);
    }
    PopMI->addOperand(MachineOperand::CreateReg(Reg, true));
  }
  return true;
}

MachineInstr *ARMInstrInfo::foldMemoryOperandImpl(MachineFunction &MF,
                                                  MachineInstr *MI,
                                        const SmallVectorImpl<unsigned> &Ops,
                                                  int FI) const {
  if (Ops.size() != 1) return NULL;

  unsigned OpNum = Ops[0];
  unsigned Opc = MI->getOpcode();
  MachineInstr *NewMI = NULL;
  switch (Opc) {
  default: break;
  case ARM::MOVr: {
    if (MI->getOperand(4).getReg() == ARM::CPSR)
      // If it is updating CPSR, then it cannot be foled.
      break;
    unsigned Pred = MI->getOperand(2).getImm();
    unsigned PredReg = MI->getOperand(3).getReg();
    if (OpNum == 0) { // move -> store
      unsigned SrcReg = MI->getOperand(1).getReg();
      bool isKill = MI->getOperand(1).isKill();
      NewMI = BuildMI(MF, get(ARM::STR)).addReg(SrcReg, false, false, isKill)
        .addFrameIndex(FI).addReg(0).addImm(0).addImm(Pred).addReg(PredReg);
    } else {          // move -> load
      unsigned DstReg = MI->getOperand(0).getReg();
      bool isDead = MI->getOperand(0).isDead();
      NewMI = BuildMI(MF, get(ARM::LDR)).addReg(DstReg, true, false, false, isDead)
        .addFrameIndex(FI).addReg(0).addImm(0).addImm(Pred).addReg(PredReg);
    }
    break;
  }
  case ARM::tMOVr: {
    if (OpNum == 0) { // move -> store
      unsigned SrcReg = MI->getOperand(1).getReg();
      bool isKill = MI->getOperand(1).isKill();
      if (RI.isPhysicalRegister(SrcReg) && !RI.isLowRegister(SrcReg))
        // tSpill cannot take a high register operand.
        break;
      NewMI = BuildMI(MF, get(ARM::tSpill)).addReg(SrcReg, false, false, isKill)
        .addFrameIndex(FI).addImm(0);
    } else {          // move -> load
      unsigned DstReg = MI->getOperand(0).getReg();
      if (RI.isPhysicalRegister(DstReg) && !RI.isLowRegister(DstReg))
        // tRestore cannot target a high register operand.
        break;
      bool isDead = MI->getOperand(0).isDead();
      NewMI = BuildMI(MF, get(ARM::tRestore))
        .addReg(DstReg, true, false, false, isDead)
        .addFrameIndex(FI).addImm(0);
    }
    break;
  }
  case ARM::FCPYS: {
    unsigned Pred = MI->getOperand(2).getImm();
    unsigned PredReg = MI->getOperand(3).getReg();
    if (OpNum == 0) { // move -> store
      unsigned SrcReg = MI->getOperand(1).getReg();
      NewMI = BuildMI(MF, get(ARM::FSTS)).addReg(SrcReg).addFrameIndex(FI)
        .addImm(0).addImm(Pred).addReg(PredReg);
    } else {          // move -> load
      unsigned DstReg = MI->getOperand(0).getReg();
      NewMI = BuildMI(MF, get(ARM::FLDS), DstReg).addFrameIndex(FI)
        .addImm(0).addImm(Pred).addReg(PredReg);
    }
    break;
  }
  case ARM::FCPYD: {
    unsigned Pred = MI->getOperand(2).getImm();
    unsigned PredReg = MI->getOperand(3).getReg();
    if (OpNum == 0) { // move -> store
      unsigned SrcReg = MI->getOperand(1).getReg();
      bool isKill = MI->getOperand(1).isKill();
      NewMI = BuildMI(MF, get(ARM::FSTD)).addReg(SrcReg, false, false, isKill)
        .addFrameIndex(FI).addImm(0).addImm(Pred).addReg(PredReg);
    } else {          // move -> load
      unsigned DstReg = MI->getOperand(0).getReg();
      bool isDead = MI->getOperand(0).isDead();
      NewMI = BuildMI(MF, get(ARM::FLDD)).addReg(DstReg, true, false, false, isDead)
        .addFrameIndex(FI).addImm(0).addImm(Pred).addReg(PredReg);
    }
    break;
  }
  }

  return NewMI;
}

bool ARMInstrInfo::canFoldMemoryOperand(const MachineInstr *MI,
                                  const SmallVectorImpl<unsigned> &Ops) const {
  if (Ops.size() != 1) return false;

  unsigned OpNum = Ops[0];
  unsigned Opc = MI->getOpcode();
  switch (Opc) {
  default: break;
  case ARM::MOVr:
    // If it is updating CPSR, then it cannot be foled.
    return MI->getOperand(4).getReg() != ARM::CPSR;
  case ARM::tMOVr: {
    if (OpNum == 0) { // move -> store
      unsigned SrcReg = MI->getOperand(1).getReg();
      if (RI.isPhysicalRegister(SrcReg) && !RI.isLowRegister(SrcReg))
        // tSpill cannot take a high register operand.
        return false;
    } else {          // move -> load
      unsigned DstReg = MI->getOperand(0).getReg();
      if (RI.isPhysicalRegister(DstReg) && !RI.isLowRegister(DstReg))
        // tRestore cannot target a high register operand.
        return false;
    }
    return true;
  }
  case ARM::FCPYS:
  case ARM::FCPYD:
    return true;
  }

  return false;
}

bool ARMInstrInfo::BlockHasNoFallThrough(const MachineBasicBlock &MBB) const {
  if (MBB.empty()) return false;
  
  switch (MBB.back().getOpcode()) {
  case ARM::BX_RET:   // Return.
  case ARM::LDM_RET:
  case ARM::tBX_RET:
  case ARM::tBX_RET_vararg:
  case ARM::tPOP_RET:
  case ARM::B:
  case ARM::tB:       // Uncond branch.
  case ARM::tBR_JTr:
  case ARM::BR_JTr:   // Jumptable branch.
  case ARM::BR_JTm:   // Jumptable branch through mem.
  case ARM::BR_JTadd: // Jumptable branch add to pc.
    return true;
  default: return false;
  }
}

bool ARMInstrInfo::
ReverseBranchCondition(SmallVectorImpl<MachineOperand> &Cond) const {
  ARMCC::CondCodes CC = (ARMCC::CondCodes)(int)Cond[0].getImm();
  Cond[0].setImm(ARMCC::getOppositeCondition(CC));
  return false;
}

bool ARMInstrInfo::isPredicated(const MachineInstr *MI) const {
  int PIdx = MI->findFirstPredOperandIdx();
  return PIdx != -1 && MI->getOperand(PIdx).getImm() != ARMCC::AL;
}

bool ARMInstrInfo::PredicateInstruction(MachineInstr *MI,
                            const SmallVectorImpl<MachineOperand> &Pred) const {
  unsigned Opc = MI->getOpcode();
  if (Opc == ARM::B || Opc == ARM::tB) {
    MI->setDesc(get(Opc == ARM::B ? ARM::Bcc : ARM::tBcc));
    MI->addOperand(MachineOperand::CreateImm(Pred[0].getImm()));
    MI->addOperand(MachineOperand::CreateReg(Pred[1].getReg(), false));
    return true;
  }

  int PIdx = MI->findFirstPredOperandIdx();
  if (PIdx != -1) {
    MachineOperand &PMO = MI->getOperand(PIdx);
    PMO.setImm(Pred[0].getImm());
    MI->getOperand(PIdx+1).setReg(Pred[1].getReg());
    return true;
  }
  return false;
}

bool
ARMInstrInfo::SubsumesPredicate(const SmallVectorImpl<MachineOperand> &Pred1,
                            const SmallVectorImpl<MachineOperand> &Pred2) const{
  if (Pred1.size() > 2 || Pred2.size() > 2)
    return false;

  ARMCC::CondCodes CC1 = (ARMCC::CondCodes)Pred1[0].getImm();
  ARMCC::CondCodes CC2 = (ARMCC::CondCodes)Pred2[0].getImm();
  if (CC1 == CC2)
    return true;

  switch (CC1) {
  default:
    return false;
  case ARMCC::AL:
    return true;
  case ARMCC::HS:
    return CC2 == ARMCC::HI;
  case ARMCC::LS:
    return CC2 == ARMCC::LO || CC2 == ARMCC::EQ;
  case ARMCC::GE:
    return CC2 == ARMCC::GT;
  case ARMCC::LE:
    return CC2 == ARMCC::LT;
  }
}

bool ARMInstrInfo::DefinesPredicate(MachineInstr *MI,
                                    std::vector<MachineOperand> &Pred) const {
  const TargetInstrDesc &TID = MI->getDesc();
  if (!TID.getImplicitDefs() && !TID.hasOptionalDef())
    return false;

  bool Found = false;
  for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
    const MachineOperand &MO = MI->getOperand(i);
    if (MO.isReg() && MO.getReg() == ARM::CPSR) {
      Pred.push_back(MO);
      Found = true;
    }
  }

  return Found;
}


/// FIXME: Works around a gcc miscompilation with -fstrict-aliasing
static unsigned getNumJTEntries(const std::vector<MachineJumpTableEntry> &JT,
                                unsigned JTI) DISABLE_INLINE;
static unsigned getNumJTEntries(const std::vector<MachineJumpTableEntry> &JT,
                                unsigned JTI) {
  return JT[JTI].MBBs.size();
}

/// GetInstSize - Return the size of the specified MachineInstr.
///
unsigned ARMInstrInfo::GetInstSizeInBytes(const MachineInstr *MI) const {
  const MachineBasicBlock &MBB = *MI->getParent();
  const MachineFunction *MF = MBB.getParent();
  const TargetAsmInfo *TAI = MF->getTarget().getTargetAsmInfo();

  // Basic size info comes from the TSFlags field.
  const TargetInstrDesc &TID = MI->getDesc();
  unsigned TSFlags = TID.TSFlags;
  
  switch ((TSFlags & ARMII::SizeMask) >> ARMII::SizeShift) {
  default: {
    // If this machine instr is an inline asm, measure it.
    if (MI->getOpcode() == ARM::INLINEASM)
      return TAI->getInlineAsmLength(MI->getOperand(0).getSymbolName());
    if (MI->isLabel())
      return 0;
    switch (MI->getOpcode()) {
    default:
      assert(0 && "Unknown or unset size field for instr!");
      break;
    case TargetInstrInfo::IMPLICIT_DEF:
    case TargetInstrInfo::DECLARE:
    case TargetInstrInfo::DBG_LABEL:
    case TargetInstrInfo::EH_LABEL:
      return 0;
    }
    break;
  }
  case ARMII::Size8Bytes: return 8;          // Arm instruction x 2.
  case ARMII::Size4Bytes: return 4;          // Arm instruction.
  case ARMII::Size2Bytes: return 2;          // Thumb instruction.
  case ARMII::SizeSpecial: {
    switch (MI->getOpcode()) {
    case ARM::CONSTPOOL_ENTRY:
      // If this machine instr is a constant pool entry, its size is recorded as
      // operand #2.
      return MI->getOperand(2).getImm();
    case ARM::BR_JTr:
    case ARM::BR_JTm:
    case ARM::BR_JTadd:
    case ARM::tBR_JTr: {
      // These are jumptable branches, i.e. a branch followed by an inlined
      // jumptable. The size is 4 + 4 * number of entries.
      unsigned NumOps = TID.getNumOperands();
      MachineOperand JTOP =
        MI->getOperand(NumOps - (TID.isPredicable() ? 3 : 2));
      unsigned JTI = JTOP.getIndex();
      const MachineJumpTableInfo *MJTI = MF->getJumpTableInfo();
      const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables();
      assert(JTI < JT.size());
      // Thumb instructions are 2 byte aligned, but JT entries are 4 byte
      // 4 aligned. The assembler / linker may add 2 byte padding just before
      // the JT entries.  The size does not include this padding; the
      // constant islands pass does separate bookkeeping for it.
      // FIXME: If we know the size of the function is less than (1 << 16) *2
      // bytes, we can use 16-bit entries instead. Then there won't be an
      // alignment issue.
      return getNumJTEntries(JT, JTI) * 4 + 
             (MI->getOpcode()==ARM::tBR_JTr ? 2 : 4);
    }
    default:
      // Otherwise, pseudo-instruction sizes are zero.
      return 0;
    }
  }
  }
  return 0; // Not reached
}