llvm.org GIT mirror llvm / 9b8f542 lib / CodeGen / AsmPrinter / AsmPrinter.cpp
9b8f542

Tree @9b8f542 (Download .tar.gz)

AsmPrinter.cpp @9b8f542raw · history · blame

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
//===-- AsmPrinter.cpp - Common AsmPrinter code ---------------------------===//
//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements the AsmPrinter class.
//
//===----------------------------------------------------------------------===//

#include "llvm/CodeGen/AsmPrinter.h"
#include "llvm/Assembly/Writer.h"
#include "llvm/DerivedTypes.h"
#include "llvm/Constants.h"
#include "llvm/Module.h"
#include "llvm/CodeGen/GCMetadataPrinter.h"
#include "llvm/CodeGen/MachineConstantPool.h"
#include "llvm/CodeGen/MachineJumpTableInfo.h"
#include "llvm/CodeGen/MachineModuleInfo.h"
#include "llvm/Support/Mangler.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Target/TargetAsmInfo.h"
#include "llvm/Target/TargetData.h"
#include "llvm/Target/TargetLowering.h"
#include "llvm/Target/TargetMachine.h"
#include "llvm/Target/TargetOptions.h"
#include "llvm/Target/TargetRegisterInfo.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/ADT/SmallString.h"
#include "llvm/ADT/StringExtras.h"
#include <cerrno>
using namespace llvm;

char AsmPrinter::ID = 0;
AsmPrinter::AsmPrinter(raw_ostream &o, TargetMachine &tm,
                       const TargetAsmInfo *T)
  : MachineFunctionPass(&ID), FunctionNumber(0), O(o),
    TM(tm), TAI(T), TRI(tm.getRegisterInfo()),
    IsInTextSection(false)
{}

AsmPrinter::~AsmPrinter() {
  for (gcp_iterator I = GCMetadataPrinters.begin(),
                    E = GCMetadataPrinters.end(); I != E; ++I)
    delete I->second;
}

/// SwitchToTextSection - Switch to the specified text section of the executable
/// if we are not already in it!
///
void AsmPrinter::SwitchToTextSection(const char *NewSection,
                                     const GlobalValue *GV) {
  std::string NS;
  if (GV && GV->hasSection())
    NS = TAI->getSwitchToSectionDirective() + GV->getSection();
  else
    NS = NewSection;
  
  // If we're already in this section, we're done.
  if (CurrentSection == NS) return;

  // Close the current section, if applicable.
  if (TAI->getSectionEndDirectiveSuffix() && !CurrentSection.empty())
    O << CurrentSection << TAI->getSectionEndDirectiveSuffix() << '\n';

  CurrentSection = NS;

  if (!CurrentSection.empty())
    O << CurrentSection << TAI->getTextSectionStartSuffix() << '\n';

  IsInTextSection = true;
}

/// SwitchToDataSection - Switch to the specified data section of the executable
/// if we are not already in it!
///
void AsmPrinter::SwitchToDataSection(const char *NewSection,
                                     const GlobalValue *GV) {
  std::string NS;
  if (GV && GV->hasSection())
    NS = TAI->getSwitchToSectionDirective() + GV->getSection();
  else
    NS = NewSection;
  
  // If we're already in this section, we're done.
  if (CurrentSection == NS) return;

  // Close the current section, if applicable.
  if (TAI->getSectionEndDirectiveSuffix() && !CurrentSection.empty())
    O << CurrentSection << TAI->getSectionEndDirectiveSuffix() << '\n';

  CurrentSection = NS;
  
  if (!CurrentSection.empty())
    O << CurrentSection << TAI->getDataSectionStartSuffix() << '\n';

  IsInTextSection = false;
}

/// SwitchToSection - Switch to the specified section of the executable if we
/// are not already in it!
void AsmPrinter::SwitchToSection(const Section* NS) {
  const std::string& NewSection = NS->getName();

  // If we're already in this section, we're done.
  if (CurrentSection == NewSection) return;

  // Close the current section, if applicable.
  if (TAI->getSectionEndDirectiveSuffix() && !CurrentSection.empty())
    O << CurrentSection << TAI->getSectionEndDirectiveSuffix() << '\n';

  // FIXME: Make CurrentSection a Section* in the future
  CurrentSection = NewSection;
  CurrentSection_ = NS;

  if (!CurrentSection.empty()) {
    // If section is named we need to switch into it via special '.section'
    // directive and also append funky flags. Otherwise - section name is just
    // some magic assembler directive.
    if (NS->isNamed())
      O << TAI->getSwitchToSectionDirective()
        << CurrentSection
        << TAI->getSectionFlags(NS->getFlags());
    else
      O << CurrentSection;
    O << TAI->getDataSectionStartSuffix() << '\n';
  }

  IsInTextSection = (NS->getFlags() & SectionFlags::Code);
}

void AsmPrinter::getAnalysisUsage(AnalysisUsage &AU) const {
  MachineFunctionPass::getAnalysisUsage(AU);
  AU.addRequired<GCModuleInfo>();
}

bool AsmPrinter::doInitialization(Module &M) {
  Mang = new Mangler(M, TAI->getGlobalPrefix());
  
  GCModuleInfo *MI = getAnalysisToUpdate<GCModuleInfo>();
  assert(MI && "AsmPrinter didn't require GCModuleInfo?");

  if (TAI->hasSingleParameterDotFile()) {
    /* Very minimal debug info. It is ignored if we emit actual
       debug info. If we don't, this at helps the user find where
       a function came from. */
    O << "\t.file\t\"" << M.getModuleIdentifier() << "\"\n";
  }

  for (GCModuleInfo::iterator I = MI->begin(), E = MI->end(); I != E; ++I)
    if (GCMetadataPrinter *MP = GetOrCreateGCPrinter(*I))
      MP->beginAssembly(O, *this, *TAI);
  
  if (!M.getModuleInlineAsm().empty())
    O << TAI->getCommentString() << " Start of file scope inline assembly\n"
      << M.getModuleInlineAsm()
      << '\n' << TAI->getCommentString()
      << " End of file scope inline assembly\n";

  SwitchToDataSection("");   // Reset back to no section.
  
  MMI = getAnalysisToUpdate<MachineModuleInfo>();
  if (MMI) MMI->AnalyzeModule(M);
  
  return false;
}

bool AsmPrinter::doFinalization(Module &M) {
  if (TAI->getWeakRefDirective()) {
    if (!ExtWeakSymbols.empty())
      SwitchToDataSection("");

    for (std::set<const GlobalValue*>::iterator i = ExtWeakSymbols.begin(),
         e = ExtWeakSymbols.end(); i != e; ++i) {
      const GlobalValue *GV = *i;
      std::string Name = Mang->getValueName(GV);
      O << TAI->getWeakRefDirective() << Name << '\n';
    }
  }

  if (TAI->getSetDirective()) {
    if (!M.alias_empty())
      SwitchToSection(TAI->getTextSection());

    O << '\n';
    for (Module::const_alias_iterator I = M.alias_begin(), E = M.alias_end();
         I!=E; ++I) {
      std::string Name = Mang->getValueName(I);
      std::string Target;

      const GlobalValue *GV = cast<GlobalValue>(I->getAliasedGlobal());
      Target = Mang->getValueName(GV);

      if (I->hasExternalLinkage() || !TAI->getWeakRefDirective())
        O << "\t.globl\t" << Name << '\n';
      else if (I->hasWeakLinkage())
        O << TAI->getWeakRefDirective() << Name << '\n';
      else if (!I->hasInternalLinkage())
        assert(0 && "Invalid alias linkage");

      printVisibility(Name, I->getVisibility());

      O << TAI->getSetDirective() << ' ' << Name << ", " << Target << '\n';

      // If the aliasee has external weak linkage it can be referenced only by
      // alias itself. In this case it can be not in ExtWeakSymbols list. Emit
      // weak reference in such case.
      if (GV->hasExternalWeakLinkage()) {
        if (TAI->getWeakRefDirective())
          O << TAI->getWeakRefDirective() << Target << '\n';
        else
          O << "\t.globl\t" << Target << '\n';
      }
    }
  }

  GCModuleInfo *MI = getAnalysisToUpdate<GCModuleInfo>();
  assert(MI && "AsmPrinter didn't require GCModuleInfo?");
  for (GCModuleInfo::iterator I = MI->end(), E = MI->begin(); I != E; )
    if (GCMetadataPrinter *MP = GetOrCreateGCPrinter(*--I))
      MP->finishAssembly(O, *this, *TAI);

  // If we don't have any trampolines, then we don't require stack memory
  // to be executable. Some targets have a directive to declare this.
  Function* InitTrampolineIntrinsic = M.getFunction("llvm.init.trampoline");
  if (!InitTrampolineIntrinsic || InitTrampolineIntrinsic->use_empty())
    if (TAI->getNonexecutableStackDirective())
      O << TAI->getNonexecutableStackDirective() << '\n';

  delete Mang; Mang = 0;
  return false;
}

std::string AsmPrinter::getCurrentFunctionEHName(const MachineFunction *MF) {
  assert(MF && "No machine function?");
  std::string Name = MF->getFunction()->getName();
  if (Name.empty())
    Name = Mang->getValueName(MF->getFunction());
  return Mang->makeNameProper(TAI->getEHGlobalPrefix() +
                              Name + ".eh", TAI->getGlobalPrefix());
}

void AsmPrinter::SetupMachineFunction(MachineFunction &MF) {
  // What's my mangled name?
  CurrentFnName = Mang->getValueName(MF.getFunction());
  IncrementFunctionNumber();
}

/// EmitConstantPool - Print to the current output stream assembly
/// representations of the constants in the constant pool MCP. This is
/// used to print out constants which have been "spilled to memory" by
/// the code generator.
///
void AsmPrinter::EmitConstantPool(MachineConstantPool *MCP) {
  const std::vector<MachineConstantPoolEntry> &CP = MCP->getConstants();
  if (CP.empty()) return;

  // Calculate sections for constant pool entries. We collect entries to go into
  // the same section together to reduce amount of section switch statements.
  typedef
    std::multimap<const Section*,
                  std::pair<MachineConstantPoolEntry, unsigned> > CPMap;
  CPMap  CPs;
  SmallPtrSet<const Section*, 5> Sections;

  for (unsigned i = 0, e = CP.size(); i != e; ++i) {
    MachineConstantPoolEntry CPE = CP[i];
    const Section* S = TAI->SelectSectionForMachineConst(CPE.getType());
    CPs.insert(std::make_pair(S, std::make_pair(CPE, i)));
    Sections.insert(S);
  }

  // Now print stuff into the calculated sections.
  for (SmallPtrSet<const Section*, 5>::iterator IS = Sections.begin(),
         ES = Sections.end(); IS != ES; ++IS) {
    SwitchToSection(*IS);
    EmitAlignment(MCP->getConstantPoolAlignment());

    std::pair<CPMap::iterator, CPMap::iterator> II = CPs.equal_range(*IS);
    for (CPMap::iterator I = II.first, E = II.second; I != E; ++I) {
      CPMap::iterator J = next(I);
      MachineConstantPoolEntry Entry = I->second.first;
      unsigned index = I->second.second;

      O << TAI->getPrivateGlobalPrefix() << "CPI" << getFunctionNumber() << '_'
        << index << ":\t\t\t\t\t";
    // O << TAI->getCommentString() << ' ' << 
    //      WriteTypeSymbolic(O, CP[i].first.getType(), 0);
      O << '\n';
      if (Entry.isMachineConstantPoolEntry())
        EmitMachineConstantPoolValue(Entry.Val.MachineCPVal);
      else
        EmitGlobalConstant(Entry.Val.ConstVal);

      // Emit inter-object padding for alignment.
      if (J != E) {
        const Type *Ty = Entry.getType();
        unsigned EntSize = TM.getTargetData()->getABITypeSize(Ty);
        unsigned ValEnd = Entry.getOffset() + EntSize;
        EmitZeros(J->second.first.getOffset()-ValEnd);
      }
    }
  }
}

/// EmitJumpTableInfo - Print assembly representations of the jump tables used
/// by the current function to the current output stream.  
///
void AsmPrinter::EmitJumpTableInfo(MachineJumpTableInfo *MJTI,
                                   MachineFunction &MF) {
  const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables();
  if (JT.empty()) return;

  bool IsPic = TM.getRelocationModel() == Reloc::PIC_;
  
  // Pick the directive to use to print the jump table entries, and switch to 
  // the appropriate section.
  TargetLowering *LoweringInfo = TM.getTargetLowering();

  const char* JumpTableDataSection = TAI->getJumpTableDataSection();
  const Function *F = MF.getFunction();
  unsigned SectionFlags = TAI->SectionFlagsForGlobal(F);
  if ((IsPic && !(LoweringInfo && LoweringInfo->usesGlobalOffsetTable())) ||
     !JumpTableDataSection ||
      SectionFlags & SectionFlags::Linkonce) {
    // In PIC mode, we need to emit the jump table to the same section as the
    // function body itself, otherwise the label differences won't make sense.
    // We should also do if the section name is NULL or function is declared in
    // discardable section.
    SwitchToSection(TAI->SectionForGlobal(F));
  } else {
    SwitchToDataSection(JumpTableDataSection);
  }
  
  EmitAlignment(Log2_32(MJTI->getAlignment()));
  
  for (unsigned i = 0, e = JT.size(); i != e; ++i) {
    const std::vector<MachineBasicBlock*> &JTBBs = JT[i].MBBs;
    
    // If this jump table was deleted, ignore it. 
    if (JTBBs.empty()) continue;

    // For PIC codegen, if possible we want to use the SetDirective to reduce
    // the number of relocations the assembler will generate for the jump table.
    // Set directives are all printed before the jump table itself.
    SmallPtrSet<MachineBasicBlock*, 16> EmittedSets;
    if (TAI->getSetDirective() && IsPic)
      for (unsigned ii = 0, ee = JTBBs.size(); ii != ee; ++ii)
        if (EmittedSets.insert(JTBBs[ii]))
          printPICJumpTableSetLabel(i, JTBBs[ii]);
    
    // On some targets (e.g. darwin) we want to emit two consequtive labels
    // before each jump table.  The first label is never referenced, but tells
    // the assembler and linker the extents of the jump table object.  The
    // second label is actually referenced by the code.
    if (const char *JTLabelPrefix = TAI->getJumpTableSpecialLabelPrefix())
      O << JTLabelPrefix << "JTI" << getFunctionNumber() << '_' << i << ":\n";
    
    O << TAI->getPrivateGlobalPrefix() << "JTI" << getFunctionNumber() 
      << '_' << i << ":\n";
    
    for (unsigned ii = 0, ee = JTBBs.size(); ii != ee; ++ii) {
      printPICJumpTableEntry(MJTI, JTBBs[ii], i);
      O << '\n';
    }
  }
}

void AsmPrinter::printPICJumpTableEntry(const MachineJumpTableInfo *MJTI,
                                        const MachineBasicBlock *MBB,
                                        unsigned uid)  const {
  bool IsPic = TM.getRelocationModel() == Reloc::PIC_;
  
  // Use JumpTableDirective otherwise honor the entry size from the jump table
  // info.
  const char *JTEntryDirective = TAI->getJumpTableDirective();
  bool HadJTEntryDirective = JTEntryDirective != NULL;
  if (!HadJTEntryDirective) {
    JTEntryDirective = MJTI->getEntrySize() == 4 ?
      TAI->getData32bitsDirective() : TAI->getData64bitsDirective();
  }

  O << JTEntryDirective << ' ';

  // If we have emitted set directives for the jump table entries, print 
  // them rather than the entries themselves.  If we're emitting PIC, then
  // emit the table entries as differences between two text section labels.
  // If we're emitting non-PIC code, then emit the entries as direct
  // references to the target basic blocks.
  if (IsPic) {
    if (TAI->getSetDirective()) {
      O << TAI->getPrivateGlobalPrefix() << getFunctionNumber()
        << '_' << uid << "_set_" << MBB->getNumber();
    } else {
      printBasicBlockLabel(MBB, false, false, false);
      // If the arch uses custom Jump Table directives, don't calc relative to
      // JT
      if (!HadJTEntryDirective) 
        O << '-' << TAI->getPrivateGlobalPrefix() << "JTI"
          << getFunctionNumber() << '_' << uid;
    }
  } else {
    printBasicBlockLabel(MBB, false, false, false);
  }
}


/// EmitSpecialLLVMGlobal - Check to see if the specified global is a
/// special global used by LLVM.  If so, emit it and return true, otherwise
/// do nothing and return false.
bool AsmPrinter::EmitSpecialLLVMGlobal(const GlobalVariable *GV) {
  if (GV->getName() == "llvm.used") {
    if (TAI->getUsedDirective() != 0)    // No need to emit this at all.
      EmitLLVMUsedList(GV->getInitializer());
    return true;
  }

  // Ignore debug and non-emitted data.
  if (GV->getSection() == "llvm.metadata") return true;
  
  if (!GV->hasAppendingLinkage()) return false;

  assert(GV->hasInitializer() && "Not a special LLVM global!");
  
  const TargetData *TD = TM.getTargetData();
  unsigned Align = Log2_32(TD->getPointerPrefAlignment());
  if (GV->getName() == "llvm.global_ctors" && GV->use_empty()) {
    SwitchToDataSection(TAI->getStaticCtorsSection());
    EmitAlignment(Align, 0);
    EmitXXStructorList(GV->getInitializer());
    return true;
  } 
  
  if (GV->getName() == "llvm.global_dtors" && GV->use_empty()) {
    SwitchToDataSection(TAI->getStaticDtorsSection());
    EmitAlignment(Align, 0);
    EmitXXStructorList(GV->getInitializer());
    return true;
  }
  
  return false;
}

/// findGlobalValue - if CV is an expression equivalent to a single
/// global value, return that value.
const GlobalValue * AsmPrinter::findGlobalValue(const Constant *CV) {
  if (const GlobalValue *GV = dyn_cast<GlobalValue>(CV))
    return GV;
  else if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(CV)) {
    const TargetData *TD = TM.getTargetData();
    unsigned Opcode = CE->getOpcode();    
    switch (Opcode) {
    case Instruction::GetElementPtr: {
      const Constant *ptrVal = CE->getOperand(0);
      SmallVector<Value*, 8> idxVec(CE->op_begin()+1, CE->op_end());
      if (TD->getIndexedOffset(ptrVal->getType(), &idxVec[0], idxVec.size()))
        return 0;
      return findGlobalValue(ptrVal);
    }
    case Instruction::BitCast:
      return findGlobalValue(CE->getOperand(0));
    default:
      return 0;
    }
  }
  return 0;
}

/// EmitLLVMUsedList - For targets that define a TAI::UsedDirective, mark each
/// global in the specified llvm.used list for which emitUsedDirectiveFor
/// is true, as being used with this directive.

void AsmPrinter::EmitLLVMUsedList(Constant *List) {
  const char *Directive = TAI->getUsedDirective();

  // Should be an array of 'sbyte*'.
  ConstantArray *InitList = dyn_cast<ConstantArray>(List);
  if (InitList == 0) return;
  
  for (unsigned i = 0, e = InitList->getNumOperands(); i != e; ++i) {
    const GlobalValue *GV = findGlobalValue(InitList->getOperand(i));
    if (TAI->emitUsedDirectiveFor(GV, Mang)) {
      O << Directive;
      EmitConstantValueOnly(InitList->getOperand(i));
      O << '\n';
    }
  }
}

/// EmitXXStructorList - Emit the ctor or dtor list.  This just prints out the 
/// function pointers, ignoring the init priority.
void AsmPrinter::EmitXXStructorList(Constant *List) {
  // Should be an array of '{ int, void ()* }' structs.  The first value is the
  // init priority, which we ignore.
  if (!isa<ConstantArray>(List)) return;
  ConstantArray *InitList = cast<ConstantArray>(List);
  for (unsigned i = 0, e = InitList->getNumOperands(); i != e; ++i)
    if (ConstantStruct *CS = dyn_cast<ConstantStruct>(InitList->getOperand(i))){
      if (CS->getNumOperands() != 2) return;  // Not array of 2-element structs.

      if (CS->getOperand(1)->isNullValue())
        return;  // Found a null terminator, exit printing.
      // Emit the function pointer.
      EmitGlobalConstant(CS->getOperand(1));
    }
}

/// getGlobalLinkName - Returns the asm/link name of of the specified
/// global variable.  Should be overridden by each target asm printer to
/// generate the appropriate value.
const std::string AsmPrinter::getGlobalLinkName(const GlobalVariable *GV) const{
  std::string LinkName;
  
  if (isa<Function>(GV)) {
    LinkName += TAI->getFunctionAddrPrefix();
    LinkName += Mang->getValueName(GV);
    LinkName += TAI->getFunctionAddrSuffix();
  } else {
    LinkName += TAI->getGlobalVarAddrPrefix();
    LinkName += Mang->getValueName(GV);
    LinkName += TAI->getGlobalVarAddrSuffix();
  }  
  
  return LinkName;
}

/// EmitExternalGlobal - Emit the external reference to a global variable.
/// Should be overridden if an indirect reference should be used.
void AsmPrinter::EmitExternalGlobal(const GlobalVariable *GV) {
  O << getGlobalLinkName(GV);
}



//===----------------------------------------------------------------------===//
/// LEB 128 number encoding.

/// PrintULEB128 - Print a series of hexidecimal values (separated by commas)
/// representing an unsigned leb128 value.
void AsmPrinter::PrintULEB128(unsigned Value) const {
  char Buffer[20];
  do {
    unsigned char Byte = static_cast<unsigned char>(Value & 0x7f);
    Value >>= 7;
    if (Value) Byte |= 0x80;
    O << "0x" << utohex_buffer(Byte, Buffer+20);
    if (Value) O << ", ";
  } while (Value);
}

/// PrintSLEB128 - Print a series of hexidecimal values (separated by commas)
/// representing a signed leb128 value.
void AsmPrinter::PrintSLEB128(int Value) const {
  int Sign = Value >> (8 * sizeof(Value) - 1);
  bool IsMore;
  char Buffer[20];

  do {
    unsigned char Byte = static_cast<unsigned char>(Value & 0x7f);
    Value >>= 7;
    IsMore = Value != Sign || ((Byte ^ Sign) & 0x40) != 0;
    if (IsMore) Byte |= 0x80;
    O << "0x" << utohex_buffer(Byte, Buffer+20);
    if (IsMore) O << ", ";
  } while (IsMore);
}

//===--------------------------------------------------------------------===//
// Emission and print routines
//

/// PrintHex - Print a value as a hexidecimal value.
///
void AsmPrinter::PrintHex(int Value) const { 
  char Buffer[20];
  O << "0x" << utohex_buffer(static_cast<unsigned>(Value), Buffer+20);
}

/// EOL - Print a newline character to asm stream.  If a comment is present
/// then it will be printed first.  Comments should not contain '\n'.
void AsmPrinter::EOL() const {
  O << '\n';
}

void AsmPrinter::EOL(const std::string &Comment) const {
  if (VerboseAsm && !Comment.empty()) {
    O << '\t'
      << TAI->getCommentString()
      << ' '
      << Comment;
  }
  O << '\n';
}

void AsmPrinter::EOL(const char* Comment) const {
  if (VerboseAsm && *Comment) {
    O << '\t'
      << TAI->getCommentString()
      << ' '
      << Comment;
  }
  O << '\n';
}

/// EmitULEB128Bytes - Emit an assembler byte data directive to compose an
/// unsigned leb128 value.
void AsmPrinter::EmitULEB128Bytes(unsigned Value) const {
  if (TAI->hasLEB128()) {
    O << "\t.uleb128\t"
      << Value;
  } else {
    O << TAI->getData8bitsDirective();
    PrintULEB128(Value);
  }
}

/// EmitSLEB128Bytes - print an assembler byte data directive to compose a
/// signed leb128 value.
void AsmPrinter::EmitSLEB128Bytes(int Value) const {
  if (TAI->hasLEB128()) {
    O << "\t.sleb128\t"
      << Value;
  } else {
    O << TAI->getData8bitsDirective();
    PrintSLEB128(Value);
  }
}

/// EmitInt8 - Emit a byte directive and value.
///
void AsmPrinter::EmitInt8(int Value) const {
  O << TAI->getData8bitsDirective();
  PrintHex(Value & 0xFF);
}

/// EmitInt16 - Emit a short directive and value.
///
void AsmPrinter::EmitInt16(int Value) const {
  O << TAI->getData16bitsDirective();
  PrintHex(Value & 0xFFFF);
}

/// EmitInt32 - Emit a long directive and value.
///
void AsmPrinter::EmitInt32(int Value) const {
  O << TAI->getData32bitsDirective();
  PrintHex(Value);
}

/// EmitInt64 - Emit a long long directive and value.
///
void AsmPrinter::EmitInt64(uint64_t Value) const {
  if (TAI->getData64bitsDirective()) {
    O << TAI->getData64bitsDirective();
    PrintHex(Value);
  } else {
    if (TM.getTargetData()->isBigEndian()) {
      EmitInt32(unsigned(Value >> 32)); O << '\n';
      EmitInt32(unsigned(Value));
    } else {
      EmitInt32(unsigned(Value)); O << '\n';
      EmitInt32(unsigned(Value >> 32));
    }
  }
}

/// toOctal - Convert the low order bits of X into an octal digit.
///
static inline char toOctal(int X) {
  return (X&7)+'0';
}

/// printStringChar - Print a char, escaped if necessary.
///
static void printStringChar(raw_ostream &O, char C) {
  if (C == '"') {
    O << "\\\"";
  } else if (C == '\\') {
    O << "\\\\";
  } else if (isprint(C)) {
    O << C;
  } else {
    switch(C) {
    case '\b': O << "\\b"; break;
    case '\f': O << "\\f"; break;
    case '\n': O << "\\n"; break;
    case '\r': O << "\\r"; break;
    case '\t': O << "\\t"; break;
    default:
      O << '\\';
      O << toOctal(C >> 6);
      O << toOctal(C >> 3);
      O << toOctal(C >> 0);
      break;
    }
  }
}

/// EmitString - Emit a string with quotes and a null terminator.
/// Special characters are emitted properly.
/// \literal (Eg. '\t') \endliteral
void AsmPrinter::EmitString(const std::string &String) const {
  const char* AscizDirective = TAI->getAscizDirective();
  if (AscizDirective)
    O << AscizDirective;
  else
    O << TAI->getAsciiDirective();
  O << '\"';
  for (unsigned i = 0, N = String.size(); i < N; ++i) {
    unsigned char C = String[i];
    printStringChar(O, C);
  }
  if (AscizDirective)
    O << '\"';
  else
    O << "\\0\"";
}


/// EmitFile - Emit a .file directive.
void AsmPrinter::EmitFile(unsigned Number, const std::string &Name) const {
  O << "\t.file\t" << Number << " \"";
  for (unsigned i = 0, N = Name.size(); i < N; ++i) {
    unsigned char C = Name[i];
    printStringChar(O, C);
  }
  O << '\"';
}


//===----------------------------------------------------------------------===//

// EmitAlignment - Emit an alignment directive to the specified power of
// two boundary.  For example, if you pass in 3 here, you will get an 8
// byte alignment.  If a global value is specified, and if that global has
// an explicit alignment requested, it will unconditionally override the
// alignment request.  However, if ForcedAlignBits is specified, this value
// has final say: the ultimate alignment will be the max of ForcedAlignBits
// and the alignment computed with NumBits and the global.
//
// The algorithm is:
//     Align = NumBits;
//     if (GV && GV->hasalignment) Align = GV->getalignment();
//     Align = std::max(Align, ForcedAlignBits);
//
void AsmPrinter::EmitAlignment(unsigned NumBits, const GlobalValue *GV,
                               unsigned ForcedAlignBits,
                               bool UseFillExpr) const {
  if (GV && GV->getAlignment())
    NumBits = Log2_32(GV->getAlignment());
  NumBits = std::max(NumBits, ForcedAlignBits);
  
  if (NumBits == 0) return;   // No need to emit alignment.
  if (TAI->getAlignmentIsInBytes()) NumBits = 1 << NumBits;
  O << TAI->getAlignDirective() << NumBits;

  unsigned FillValue = TAI->getTextAlignFillValue();
  UseFillExpr &= IsInTextSection && FillValue;
  if (UseFillExpr) {
    O << ',';
    PrintHex(FillValue);
  }
  O << '\n';
}

    
/// EmitZeros - Emit a block of zeros.
///
void AsmPrinter::EmitZeros(uint64_t NumZeros) const {
  if (NumZeros) {
    if (TAI->getZeroDirective()) {
      O << TAI->getZeroDirective() << NumZeros;
      if (TAI->getZeroDirectiveSuffix())
        O << TAI->getZeroDirectiveSuffix();
      O << '\n';
    } else {
      for (; NumZeros; --NumZeros)
        O << TAI->getData8bitsDirective() << "0\n";
    }
  }
}

// Print out the specified constant, without a storage class.  Only the
// constants valid in constant expressions can occur here.
void AsmPrinter::EmitConstantValueOnly(const Constant *CV) {
  if (CV->isNullValue() || isa<UndefValue>(CV))
    O << '0';
  else if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV)) {
    O << CI->getZExtValue();
  } else if (const GlobalValue *GV = dyn_cast<GlobalValue>(CV)) {
    // This is a constant address for a global variable or function. Use the
    // name of the variable or function as the address value, possibly
    // decorating it with GlobalVarAddrPrefix/Suffix or
    // FunctionAddrPrefix/Suffix (these all default to "" )
    if (isa<Function>(GV)) {
      O << TAI->getFunctionAddrPrefix()
        << Mang->getValueName(GV)
        << TAI->getFunctionAddrSuffix();
    } else {
      O << TAI->getGlobalVarAddrPrefix()
        << Mang->getValueName(GV)
        << TAI->getGlobalVarAddrSuffix();
    }
  } else if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(CV)) {
    const TargetData *TD = TM.getTargetData();
    unsigned Opcode = CE->getOpcode();    
    switch (Opcode) {
    case Instruction::GetElementPtr: {
      // generate a symbolic expression for the byte address
      const Constant *ptrVal = CE->getOperand(0);
      SmallVector<Value*, 8> idxVec(CE->op_begin()+1, CE->op_end());
      if (int64_t Offset = TD->getIndexedOffset(ptrVal->getType(), &idxVec[0],
                                                idxVec.size())) {
        if (Offset)
          O << '(';
        EmitConstantValueOnly(ptrVal);
        if (Offset > 0)
          O << ") + " << Offset;
        else if (Offset < 0)
          O << ") - " << -Offset;
      } else {
        EmitConstantValueOnly(ptrVal);
      }
      break;
    }
    case Instruction::Trunc:
    case Instruction::ZExt:
    case Instruction::SExt:
    case Instruction::FPTrunc:
    case Instruction::FPExt:
    case Instruction::UIToFP:
    case Instruction::SIToFP:
    case Instruction::FPToUI:
    case Instruction::FPToSI:
      assert(0 && "FIXME: Don't yet support this kind of constant cast expr");
      break;
    case Instruction::BitCast:
      return EmitConstantValueOnly(CE->getOperand(0));

    case Instruction::IntToPtr: {
      // Handle casts to pointers by changing them into casts to the appropriate
      // integer type.  This promotes constant folding and simplifies this code.
      Constant *Op = CE->getOperand(0);
      Op = ConstantExpr::getIntegerCast(Op, TD->getIntPtrType(), false/*ZExt*/);
      return EmitConstantValueOnly(Op);
    }
      
      
    case Instruction::PtrToInt: {
      // Support only foldable casts to/from pointers that can be eliminated by
      // changing the pointer to the appropriately sized integer type.
      Constant *Op = CE->getOperand(0);
      const Type *Ty = CE->getType();

      // We can emit the pointer value into this slot if the slot is an
      // integer slot greater or equal to the size of the pointer.
      if (TD->getABITypeSize(Ty) >= TD->getABITypeSize(Op->getType()))
        return EmitConstantValueOnly(Op);

      O << "((";
      EmitConstantValueOnly(Op);
      APInt ptrMask = APInt::getAllOnesValue(TD->getABITypeSizeInBits(Ty));
      
      SmallString<40> S;
      ptrMask.toStringUnsigned(S);
      O << ") & " << S.c_str() << ')';
      break;
    }
    case Instruction::Add:
    case Instruction::Sub:
    case Instruction::And:
    case Instruction::Or:
    case Instruction::Xor:
      O << '(';
      EmitConstantValueOnly(CE->getOperand(0));
      O << ')';
      switch (Opcode) {
      case Instruction::Add:
       O << " + ";
       break;
      case Instruction::Sub:
       O << " - ";
       break;
      case Instruction::And:
       O << " & ";
       break;
      case Instruction::Or:
       O << " | ";
       break;
      case Instruction::Xor:
       O << " ^ ";
       break;
      default:
       break;
      }
      O << '(';
      EmitConstantValueOnly(CE->getOperand(1));
      O << ')';
      break;
    default:
      assert(0 && "Unsupported operator!");
    }
  } else {
    assert(0 && "Unknown constant value!");
  }
}

/// printAsCString - Print the specified array as a C compatible string, only if
/// the predicate isString is true.
///
static void printAsCString(raw_ostream &O, const ConstantArray *CVA,
                           unsigned LastElt) {
  assert(CVA->isString() && "Array is not string compatible!");

  O << '\"';
  for (unsigned i = 0; i != LastElt; ++i) {
    unsigned char C =
        (unsigned char)cast<ConstantInt>(CVA->getOperand(i))->getZExtValue();
    printStringChar(O, C);
  }
  O << '\"';
}

/// EmitString - Emit a zero-byte-terminated string constant.
///
void AsmPrinter::EmitString(const ConstantArray *CVA) const {
  unsigned NumElts = CVA->getNumOperands();
  if (TAI->getAscizDirective() && NumElts && 
      cast<ConstantInt>(CVA->getOperand(NumElts-1))->getZExtValue() == 0) {
    O << TAI->getAscizDirective();
    printAsCString(O, CVA, NumElts-1);
  } else {
    O << TAI->getAsciiDirective();
    printAsCString(O, CVA, NumElts);
  }
  O << '\n';
}

void AsmPrinter::EmitGlobalConstantArray(const ConstantArray *CVA) {
  if (CVA->isString()) {
    EmitString(CVA);
  } else { // Not a string.  Print the values in successive locations
    for (unsigned i = 0, e = CVA->getNumOperands(); i != e; ++i)
      EmitGlobalConstant(CVA->getOperand(i));
  }
}

void AsmPrinter::EmitGlobalConstantVector(const ConstantVector *CP) {
  const VectorType *PTy = CP->getType();
  
  for (unsigned I = 0, E = PTy->getNumElements(); I < E; ++I)
    EmitGlobalConstant(CP->getOperand(I));
}

void AsmPrinter::EmitGlobalConstantStruct(const ConstantStruct *CVS) {
  // Print the fields in successive locations. Pad to align if needed!
  const TargetData *TD = TM.getTargetData();
  unsigned Size = TD->getABITypeSize(CVS->getType());
  const StructLayout *cvsLayout = TD->getStructLayout(CVS->getType());
  uint64_t sizeSoFar = 0;
  for (unsigned i = 0, e = CVS->getNumOperands(); i != e; ++i) {
    const Constant* field = CVS->getOperand(i);

    // Check if padding is needed and insert one or more 0s.
    uint64_t fieldSize = TD->getABITypeSize(field->getType());
    uint64_t padSize = ((i == e-1 ? Size : cvsLayout->getElementOffset(i+1))
                        - cvsLayout->getElementOffset(i)) - fieldSize;
    sizeSoFar += fieldSize + padSize;

    // Now print the actual field value.
    EmitGlobalConstant(field);

    // Insert padding - this may include padding to increase the size of the
    // current field up to the ABI size (if the struct is not packed) as well
    // as padding to ensure that the next field starts at the right offset.
    EmitZeros(padSize);
  }
  assert(sizeSoFar == cvsLayout->getSizeInBytes() &&
         "Layout of constant struct may be incorrect!");
}

void AsmPrinter::EmitGlobalConstantFP(const ConstantFP *CFP) {
  // FP Constants are printed as integer constants to avoid losing
  // precision...
  const TargetData *TD = TM.getTargetData();
  if (CFP->getType() == Type::DoubleTy) {
    double Val = CFP->getValueAPF().convertToDouble();  // for comment only
    uint64_t i = CFP->getValueAPF().bitcastToAPInt().getZExtValue();
    if (TAI->getData64bitsDirective())
      O << TAI->getData64bitsDirective() << i << '\t'
        << TAI->getCommentString() << " double value: " << Val << '\n';
    else if (TD->isBigEndian()) {
      O << TAI->getData32bitsDirective() << unsigned(i >> 32)
        << '\t' << TAI->getCommentString()
        << " double most significant word " << Val << '\n';
      O << TAI->getData32bitsDirective() << unsigned(i)
        << '\t' << TAI->getCommentString()
        << " double least significant word " << Val << '\n';
    } else {
      O << TAI->getData32bitsDirective() << unsigned(i)
        << '\t' << TAI->getCommentString()
        << " double least significant word " << Val << '\n';
      O << TAI->getData32bitsDirective() << unsigned(i >> 32)
        << '\t' << TAI->getCommentString()
        << " double most significant word " << Val << '\n';
    }
    return;
  } else if (CFP->getType() == Type::FloatTy) {
    float Val = CFP->getValueAPF().convertToFloat();  // for comment only
    O << TAI->getData32bitsDirective()
      << CFP->getValueAPF().bitcastToAPInt().getZExtValue()
      << '\t' << TAI->getCommentString() << " float " << Val << '\n';
    return;
  } else if (CFP->getType() == Type::X86_FP80Ty) {
    // all long double variants are printed as hex
    // api needed to prevent premature destruction
    APInt api = CFP->getValueAPF().bitcastToAPInt();
    const uint64_t *p = api.getRawData();
    // Convert to double so we can print the approximate val as a comment.
    APFloat DoubleVal = CFP->getValueAPF();
    bool ignored;
    DoubleVal.convert(APFloat::IEEEdouble, APFloat::rmNearestTiesToEven,
                      &ignored);
    if (TD->isBigEndian()) {
      O << TAI->getData16bitsDirective() << uint16_t(p[0] >> 48)
        << '\t' << TAI->getCommentString()
        << " long double most significant halfword of ~"
        << DoubleVal.convertToDouble() << '\n';
      O << TAI->getData16bitsDirective() << uint16_t(p[0] >> 32)
        << '\t' << TAI->getCommentString()
        << " long double next halfword\n";
      O << TAI->getData16bitsDirective() << uint16_t(p[0] >> 16)
        << '\t' << TAI->getCommentString()
        << " long double next halfword\n";
      O << TAI->getData16bitsDirective() << uint16_t(p[0])
        << '\t' << TAI->getCommentString()
        << " long double next halfword\n";
      O << TAI->getData16bitsDirective() << uint16_t(p[1])
        << '\t' << TAI->getCommentString()
        << " long double least significant halfword\n";
     } else {
      O << TAI->getData16bitsDirective() << uint16_t(p[1])
        << '\t' << TAI->getCommentString()
        << " long double least significant halfword of ~"
        << DoubleVal.convertToDouble() << '\n';
      O << TAI->getData16bitsDirective() << uint16_t(p[0])
        << '\t' << TAI->getCommentString()
        << " long double next halfword\n";
      O << TAI->getData16bitsDirective() << uint16_t(p[0] >> 16)
        << '\t' << TAI->getCommentString()
        << " long double next halfword\n";
      O << TAI->getData16bitsDirective() << uint16_t(p[0] >> 32)
        << '\t' << TAI->getCommentString()
        << " long double next halfword\n";
      O << TAI->getData16bitsDirective() << uint16_t(p[0] >> 48)
        << '\t' << TAI->getCommentString()
        << " long double most significant halfword\n";
    }
    EmitZeros(TD->getABITypeSize(Type::X86_FP80Ty) -
              TD->getTypeStoreSize(Type::X86_FP80Ty));
    return;
  } else if (CFP->getType() == Type::PPC_FP128Ty) {
    // all long double variants are printed as hex
    // api needed to prevent premature destruction
    APInt api = CFP->getValueAPF().bitcastToAPInt();
    const uint64_t *p = api.getRawData();
    if (TD->isBigEndian()) {
      O << TAI->getData32bitsDirective() << uint32_t(p[0] >> 32)
        << '\t' << TAI->getCommentString()
        << " long double most significant word\n";
      O << TAI->getData32bitsDirective() << uint32_t(p[0])
        << '\t' << TAI->getCommentString()
        << " long double next word\n";
      O << TAI->getData32bitsDirective() << uint32_t(p[1] >> 32)
        << '\t' << TAI->getCommentString()
        << " long double next word\n";
      O << TAI->getData32bitsDirective() << uint32_t(p[1])
        << '\t' << TAI->getCommentString()
        << " long double least significant word\n";
     } else {
      O << TAI->getData32bitsDirective() << uint32_t(p[1])
        << '\t' << TAI->getCommentString()
        << " long double least significant word\n";
      O << TAI->getData32bitsDirective() << uint32_t(p[1] >> 32)
        << '\t' << TAI->getCommentString()
        << " long double next word\n";
      O << TAI->getData32bitsDirective() << uint32_t(p[0])
        << '\t' << TAI->getCommentString()
        << " long double next word\n";
      O << TAI->getData32bitsDirective() << uint32_t(p[0] >> 32)
        << '\t' << TAI->getCommentString()
        << " long double most significant word\n";
    }
    return;
  } else assert(0 && "Floating point constant type not handled");
}

void AsmPrinter::EmitGlobalConstantLargeInt(const ConstantInt *CI) {
  const TargetData *TD = TM.getTargetData();
  unsigned BitWidth = CI->getBitWidth();
  assert(isPowerOf2_32(BitWidth) &&
         "Non-power-of-2-sized integers not handled!");

  // We don't expect assemblers to support integer data directives
  // for more than 64 bits, so we emit the data in at most 64-bit
  // quantities at a time.
  const uint64_t *RawData = CI->getValue().getRawData();
  for (unsigned i = 0, e = BitWidth / 64; i != e; ++i) {
    uint64_t Val;
    if (TD->isBigEndian())
      Val = RawData[e - i - 1];
    else
      Val = RawData[i];

    if (TAI->getData64bitsDirective())
      O << TAI->getData64bitsDirective() << Val << '\n';
    else if (TD->isBigEndian()) {
      O << TAI->getData32bitsDirective() << unsigned(Val >> 32)
        << '\t' << TAI->getCommentString()
        << " Double-word most significant word " << Val << '\n';
      O << TAI->getData32bitsDirective() << unsigned(Val)
        << '\t' << TAI->getCommentString()
        << " Double-word least significant word " << Val << '\n';
    } else {
      O << TAI->getData32bitsDirective() << unsigned(Val)
        << '\t' << TAI->getCommentString()
        << " Double-word least significant word " << Val << '\n';
      O << TAI->getData32bitsDirective() << unsigned(Val >> 32)
        << '\t' << TAI->getCommentString()
        << " Double-word most significant word " << Val << '\n';
    }
  }
}

/// EmitGlobalConstant - Print a general LLVM constant to the .s file.
void AsmPrinter::EmitGlobalConstant(const Constant *CV) {
  const TargetData *TD = TM.getTargetData();
  const Type *type = CV->getType();
  unsigned Size = TD->getABITypeSize(type);

  if (CV->isNullValue() || isa<UndefValue>(CV)) {
    EmitZeros(Size);
    return;
  } else if (const ConstantArray *CVA = dyn_cast<ConstantArray>(CV)) {
    EmitGlobalConstantArray(CVA);
    return;
  } else if (const ConstantStruct *CVS = dyn_cast<ConstantStruct>(CV)) {
    EmitGlobalConstantStruct(CVS);
    return;
  } else if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CV)) {
    EmitGlobalConstantFP(CFP);
    return;
  } else if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV)) {
    // Small integers are handled below; large integers are handled here.
    if (Size > 4) {
      EmitGlobalConstantLargeInt(CI);
      return;
    }
  } else if (const ConstantVector *CP = dyn_cast<ConstantVector>(CV)) {
    EmitGlobalConstantVector(CP);
    return;
  }

  printDataDirective(type);
  EmitConstantValueOnly(CV);
  if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV)) {
    SmallString<40> S;
    CI->getValue().toStringUnsigned(S, 16);
    O << "\t\t\t" << TAI->getCommentString() << " 0x" << S.c_str();
  }
  O << '\n';
}

void AsmPrinter::EmitMachineConstantPoolValue(MachineConstantPoolValue *MCPV) {
  // Target doesn't support this yet!
  abort();
}

/// PrintSpecial - Print information related to the specified machine instr
/// that is independent of the operand, and may be independent of the instr
/// itself.  This can be useful for portably encoding the comment character
/// or other bits of target-specific knowledge into the asmstrings.  The
/// syntax used is ${:comment}.  Targets can override this to add support
/// for their own strange codes.
void AsmPrinter::PrintSpecial(const MachineInstr *MI, const char *Code) {
  if (!strcmp(Code, "private")) {
    O << TAI->getPrivateGlobalPrefix();
  } else if (!strcmp(Code, "comment")) {
    O << TAI->getCommentString();
  } else if (!strcmp(Code, "uid")) {
    // Assign a unique ID to this machine instruction.
    static const MachineInstr *LastMI = 0;
    static const Function *F = 0;
    static unsigned Counter = 0U-1;

    // Comparing the address of MI isn't sufficient, because machineinstrs may
    // be allocated to the same address across functions.
    const Function *ThisF = MI->getParent()->getParent()->getFunction();
    
    // If this is a new machine instruction, bump the counter.
    if (LastMI != MI || F != ThisF) {
      ++Counter;
      LastMI = MI;
      F = ThisF;
    }
    O << Counter;
  } else {
    cerr << "Unknown special formatter '" << Code
         << "' for machine instr: " << *MI;
    exit(1);
  }    
}


/// printInlineAsm - This method formats and prints the specified machine
/// instruction that is an inline asm.
void AsmPrinter::printInlineAsm(const MachineInstr *MI) const {
  unsigned NumOperands = MI->getNumOperands();
  
  // Count the number of register definitions.
  unsigned NumDefs = 0;
  for (; MI->getOperand(NumDefs).isReg() && MI->getOperand(NumDefs).isDef();
       ++NumDefs)
    assert(NumDefs != NumOperands-1 && "No asm string?");
  
  assert(MI->getOperand(NumDefs).isSymbol() && "No asm string?");

  // Disassemble the AsmStr, printing out the literal pieces, the operands, etc.
  const char *AsmStr = MI->getOperand(NumDefs).getSymbolName();

  // If this asmstr is empty, just print the #APP/#NOAPP markers.
  // These are useful to see where empty asm's wound up.
  if (AsmStr[0] == 0) {
    O << TAI->getInlineAsmStart() << "\n\t" << TAI->getInlineAsmEnd() << '\n';
    return;
  }
  
  O << TAI->getInlineAsmStart() << "\n\t";

  // The variant of the current asmprinter.
  int AsmPrinterVariant = TAI->getAssemblerDialect();

  int CurVariant = -1;            // The number of the {.|.|.} region we are in.
  const char *LastEmitted = AsmStr; // One past the last character emitted.
  
  while (*LastEmitted) {
    switch (*LastEmitted) {
    default: {
      // Not a special case, emit the string section literally.
      const char *LiteralEnd = LastEmitted+1;
      while (*LiteralEnd && *LiteralEnd != '{' && *LiteralEnd != '|' &&
             *LiteralEnd != '}' && *LiteralEnd != '$' && *LiteralEnd != '\n')
        ++LiteralEnd;
      if (CurVariant == -1 || CurVariant == AsmPrinterVariant)
        O.write(LastEmitted, LiteralEnd-LastEmitted);
      LastEmitted = LiteralEnd;
      break;
    }
    case '\n':
      ++LastEmitted;   // Consume newline character.
      O << '\n';       // Indent code with newline.
      break;
    case '$': {
      ++LastEmitted;   // Consume '$' character.
      bool Done = true;

      // Handle escapes.
      switch (*LastEmitted) {
      default: Done = false; break;
      case '$':     // $$ -> $
        if (CurVariant == -1 || CurVariant == AsmPrinterVariant)
          O << '$';
        ++LastEmitted;  // Consume second '$' character.
        break;
      case '(':             // $( -> same as GCC's { character.
        ++LastEmitted;      // Consume '(' character.
        if (CurVariant != -1) {
          cerr << "Nested variants found in inline asm string: '"
               << AsmStr << "'\n";
          exit(1);
        }
        CurVariant = 0;     // We're in the first variant now.
        break;
      case '|':
        ++LastEmitted;  // consume '|' character.
        if (CurVariant == -1)
          O << '|';       // this is gcc's behavior for | outside a variant
        else
          ++CurVariant;   // We're in the next variant.
        break;
      case ')':         // $) -> same as GCC's } char.
        ++LastEmitted;  // consume ')' character.
        if (CurVariant == -1)
          O << '}';     // this is gcc's behavior for } outside a variant
        else 
          CurVariant = -1;
        break;
      }
      if (Done) break;
      
      bool HasCurlyBraces = false;
      if (*LastEmitted == '{') {     // ${variable}
        ++LastEmitted;               // Consume '{' character.
        HasCurlyBraces = true;
      }
      
      const char *IDStart = LastEmitted;
      char *IDEnd;
      errno = 0;
      long Val = strtol(IDStart, &IDEnd, 10); // We only accept numbers for IDs.
      if (!isdigit(*IDStart) || (Val == 0 && errno == EINVAL)) {
        cerr << "Bad $ operand number in inline asm string: '" 
             << AsmStr << "'\n";
        exit(1);
      }
      LastEmitted = IDEnd;
      
      char Modifier[2] = { 0, 0 };
      
      if (HasCurlyBraces) {
        // If we have curly braces, check for a modifier character.  This
        // supports syntax like ${0:u}, which correspond to "%u0" in GCC asm.
        if (*LastEmitted == ':') {
          ++LastEmitted;    // Consume ':' character.
          if (*LastEmitted == 0) {
            cerr << "Bad ${:} expression in inline asm string: '" 
                 << AsmStr << "'\n";
            exit(1);
          }
          
          Modifier[0] = *LastEmitted;
          ++LastEmitted;    // Consume modifier character.
        }
        
        if (*LastEmitted != '}') {
          cerr << "Bad ${} expression in inline asm string: '" 
               << AsmStr << "'\n";
          exit(1);
        }
        ++LastEmitted;    // Consume '}' character.
      }
      
      if ((unsigned)Val >= NumOperands-1) {
        cerr << "Invalid $ operand number in inline asm string: '" 
             << AsmStr << "'\n";
        exit(1);
      }
      
      // Okay, we finally have a value number.  Ask the target to print this
      // operand!
      if (CurVariant == -1 || CurVariant == AsmPrinterVariant) {
        unsigned OpNo = 1;

        bool Error = false;

        // Scan to find the machine operand number for the operand.
        for (; Val; --Val) {
          if (OpNo >= MI->getNumOperands()) break;
          unsigned OpFlags = MI->getOperand(OpNo).getImm();
          OpNo += (OpFlags >> 3) + 1;
        }

        if (OpNo >= MI->getNumOperands()) {
          Error = true;
        } else {
          unsigned OpFlags = MI->getOperand(OpNo).getImm();
          ++OpNo;  // Skip over the ID number.

          if (Modifier[0]=='l')  // labels are target independent
            printBasicBlockLabel(MI->getOperand(OpNo).getMBB(), 
                                 false, false, false);
          else {
            AsmPrinter *AP = const_cast<AsmPrinter*>(this);
            if ((OpFlags & 7) == 4) {
              Error = AP->PrintAsmMemoryOperand(MI, OpNo, AsmPrinterVariant,
                                                Modifier[0] ? Modifier : 0);
            } else {
              Error = AP->PrintAsmOperand(MI, OpNo, AsmPrinterVariant,
                                          Modifier[0] ? Modifier : 0);
            }
          }
        }
        if (Error) {
          cerr << "Invalid operand found in inline asm: '"
               << AsmStr << "'\n";
          MI->dump();
          exit(1);
        }
      }
      break;
    }
    }
  }
  O << "\n\t" << TAI->getInlineAsmEnd() << '\n';
}

/// printImplicitDef - This method prints the specified machine instruction
/// that is an implicit def.
void AsmPrinter::printImplicitDef(const MachineInstr *MI) const {
  O << '\t' << TAI->getCommentString() << " implicit-def: "
    << TRI->getAsmName(MI->getOperand(0).getReg()) << '\n';
}

/// printLabel - This method prints a local label used by debug and
/// exception handling tables.
void AsmPrinter::printLabel(const MachineInstr *MI) const {
  printLabel(MI->getOperand(0).getImm());
}

void AsmPrinter::printLabel(unsigned Id) const {
  O << TAI->getPrivateGlobalPrefix() << "label" << Id << ":\n";
}

/// printDeclare - This method prints a local variable declaration used by
/// debug tables.
/// FIXME: It doesn't really print anything rather it inserts a DebugVariable
/// entry into dwarf table.
void AsmPrinter::printDeclare(const MachineInstr *MI) const {
  int FI = MI->getOperand(0).getIndex();
  GlobalValue *GV = MI->getOperand(1).getGlobal();
  MMI->RecordVariable(GV, FI);
}

/// PrintAsmOperand - Print the specified operand of MI, an INLINEASM
/// instruction, using the specified assembler variant.  Targets should
/// overried this to format as appropriate.
bool AsmPrinter::PrintAsmOperand(const MachineInstr *MI, unsigned OpNo,
                                 unsigned AsmVariant, const char *ExtraCode) {
  // Target doesn't support this yet!
  return true;
}

bool AsmPrinter::PrintAsmMemoryOperand(const MachineInstr *MI, unsigned OpNo,
                                       unsigned AsmVariant,
                                       const char *ExtraCode) {
  // Target doesn't support this yet!
  return true;
}

/// printBasicBlockLabel - This method prints the label for the specified
/// MachineBasicBlock
void AsmPrinter::printBasicBlockLabel(const MachineBasicBlock *MBB,
                                      bool printAlign, 
                                      bool printColon,
                                      bool printComment) const {
  if (printAlign) {
    unsigned Align = MBB->getAlignment();
    if (Align)
      EmitAlignment(Log2_32(Align));
  }

  O << TAI->getPrivateGlobalPrefix() << "BB" << getFunctionNumber() << '_'
    << MBB->getNumber();
  if (printColon)
    O << ':';
  if (printComment && MBB->getBasicBlock())
    O << '\t' << TAI->getCommentString() << ' '
      << MBB->getBasicBlock()->getNameStart();
}

/// printPICJumpTableSetLabel - This method prints a set label for the
/// specified MachineBasicBlock for a jumptable entry.
void AsmPrinter::printPICJumpTableSetLabel(unsigned uid, 
                                           const MachineBasicBlock *MBB) const {
  if (!TAI->getSetDirective())
    return;
  
  O << TAI->getSetDirective() << ' ' << TAI->getPrivateGlobalPrefix()
    << getFunctionNumber() << '_' << uid << "_set_" << MBB->getNumber() << ',';
  printBasicBlockLabel(MBB, false, false, false);
  O << '-' << TAI->getPrivateGlobalPrefix() << "JTI" << getFunctionNumber() 
    << '_' << uid << '\n';
}

void AsmPrinter::printPICJumpTableSetLabel(unsigned uid, unsigned uid2,
                                           const MachineBasicBlock *MBB) const {
  if (!TAI->getSetDirective())
    return;
  
  O << TAI->getSetDirective() << ' ' << TAI->getPrivateGlobalPrefix()
    << getFunctionNumber() << '_' << uid << '_' << uid2
    << "_set_" << MBB->getNumber() << ',';
  printBasicBlockLabel(MBB, false, false, false);
  O << '-' << TAI->getPrivateGlobalPrefix() << "JTI" << getFunctionNumber() 
    << '_' << uid << '_' << uid2 << '\n';
}

/// printDataDirective - This method prints the asm directive for the
/// specified type.
void AsmPrinter::printDataDirective(const Type *type) {
  const TargetData *TD = TM.getTargetData();
  switch (type->getTypeID()) {
  case Type::IntegerTyID: {
    unsigned BitWidth = cast<IntegerType>(type)->getBitWidth();
    if (BitWidth <= 8)
      O << TAI->getData8bitsDirective();
    else if (BitWidth <= 16)
      O << TAI->getData16bitsDirective();
    else if (BitWidth <= 32)
      O << TAI->getData32bitsDirective();
    else if (BitWidth <= 64) {
      assert(TAI->getData64bitsDirective() &&
             "Target cannot handle 64-bit constant exprs!");
      O << TAI->getData64bitsDirective();
    } else {
      assert(0 && "Target cannot handle given data directive width!");
    }
    break;
  }
  case Type::PointerTyID:
    if (TD->getPointerSize() == 8) {
      assert(TAI->getData64bitsDirective() &&
             "Target cannot handle 64-bit pointer exprs!");
      O << TAI->getData64bitsDirective();
    } else {
      O << TAI->getData32bitsDirective();
    }
    break;
  case Type::FloatTyID: case Type::DoubleTyID:
  case Type::X86_FP80TyID: case Type::FP128TyID: case Type::PPC_FP128TyID:
    assert (0 && "Should have already output floating point constant.");
  default:
    assert (0 && "Can't handle printing this type of thing");
    break;
  }
}

void AsmPrinter::printSuffixedName(const char *Name, const char *Suffix,
                                   const char *Prefix) {
  if (Name[0]=='\"')
    O << '\"';
  O << TAI->getPrivateGlobalPrefix();
  if (Prefix) O << Prefix;
  if (Name[0]=='\"')
    O << '\"';
  if (Name[0]=='\"')
    O << Name[1];
  else
    O << Name;
  O << Suffix;
  if (Name[0]=='\"')
    O << '\"';
}

void AsmPrinter::printSuffixedName(const std::string &Name, const char* Suffix) {
  printSuffixedName(Name.c_str(), Suffix);
}

void AsmPrinter::printVisibility(const std::string& Name,
                                 unsigned Visibility) const {
  if (Visibility == GlobalValue::HiddenVisibility) {
    if (const char *Directive = TAI->getHiddenDirective())
      O << Directive << Name << '\n';
  } else if (Visibility == GlobalValue::ProtectedVisibility) {
    if (const char *Directive = TAI->getProtectedDirective())
      O << Directive << Name << '\n';
  }
}

void AsmPrinter::printOffset(int64_t Offset) const {
  if (Offset > 0)
    O << '+' << Offset;
  else if (Offset < 0)
    O << Offset;
}

GCMetadataPrinter *AsmPrinter::GetOrCreateGCPrinter(GCStrategy *S) {
  if (!S->usesMetadata())
    return 0;
  
  gcp_iterator GCPI = GCMetadataPrinters.find(S);
  if (GCPI != GCMetadataPrinters.end())
    return GCPI->second;
  
  const char *Name = S->getName().c_str();
  
  for (GCMetadataPrinterRegistry::iterator
         I = GCMetadataPrinterRegistry::begin(),
         E = GCMetadataPrinterRegistry::end(); I != E; ++I)
    if (strcmp(Name, I->getName()) == 0) {
      GCMetadataPrinter *GMP = I->instantiate();
      GMP->S = S;
      GCMetadataPrinters.insert(std::make_pair(S, GMP));
      return GMP;
    }
  
  cerr << "no GCMetadataPrinter registered for GC: " << Name << "\n";
  abort();
}