llvm.org GIT mirror llvm / 945c85d lib / Target / AMDGPU / Utils / AMDGPUBaseInfo.cpp
945c85d

Tree @945c85d (Download .tar.gz)

AMDGPUBaseInfo.cpp @945c85draw · history · blame

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
//===-- AMDGPUBaseInfo.cpp - AMDGPU Base encoding information--------------===//
//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
#include "AMDGPUBaseInfo.h"
#include "AMDGPU.h"
#include "SIDefines.h"
#include "llvm/CodeGen/MachineMemOperand.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/GlobalValue.h"
#include "llvm/IR/LLVMContext.h"
#include "llvm/MC/MCContext.h"
#include "llvm/MC/MCInstrInfo.h"
#include "llvm/MC/MCRegisterInfo.h"
#include "llvm/MC/MCSectionELF.h"
#include "llvm/MC/MCSubtargetInfo.h"
#include "llvm/MC/SubtargetFeature.h"

#define GET_SUBTARGETINFO_ENUM
#include "AMDGPUGenSubtargetInfo.inc"
#undef GET_SUBTARGETINFO_ENUM

#define GET_REGINFO_ENUM
#include "AMDGPUGenRegisterInfo.inc"
#undef GET_REGINFO_ENUM

#define GET_INSTRINFO_NAMED_OPS
#define GET_INSTRINFO_ENUM
#include "AMDGPUGenInstrInfo.inc"
#undef GET_INSTRINFO_NAMED_OPS
#undef GET_INSTRINFO_ENUM

namespace {

/// \returns Bit mask for given bit \p Shift and bit \p Width.
unsigned getBitMask(unsigned Shift, unsigned Width) {
  return ((1 << Width) - 1) << Shift;
}

/// \brief Packs \p Src into \p Dst for given bit \p Shift and bit \p Width.
///
/// \returns Packed \p Dst.
unsigned packBits(unsigned Src, unsigned Dst, unsigned Shift, unsigned Width) {
  Dst &= ~(1 << Shift) & ~getBitMask(Shift, Width);
  Dst |= (Src << Shift) & getBitMask(Shift, Width);
  return Dst;
}

/// \brief Unpacks bits from \p Src for given bit \p Shift and bit \p Width.
///
/// \returns Unpacked bits.
unsigned unpackBits(unsigned Src, unsigned Shift, unsigned Width) {
  return (Src & getBitMask(Shift, Width)) >> Shift;
}

/// \returns Vmcnt bit shift.
unsigned getVmcntBitShift() { return 0; }

/// \returns Vmcnt bit width.
unsigned getVmcntBitWidth() { return 4; }

/// \returns Expcnt bit shift.
unsigned getExpcntBitShift() { return 4; }

/// \returns Expcnt bit width.
unsigned getExpcntBitWidth() { return 3; }

/// \returns Lgkmcnt bit shift.
unsigned getLgkmcntBitShift() { return 8; }

/// \returns Lgkmcnt bit width.
unsigned getLgkmcntBitWidth() { return 4; }

} // anonymous namespace

namespace llvm {
namespace AMDGPU {

IsaVersion getIsaVersion(const FeatureBitset &Features) {

  if (Features.test(FeatureISAVersion7_0_0))
    return {7, 0, 0};

  if (Features.test(FeatureISAVersion7_0_1))
    return {7, 0, 1};

  if (Features.test(FeatureISAVersion7_0_2))
    return {7, 0, 2};

  if (Features.test(FeatureISAVersion8_0_0))
    return {8, 0, 0};

  if (Features.test(FeatureISAVersion8_0_1))
    return {8, 0, 1};

  if (Features.test(FeatureISAVersion8_0_2))
    return {8, 0, 2};

  if (Features.test(FeatureISAVersion8_0_3))
    return {8, 0, 3};

  if (Features.test(FeatureISAVersion8_0_4))
    return {8, 0, 4};

  if (Features.test(FeatureISAVersion8_1_0))
    return {8, 1, 0};

  return {0, 0, 0};
}

void initDefaultAMDKernelCodeT(amd_kernel_code_t &Header,
                               const FeatureBitset &Features) {

  IsaVersion ISA = getIsaVersion(Features);

  memset(&Header, 0, sizeof(Header));

  Header.amd_kernel_code_version_major = 1;
  Header.amd_kernel_code_version_minor = 0;
  Header.amd_machine_kind = 1; // AMD_MACHINE_KIND_AMDGPU
  Header.amd_machine_version_major = ISA.Major;
  Header.amd_machine_version_minor = ISA.Minor;
  Header.amd_machine_version_stepping = ISA.Stepping;
  Header.kernel_code_entry_byte_offset = sizeof(Header);
  // wavefront_size is specified as a power of 2: 2^6 = 64 threads.
  Header.wavefront_size = 6;

  // If the code object does not support indirect functions, then the value must
  // be 0xffffffff.
  Header.call_convention = -1;

  // These alignment values are specified in powers of two, so alignment =
  // 2^n.  The minimum alignment is 2^4 = 16.
  Header.kernarg_segment_alignment = 4;
  Header.group_segment_alignment = 4;
  Header.private_segment_alignment = 4;
}

MCSection *getHSATextSection(MCContext &Ctx) {
  return Ctx.getELFSection(".hsatext", ELF::SHT_PROGBITS,
                           ELF::SHF_ALLOC | ELF::SHF_WRITE |
                           ELF::SHF_EXECINSTR |
                           ELF::SHF_AMDGPU_HSA_AGENT |
                           ELF::SHF_AMDGPU_HSA_CODE);
}

MCSection *getHSADataGlobalAgentSection(MCContext &Ctx) {
  return Ctx.getELFSection(".hsadata_global_agent", ELF::SHT_PROGBITS,
                           ELF::SHF_ALLOC | ELF::SHF_WRITE |
                           ELF::SHF_AMDGPU_HSA_GLOBAL |
                           ELF::SHF_AMDGPU_HSA_AGENT);
}

MCSection *getHSADataGlobalProgramSection(MCContext &Ctx) {
  return  Ctx.getELFSection(".hsadata_global_program", ELF::SHT_PROGBITS,
                            ELF::SHF_ALLOC | ELF::SHF_WRITE |
                            ELF::SHF_AMDGPU_HSA_GLOBAL);
}

MCSection *getHSARodataReadonlyAgentSection(MCContext &Ctx) {
  return Ctx.getELFSection(".hsarodata_readonly_agent", ELF::SHT_PROGBITS,
                           ELF::SHF_ALLOC | ELF::SHF_AMDGPU_HSA_READONLY |
                           ELF::SHF_AMDGPU_HSA_AGENT);
}

bool isGroupSegment(const GlobalValue *GV) {
  return GV->getType()->getAddressSpace() == AMDGPUAS::LOCAL_ADDRESS;
}

bool isGlobalSegment(const GlobalValue *GV) {
  return GV->getType()->getAddressSpace() == AMDGPUAS::GLOBAL_ADDRESS;
}

bool isReadOnlySegment(const GlobalValue *GV) {
  return GV->getType()->getAddressSpace() == AMDGPUAS::CONSTANT_ADDRESS;
}

bool shouldEmitConstantsToTextSection(const Triple &TT) {
  return TT.getOS() != Triple::AMDHSA;
}

int getIntegerAttribute(const Function &F, StringRef Name, int Default) {
  Attribute A = F.getFnAttribute(Name);
  int Result = Default;

  if (A.isStringAttribute()) {
    StringRef Str = A.getValueAsString();
    if (Str.getAsInteger(0, Result)) {
      LLVMContext &Ctx = F.getContext();
      Ctx.emitError("can't parse integer attribute " + Name);
    }
  }

  return Result;
}

std::pair<int, int> getIntegerPairAttribute(const Function &F,
                                            StringRef Name,
                                            std::pair<int, int> Default,
                                            bool OnlyFirstRequired) {
  Attribute A = F.getFnAttribute(Name);
  if (!A.isStringAttribute())
    return Default;

  LLVMContext &Ctx = F.getContext();
  std::pair<int, int> Ints = Default;
  std::pair<StringRef, StringRef> Strs = A.getValueAsString().split(',');
  if (Strs.first.trim().getAsInteger(0, Ints.first)) {
    Ctx.emitError("can't parse first integer attribute " + Name);
    return Default;
  }
  if (Strs.second.trim().getAsInteger(0, Ints.second)) {
    if (!OnlyFirstRequired || Strs.second.trim().size()) {
      Ctx.emitError("can't parse second integer attribute " + Name);
      return Default;
    }
  }

  return Ints;
}

unsigned getWaitcntBitMask(IsaVersion Version) {
  unsigned Vmcnt = getBitMask(getVmcntBitShift(), getVmcntBitWidth());
  unsigned Expcnt = getBitMask(getExpcntBitShift(), getExpcntBitWidth());
  unsigned Lgkmcnt = getBitMask(getLgkmcntBitShift(), getLgkmcntBitWidth());
  return Vmcnt | Expcnt | Lgkmcnt;
}

unsigned getVmcntBitMask(IsaVersion Version) {
  return (1 << getVmcntBitWidth()) - 1;
}

unsigned getExpcntBitMask(IsaVersion Version) {
  return (1 << getExpcntBitWidth()) - 1;
}

unsigned getLgkmcntBitMask(IsaVersion Version) {
  return (1 << getLgkmcntBitWidth()) - 1;
}

unsigned decodeVmcnt(IsaVersion Version, unsigned Waitcnt) {
  return unpackBits(Waitcnt, getVmcntBitShift(), getVmcntBitWidth());
}

unsigned decodeExpcnt(IsaVersion Version, unsigned Waitcnt) {
  return unpackBits(Waitcnt, getExpcntBitShift(), getExpcntBitWidth());
}

unsigned decodeLgkmcnt(IsaVersion Version, unsigned Waitcnt) {
  return unpackBits(Waitcnt, getLgkmcntBitShift(), getLgkmcntBitWidth());
}

void decodeWaitcnt(IsaVersion Version, unsigned Waitcnt,
                   unsigned &Vmcnt, unsigned &Expcnt, unsigned &Lgkmcnt) {
  Vmcnt = decodeVmcnt(Version, Waitcnt);
  Expcnt = decodeExpcnt(Version, Waitcnt);
  Lgkmcnt = decodeLgkmcnt(Version, Waitcnt);
}

unsigned encodeVmcnt(IsaVersion Version, unsigned Waitcnt, unsigned Vmcnt) {
  return packBits(Vmcnt, Waitcnt, getVmcntBitShift(), getVmcntBitWidth());
}

unsigned encodeExpcnt(IsaVersion Version, unsigned Waitcnt, unsigned Expcnt) {
  return packBits(Expcnt, Waitcnt, getExpcntBitShift(), getExpcntBitWidth());
}

unsigned encodeLgkmcnt(IsaVersion Version, unsigned Waitcnt, unsigned Lgkmcnt) {
  return packBits(Lgkmcnt, Waitcnt, getLgkmcntBitShift(), getLgkmcntBitWidth());
}

unsigned encodeWaitcnt(IsaVersion Version,
                       unsigned Vmcnt, unsigned Expcnt, unsigned Lgkmcnt) {
  unsigned Waitcnt = getWaitcntBitMask(Version);
  Waitcnt = encodeVmcnt(Version, Waitcnt, Vmcnt);
  Waitcnt = encodeExpcnt(Version, Waitcnt, Expcnt);
  Waitcnt = encodeLgkmcnt(Version, Waitcnt, Lgkmcnt);
  return Waitcnt;
}

unsigned getInitialPSInputAddr(const Function &F) {
  return getIntegerAttribute(F, "InitialPSInputAddr", 0);
}

bool isShader(CallingConv::ID cc) {
  switch(cc) {
    case CallingConv::AMDGPU_VS:
    case CallingConv::AMDGPU_GS:
    case CallingConv::AMDGPU_PS:
    case CallingConv::AMDGPU_CS:
      return true;
    default:
      return false;
  }
}

bool isCompute(CallingConv::ID cc) {
  return !isShader(cc) || cc == CallingConv::AMDGPU_CS;
}

bool isSI(const MCSubtargetInfo &STI) {
  return STI.getFeatureBits()[AMDGPU::FeatureSouthernIslands];
}

bool isCI(const MCSubtargetInfo &STI) {
  return STI.getFeatureBits()[AMDGPU::FeatureSeaIslands];
}

bool isVI(const MCSubtargetInfo &STI) {
  return STI.getFeatureBits()[AMDGPU::FeatureVolcanicIslands];
}

unsigned getMCReg(unsigned Reg, const MCSubtargetInfo &STI) {

  switch(Reg) {
  default: break;
  case AMDGPU::FLAT_SCR:
    assert(!isSI(STI));
    return isCI(STI) ? AMDGPU::FLAT_SCR_ci : AMDGPU::FLAT_SCR_vi;

  case AMDGPU::FLAT_SCR_LO:
    assert(!isSI(STI));
    return isCI(STI) ? AMDGPU::FLAT_SCR_LO_ci : AMDGPU::FLAT_SCR_LO_vi;

  case AMDGPU::FLAT_SCR_HI:
    assert(!isSI(STI));
    return isCI(STI) ? AMDGPU::FLAT_SCR_HI_ci : AMDGPU::FLAT_SCR_HI_vi;
  }
  return Reg;
}

bool isSISrcOperand(const MCInstrDesc &Desc, unsigned OpNo) {
  assert(OpNo <= Desc.NumOperands);
  unsigned OpType = Desc.OpInfo[OpNo].OperandType;
  return OpType >= AMDGPU::OPERAND_SRC_FIRST &&
         OpType <= AMDGPU::OPERAND_SRC_LAST;
}

bool isSISrcFPOperand(const MCInstrDesc &Desc, unsigned OpNo) {
  assert(OpNo <= Desc.NumOperands);
  unsigned OpType = Desc.OpInfo[OpNo].OperandType;
  switch (OpType) {
  case AMDGPU::OPERAND_REG_IMM_FP32:
  case AMDGPU::OPERAND_REG_IMM_FP64:
  case AMDGPU::OPERAND_REG_IMM_FP16:
  case AMDGPU::OPERAND_REG_INLINE_C_FP32:
  case AMDGPU::OPERAND_REG_INLINE_C_FP64:
  case AMDGPU::OPERAND_REG_INLINE_C_FP16:
    return true;
  default:
    return false;
  }
}

bool isSISrcInlinableOperand(const MCInstrDesc &Desc, unsigned OpNo) {
  assert(OpNo <= Desc.NumOperands);
  unsigned OpType = Desc.OpInfo[OpNo].OperandType;
  return OpType >= AMDGPU::OPERAND_REG_INLINE_C_FIRST &&
         OpType <= AMDGPU::OPERAND_REG_INLINE_C_LAST;
}

// Avoid using MCRegisterClass::getSize, since that function will go away
// (move from MC* level to Target* level). Return size in bits.
unsigned getRegBitWidth(unsigned RCID) {
  switch (RCID) {
  case AMDGPU::SGPR_32RegClassID:
  case AMDGPU::VGPR_32RegClassID:
  case AMDGPU::VS_32RegClassID:
  case AMDGPU::SReg_32RegClassID:
  case AMDGPU::SReg_32_XM0RegClassID:
    return 32;
  case AMDGPU::SGPR_64RegClassID:
  case AMDGPU::VS_64RegClassID:
  case AMDGPU::SReg_64RegClassID:
  case AMDGPU::VReg_64RegClassID:
    return 64;
  case AMDGPU::VReg_96RegClassID:
    return 96;
  case AMDGPU::SGPR_128RegClassID:
  case AMDGPU::SReg_128RegClassID:
  case AMDGPU::VReg_128RegClassID:
    return 128;
  case AMDGPU::SReg_256RegClassID:
  case AMDGPU::VReg_256RegClassID:
    return 256;
  case AMDGPU::SReg_512RegClassID:
  case AMDGPU::VReg_512RegClassID:
    return 512;
  default:
    llvm_unreachable("Unexpected register class");
  }
}

unsigned getRegBitWidth(const MCRegisterClass &RC) {
  return getRegBitWidth(RC.getID());
}

unsigned getRegOperandSize(const MCRegisterInfo *MRI, const MCInstrDesc &Desc,
                           unsigned OpNo) {
  assert(OpNo <= Desc.NumOperands);
  unsigned RCID = Desc.OpInfo[OpNo].RegClass;
  return getRegBitWidth(MRI->getRegClass(RCID)) / 8;
}

bool isInlinableLiteral64(int64_t Literal, bool HasInv2Pi) {
  if (Literal >= -16 && Literal <= 64)
    return true;

  uint64_t Val = static_cast<uint64_t>(Literal);
  return (Val == DoubleToBits(0.0)) ||
         (Val == DoubleToBits(1.0)) ||
         (Val == DoubleToBits(-1.0)) ||
         (Val == DoubleToBits(0.5)) ||
         (Val == DoubleToBits(-0.5)) ||
         (Val == DoubleToBits(2.0)) ||
         (Val == DoubleToBits(-2.0)) ||
         (Val == DoubleToBits(4.0)) ||
         (Val == DoubleToBits(-4.0)) ||
         (Val == 0x3fc45f306dc9c882 && HasInv2Pi);
}

bool isInlinableLiteral32(int32_t Literal, bool HasInv2Pi) {
  if (Literal >= -16 && Literal <= 64)
    return true;

  // The actual type of the operand does not seem to matter as long
  // as the bits match one of the inline immediate values.  For example:
  //
  // -nan has the hexadecimal encoding of 0xfffffffe which is -2 in decimal,
  // so it is a legal inline immediate.
  //
  // 1065353216 has the hexadecimal encoding 0x3f800000 which is 1.0f in
  // floating-point, so it is a legal inline immediate.

  uint32_t Val = static_cast<uint32_t>(Literal);
  return (Val == FloatToBits(0.0f)) ||
         (Val == FloatToBits(1.0f)) ||
         (Val == FloatToBits(-1.0f)) ||
         (Val == FloatToBits(0.5f)) ||
         (Val == FloatToBits(-0.5f)) ||
         (Val == FloatToBits(2.0f)) ||
         (Val == FloatToBits(-2.0f)) ||
         (Val == FloatToBits(4.0f)) ||
         (Val == FloatToBits(-4.0f)) ||
         (Val == 0x3e22f983 && HasInv2Pi);
}

bool isInlinableLiteral16(int16_t Literal, bool HasInv2Pi) {
  if (!HasInv2Pi)
    return false;

  if (Literal >= -16 && Literal <= 64)
    return true;

  uint16_t Val = static_cast<uint16_t>(Literal);
  return Val == 0x3C00 || // 1.0
         Val == 0xBC00 || // -1.0
         Val == 0x3800 || // 0.5
         Val == 0xB800 || // -0.5
         Val == 0x4000 || // 2.0
         Val == 0xC000 || // -2.0
         Val == 0x4400 || // 4.0
         Val == 0xC400 || // -4.0
         Val == 0x3118;   // 1/2pi
}

bool isUniformMMO(const MachineMemOperand *MMO) {
  const Value *Ptr = MMO->getValue();
  // UndefValue means this is a load of a kernel input.  These are uniform.
  // Sometimes LDS instructions have constant pointers.
  // If Ptr is null, then that means this mem operand contains a
  // PseudoSourceValue like GOT.
  if (!Ptr || isa<UndefValue>(Ptr) || isa<Argument>(Ptr) ||
      isa<Constant>(Ptr) || isa<GlobalValue>(Ptr))
    return true;

  const Instruction *I = dyn_cast<Instruction>(Ptr);
  return I && I->getMetadata("amdgpu.uniform");
}

int64_t getSMRDEncodedOffset(const MCSubtargetInfo &ST, int64_t ByteOffset) {
  if (isSI(ST) || isCI(ST))
    return ByteOffset >> 2;

  return ByteOffset;
}

bool isLegalSMRDImmOffset(const MCSubtargetInfo &ST, int64_t ByteOffset) {
  int64_t EncodedOffset = getSMRDEncodedOffset(ST, ByteOffset);
  return isSI(ST) || isCI(ST) ? isUInt<8>(EncodedOffset) :
                                isUInt<20>(EncodedOffset);
}

} // End namespace AMDGPU
} // End namespace llvm