llvm.org GIT mirror llvm / 944600b lib / Target / AMDGPU / Utils / AMDGPUBaseInfo.cpp
944600b

Tree @944600b (Download .tar.gz)

AMDGPUBaseInfo.cpp @944600braw · history · blame

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
//===- AMDGPUBaseInfo.cpp - AMDGPU Base encoding information --------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//

#include "AMDGPUBaseInfo.h"
#include "AMDGPUTargetTransformInfo.h"
#include "AMDGPU.h"
#include "SIDefines.h"
#include "llvm/ADT/StringRef.h"
#include "llvm/ADT/Triple.h"
#include "llvm/BinaryFormat/ELF.h"
#include "llvm/CodeGen/MachineMemOperand.h"
#include "llvm/IR/Attributes.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/GlobalValue.h"
#include "llvm/IR/Instruction.h"
#include "llvm/IR/LLVMContext.h"
#include "llvm/IR/Module.h"
#include "llvm/MC/MCContext.h"
#include "llvm/MC/MCInstrDesc.h"
#include "llvm/MC/MCInstrInfo.h"
#include "llvm/MC/MCRegisterInfo.h"
#include "llvm/MC/MCSectionELF.h"
#include "llvm/MC/MCSubtargetInfo.h"
#include "llvm/MC/SubtargetFeature.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/MathExtras.h"
#include <algorithm>
#include <cassert>
#include <cstdint>
#include <cstring>
#include <utility>

#include "MCTargetDesc/AMDGPUMCTargetDesc.h"

#define GET_INSTRINFO_NAMED_OPS
#define GET_INSTRMAP_INFO
#include "AMDGPUGenInstrInfo.inc"
#undef GET_INSTRMAP_INFO
#undef GET_INSTRINFO_NAMED_OPS

namespace {

/// \returns Bit mask for given bit \p Shift and bit \p Width.
unsigned getBitMask(unsigned Shift, unsigned Width) {
  return ((1 << Width) - 1) << Shift;
}

/// Packs \p Src into \p Dst for given bit \p Shift and bit \p Width.
///
/// \returns Packed \p Dst.
unsigned packBits(unsigned Src, unsigned Dst, unsigned Shift, unsigned Width) {
  Dst &= ~(1 << Shift) & ~getBitMask(Shift, Width);
  Dst |= (Src << Shift) & getBitMask(Shift, Width);
  return Dst;
}

/// Unpacks bits from \p Src for given bit \p Shift and bit \p Width.
///
/// \returns Unpacked bits.
unsigned unpackBits(unsigned Src, unsigned Shift, unsigned Width) {
  return (Src & getBitMask(Shift, Width)) >> Shift;
}

/// \returns Vmcnt bit shift (lower bits).
unsigned getVmcntBitShiftLo() { return 0; }

/// \returns Vmcnt bit width (lower bits).
unsigned getVmcntBitWidthLo() { return 4; }

/// \returns Expcnt bit shift.
unsigned getExpcntBitShift() { return 4; }

/// \returns Expcnt bit width.
unsigned getExpcntBitWidth() { return 3; }

/// \returns Lgkmcnt bit shift.
unsigned getLgkmcntBitShift() { return 8; }

/// \returns Lgkmcnt bit width.
unsigned getLgkmcntBitWidth(unsigned VersionMajor) {
  return (VersionMajor >= 10) ? 6 : 4;
}

/// \returns Vmcnt bit shift (higher bits).
unsigned getVmcntBitShiftHi() { return 14; }

/// \returns Vmcnt bit width (higher bits).
unsigned getVmcntBitWidthHi() { return 2; }

} // end namespace anonymous

namespace llvm {

namespace AMDGPU {

#define GET_MIMGBaseOpcodesTable_IMPL
#define GET_MIMGDimInfoTable_IMPL
#define GET_MIMGInfoTable_IMPL
#define GET_MIMGLZMappingTable_IMPL
#define GET_MIMGMIPMappingTable_IMPL
#include "AMDGPUGenSearchableTables.inc"

int getMIMGOpcode(unsigned BaseOpcode, unsigned MIMGEncoding,
                  unsigned VDataDwords, unsigned VAddrDwords) {
  const MIMGInfo *Info = getMIMGOpcodeHelper(BaseOpcode, MIMGEncoding,
                                             VDataDwords, VAddrDwords);
  return Info ? Info->Opcode : -1;
}

const MIMGBaseOpcodeInfo *getMIMGBaseOpcode(unsigned Opc) {
  const MIMGInfo *Info = getMIMGInfo(Opc);
  return Info ? getMIMGBaseOpcodeInfo(Info->BaseOpcode) : nullptr;
}

int getMaskedMIMGOp(unsigned Opc, unsigned NewChannels) {
  const MIMGInfo *OrigInfo = getMIMGInfo(Opc);
  const MIMGInfo *NewInfo =
      getMIMGOpcodeHelper(OrigInfo->BaseOpcode, OrigInfo->MIMGEncoding,
                          NewChannels, OrigInfo->VAddrDwords);
  return NewInfo ? NewInfo->Opcode : -1;
}

struct MUBUFInfo {
  uint16_t Opcode;
  uint16_t BaseOpcode;
  uint8_t dwords;
  bool has_vaddr;
  bool has_srsrc;
  bool has_soffset;
};

#define GET_MUBUFInfoTable_DECL
#define GET_MUBUFInfoTable_IMPL
#include "AMDGPUGenSearchableTables.inc"

int getMUBUFBaseOpcode(unsigned Opc) {
  const MUBUFInfo *Info = getMUBUFInfoFromOpcode(Opc);
  return Info ? Info->BaseOpcode : -1;
}

int getMUBUFOpcode(unsigned BaseOpc, unsigned Dwords) {
  const MUBUFInfo *Info = getMUBUFInfoFromBaseOpcodeAndDwords(BaseOpc, Dwords);
  return Info ? Info->Opcode : -1;
}

int getMUBUFDwords(unsigned Opc) {
  const MUBUFInfo *Info = getMUBUFOpcodeHelper(Opc);
  return Info ? Info->dwords : 0;
}

bool getMUBUFHasVAddr(unsigned Opc) {
  const MUBUFInfo *Info = getMUBUFOpcodeHelper(Opc);
  return Info ? Info->has_vaddr : false;
}

bool getMUBUFHasSrsrc(unsigned Opc) {
  const MUBUFInfo *Info = getMUBUFOpcodeHelper(Opc);
  return Info ? Info->has_srsrc : false;
}

bool getMUBUFHasSoffset(unsigned Opc) {
  const MUBUFInfo *Info = getMUBUFOpcodeHelper(Opc);
  return Info ? Info->has_soffset : false;
}

// Wrapper for Tablegen'd function.  enum Subtarget is not defined in any
// header files, so we need to wrap it in a function that takes unsigned
// instead.
int getMCOpcode(uint16_t Opcode, unsigned Gen) {
  return getMCOpcodeGen(Opcode, static_cast<Subtarget>(Gen));
}

namespace IsaInfo {

void streamIsaVersion(const MCSubtargetInfo *STI, raw_ostream &Stream) {
  auto TargetTriple = STI->getTargetTriple();
  auto Version = getIsaVersion(STI->getCPU());

  Stream << TargetTriple.getArchName() << '-'
         << TargetTriple.getVendorName() << '-'
         << TargetTriple.getOSName() << '-'
         << TargetTriple.getEnvironmentName() << '-'
         << "gfx"
         << Version.Major
         << Version.Minor
         << Version.Stepping;

  if (hasXNACK(*STI))
    Stream << "+xnack";
  if (hasSRAMECC(*STI))
    Stream << "+sram-ecc";

  Stream.flush();
}

bool hasCodeObjectV3(const MCSubtargetInfo *STI) {
  return STI->getTargetTriple().getOS() == Triple::AMDHSA &&
             STI->getFeatureBits().test(FeatureCodeObjectV3);
}

unsigned getWavefrontSize(const MCSubtargetInfo *STI) {
  if (STI->getFeatureBits().test(FeatureWavefrontSize16))
    return 16;
  if (STI->getFeatureBits().test(FeatureWavefrontSize32))
    return 32;

  return 64;
}

unsigned getLocalMemorySize(const MCSubtargetInfo *STI) {
  if (STI->getFeatureBits().test(FeatureLocalMemorySize32768))
    return 32768;
  if (STI->getFeatureBits().test(FeatureLocalMemorySize65536))
    return 65536;

  return 0;
}

unsigned getEUsPerCU(const MCSubtargetInfo *STI) {
  return 4;
}

unsigned getMaxWorkGroupsPerCU(const MCSubtargetInfo *STI,
                               unsigned FlatWorkGroupSize) {
  assert(FlatWorkGroupSize != 0);
  if (STI->getTargetTriple().getArch() != Triple::amdgcn)
    return 8;
  unsigned N = getWavesPerWorkGroup(STI, FlatWorkGroupSize);
  if (N == 1)
    return 40;
  N = 40 / N;
  return std::min(N, 16u);
}

unsigned getMaxWavesPerCU(const MCSubtargetInfo *STI) {
  return getMaxWavesPerEU() * getEUsPerCU(STI);
}

unsigned getMaxWavesPerCU(const MCSubtargetInfo *STI,
                          unsigned FlatWorkGroupSize) {
  return getWavesPerWorkGroup(STI, FlatWorkGroupSize);
}

unsigned getMinWavesPerEU(const MCSubtargetInfo *STI) {
  return 1;
}

unsigned getMaxWavesPerEU() {
  // FIXME: Need to take scratch memory into account.
  return 10;
}

unsigned getMaxWavesPerEU(const MCSubtargetInfo *STI,
                          unsigned FlatWorkGroupSize) {
  return alignTo(getMaxWavesPerCU(STI, FlatWorkGroupSize),
                 getEUsPerCU(STI)) / getEUsPerCU(STI);
}

unsigned getMinFlatWorkGroupSize(const MCSubtargetInfo *STI) {
  return 1;
}

unsigned getMaxFlatWorkGroupSize(const MCSubtargetInfo *STI) {
  return 2048;
}

unsigned getWavesPerWorkGroup(const MCSubtargetInfo *STI,
                              unsigned FlatWorkGroupSize) {
  return alignTo(FlatWorkGroupSize, getWavefrontSize(STI)) /
                 getWavefrontSize(STI);
}

unsigned getSGPRAllocGranule(const MCSubtargetInfo *STI) {
  IsaVersion Version = getIsaVersion(STI->getCPU());
  if (Version.Major >= 10)
    return getAddressableNumSGPRs(STI);
  if (Version.Major >= 8)
    return 16;
  return 8;
}

unsigned getSGPREncodingGranule(const MCSubtargetInfo *STI) {
  return 8;
}

unsigned getTotalNumSGPRs(const MCSubtargetInfo *STI) {
  IsaVersion Version = getIsaVersion(STI->getCPU());
  if (Version.Major >= 8)
    return 800;
  return 512;
}

unsigned getAddressableNumSGPRs(const MCSubtargetInfo *STI) {
  if (STI->getFeatureBits().test(FeatureSGPRInitBug))
    return FIXED_NUM_SGPRS_FOR_INIT_BUG;

  IsaVersion Version = getIsaVersion(STI->getCPU());
  if (Version.Major >= 10)
    return 106;
  if (Version.Major >= 8)
    return 102;
  return 104;
}

unsigned getMinNumSGPRs(const MCSubtargetInfo *STI, unsigned WavesPerEU) {
  assert(WavesPerEU != 0);

  IsaVersion Version = getIsaVersion(STI->getCPU());
  if (Version.Major >= 10)
    return 0;

  if (WavesPerEU >= getMaxWavesPerEU())
    return 0;

  unsigned MinNumSGPRs = getTotalNumSGPRs(STI) / (WavesPerEU + 1);
  if (STI->getFeatureBits().test(FeatureTrapHandler))
    MinNumSGPRs -= std::min(MinNumSGPRs, (unsigned)TRAP_NUM_SGPRS);
  MinNumSGPRs = alignDown(MinNumSGPRs, getSGPRAllocGranule(STI)) + 1;
  return std::min(MinNumSGPRs, getAddressableNumSGPRs(STI));
}

unsigned getMaxNumSGPRs(const MCSubtargetInfo *STI, unsigned WavesPerEU,
                        bool Addressable) {
  assert(WavesPerEU != 0);

  unsigned AddressableNumSGPRs = getAddressableNumSGPRs(STI);
  IsaVersion Version = getIsaVersion(STI->getCPU());
  if (Version.Major >= 10)
    return Addressable ? AddressableNumSGPRs : 108;
  if (Version.Major >= 8 && !Addressable)
    AddressableNumSGPRs = 112;
  unsigned MaxNumSGPRs = getTotalNumSGPRs(STI) / WavesPerEU;
  if (STI->getFeatureBits().test(FeatureTrapHandler))
    MaxNumSGPRs -= std::min(MaxNumSGPRs, (unsigned)TRAP_NUM_SGPRS);
  MaxNumSGPRs = alignDown(MaxNumSGPRs, getSGPRAllocGranule(STI));
  return std::min(MaxNumSGPRs, AddressableNumSGPRs);
}

unsigned getNumExtraSGPRs(const MCSubtargetInfo *STI, bool VCCUsed,
                          bool FlatScrUsed, bool XNACKUsed) {
  unsigned ExtraSGPRs = 0;
  if (VCCUsed)
    ExtraSGPRs = 2;

  IsaVersion Version = getIsaVersion(STI->getCPU());
  if (Version.Major >= 10)
    return ExtraSGPRs;

  if (Version.Major < 8) {
    if (FlatScrUsed)
      ExtraSGPRs = 4;
  } else {
    if (XNACKUsed)
      ExtraSGPRs = 4;

    if (FlatScrUsed)
      ExtraSGPRs = 6;
  }

  return ExtraSGPRs;
}

unsigned getNumExtraSGPRs(const MCSubtargetInfo *STI, bool VCCUsed,
                          bool FlatScrUsed) {
  return getNumExtraSGPRs(STI, VCCUsed, FlatScrUsed,
                          STI->getFeatureBits().test(AMDGPU::FeatureXNACK));
}

unsigned getNumSGPRBlocks(const MCSubtargetInfo *STI, unsigned NumSGPRs) {
  NumSGPRs = alignTo(std::max(1u, NumSGPRs), getSGPREncodingGranule(STI));
  // SGPRBlocks is actual number of SGPR blocks minus 1.
  return NumSGPRs / getSGPREncodingGranule(STI) - 1;
}

unsigned getVGPRAllocGranule(const MCSubtargetInfo *STI) {
  return 4;
}

unsigned getVGPREncodingGranule(const MCSubtargetInfo *STI) {
  return getVGPRAllocGranule(STI);
}

unsigned getTotalNumVGPRs(const MCSubtargetInfo *STI) {
  return 256;
}

unsigned getAddressableNumVGPRs(const MCSubtargetInfo *STI) {
  return getTotalNumVGPRs(STI);
}

unsigned getMinNumVGPRs(const MCSubtargetInfo *STI, unsigned WavesPerEU) {
  assert(WavesPerEU != 0);

  if (WavesPerEU >= getMaxWavesPerEU())
    return 0;
  unsigned MinNumVGPRs =
      alignDown(getTotalNumVGPRs(STI) / (WavesPerEU + 1),
                getVGPRAllocGranule(STI)) + 1;
  return std::min(MinNumVGPRs, getAddressableNumVGPRs(STI));
}

unsigned getMaxNumVGPRs(const MCSubtargetInfo *STI, unsigned WavesPerEU) {
  assert(WavesPerEU != 0);

  unsigned MaxNumVGPRs = alignDown(getTotalNumVGPRs(STI) / WavesPerEU,
                                   getVGPRAllocGranule(STI));
  unsigned AddressableNumVGPRs = getAddressableNumVGPRs(STI);
  return std::min(MaxNumVGPRs, AddressableNumVGPRs);
}

unsigned getNumVGPRBlocks(const MCSubtargetInfo *STI, unsigned NumVGPRs) {
  NumVGPRs = alignTo(std::max(1u, NumVGPRs), getVGPREncodingGranule(STI));
  // VGPRBlocks is actual number of VGPR blocks minus 1.
  return NumVGPRs / getVGPREncodingGranule(STI) - 1;
}

} // end namespace IsaInfo

void initDefaultAMDKernelCodeT(amd_kernel_code_t &Header,
                               const MCSubtargetInfo *STI) {
  IsaVersion Version = getIsaVersion(STI->getCPU());

  memset(&Header, 0, sizeof(Header));

  Header.amd_kernel_code_version_major = 1;
  Header.amd_kernel_code_version_minor = 2;
  Header.amd_machine_kind = 1; // AMD_MACHINE_KIND_AMDGPU
  Header.amd_machine_version_major = Version.Major;
  Header.amd_machine_version_minor = Version.Minor;
  Header.amd_machine_version_stepping = Version.Stepping;
  Header.kernel_code_entry_byte_offset = sizeof(Header);
  // wavefront_size is specified as a power of 2: 2^6 = 64 threads.
  Header.wavefront_size = 6;

  // If the code object does not support indirect functions, then the value must
  // be 0xffffffff.
  Header.call_convention = -1;

  // These alignment values are specified in powers of two, so alignment =
  // 2^n.  The minimum alignment is 2^4 = 16.
  Header.kernarg_segment_alignment = 4;
  Header.group_segment_alignment = 4;
  Header.private_segment_alignment = 4;

  if (Version.Major >= 10) {
    Header.compute_pgm_resource_registers |=
      S_00B848_WGP_MODE(STI->getFeatureBits().test(FeatureCuMode) ? 0 : 1) |
      S_00B848_MEM_ORDERED(1);
  }
}

amdhsa::kernel_descriptor_t getDefaultAmdhsaKernelDescriptor(
    const MCSubtargetInfo *STI) {
  IsaVersion Version = getIsaVersion(STI->getCPU());

  amdhsa::kernel_descriptor_t KD;
  memset(&KD, 0, sizeof(KD));

  AMDHSA_BITS_SET(KD.compute_pgm_rsrc1,
                  amdhsa::COMPUTE_PGM_RSRC1_FLOAT_DENORM_MODE_16_64,
                  amdhsa::FLOAT_DENORM_MODE_FLUSH_NONE);
  AMDHSA_BITS_SET(KD.compute_pgm_rsrc1,
                  amdhsa::COMPUTE_PGM_RSRC1_ENABLE_DX10_CLAMP, 1);
  AMDHSA_BITS_SET(KD.compute_pgm_rsrc1,
                  amdhsa::COMPUTE_PGM_RSRC1_ENABLE_IEEE_MODE, 1);
  AMDHSA_BITS_SET(KD.compute_pgm_rsrc2,
                  amdhsa::COMPUTE_PGM_RSRC2_ENABLE_SGPR_WORKGROUP_ID_X, 1);
  if (Version.Major >= 10) {
    AMDHSA_BITS_SET(KD.compute_pgm_rsrc1,
                    amdhsa::COMPUTE_PGM_RSRC1_WGP_MODE,
                    STI->getFeatureBits().test(FeatureCuMode) ? 0 : 1);
    AMDHSA_BITS_SET(KD.compute_pgm_rsrc1,
                    amdhsa::COMPUTE_PGM_RSRC1_MEM_ORDERED, 1);
  }
  return KD;
}

bool isGroupSegment(const GlobalValue *GV) {
  return GV->getType()->getAddressSpace() == AMDGPUAS::LOCAL_ADDRESS;
}

bool isGlobalSegment(const GlobalValue *GV) {
  return GV->getType()->getAddressSpace() == AMDGPUAS::GLOBAL_ADDRESS;
}

bool isReadOnlySegment(const GlobalValue *GV) {
  return GV->getType()->getAddressSpace() == AMDGPUAS::CONSTANT_ADDRESS ||
         GV->getType()->getAddressSpace() == AMDGPUAS::CONSTANT_ADDRESS_32BIT;
}

bool shouldEmitConstantsToTextSection(const Triple &TT) {
  return TT.getOS() != Triple::AMDHSA;
}

int getIntegerAttribute(const Function &F, StringRef Name, int Default) {
  Attribute A = F.getFnAttribute(Name);
  int Result = Default;

  if (A.isStringAttribute()) {
    StringRef Str = A.getValueAsString();
    if (Str.getAsInteger(0, Result)) {
      LLVMContext &Ctx = F.getContext();
      Ctx.emitError("can't parse integer attribute " + Name);
    }
  }

  return Result;
}

std::pair<int, int> getIntegerPairAttribute(const Function &F,
                                            StringRef Name,
                                            std::pair<int, int> Default,
                                            bool OnlyFirstRequired) {
  Attribute A = F.getFnAttribute(Name);
  if (!A.isStringAttribute())
    return Default;

  LLVMContext &Ctx = F.getContext();
  std::pair<int, int> Ints = Default;
  std::pair<StringRef, StringRef> Strs = A.getValueAsString().split(',');
  if (Strs.first.trim().getAsInteger(0, Ints.first)) {
    Ctx.emitError("can't parse first integer attribute " + Name);
    return Default;
  }
  if (Strs.second.trim().getAsInteger(0, Ints.second)) {
    if (!OnlyFirstRequired || !Strs.second.trim().empty()) {
      Ctx.emitError("can't parse second integer attribute " + Name);
      return Default;
    }
  }

  return Ints;
}

unsigned getVmcntBitMask(const IsaVersion &Version) {
  unsigned VmcntLo = (1 << getVmcntBitWidthLo()) - 1;
  if (Version.Major < 9)
    return VmcntLo;

  unsigned VmcntHi = ((1 << getVmcntBitWidthHi()) - 1) << getVmcntBitWidthLo();
  return VmcntLo | VmcntHi;
}

unsigned getExpcntBitMask(const IsaVersion &Version) {
  return (1 << getExpcntBitWidth()) - 1;
}

unsigned getLgkmcntBitMask(const IsaVersion &Version) {
  return (1 << getLgkmcntBitWidth(Version.Major)) - 1;
}

unsigned getWaitcntBitMask(const IsaVersion &Version) {
  unsigned VmcntLo = getBitMask(getVmcntBitShiftLo(), getVmcntBitWidthLo());
  unsigned Expcnt = getBitMask(getExpcntBitShift(), getExpcntBitWidth());
  unsigned Lgkmcnt = getBitMask(getLgkmcntBitShift(),
                                getLgkmcntBitWidth(Version.Major));
  unsigned Waitcnt = VmcntLo | Expcnt | Lgkmcnt;
  if (Version.Major < 9)
    return Waitcnt;

  unsigned VmcntHi = getBitMask(getVmcntBitShiftHi(), getVmcntBitWidthHi());
  return Waitcnt | VmcntHi;
}

unsigned decodeVmcnt(const IsaVersion &Version, unsigned Waitcnt) {
  unsigned VmcntLo =
      unpackBits(Waitcnt, getVmcntBitShiftLo(), getVmcntBitWidthLo());
  if (Version.Major < 9)
    return VmcntLo;

  unsigned VmcntHi =
      unpackBits(Waitcnt, getVmcntBitShiftHi(), getVmcntBitWidthHi());
  VmcntHi <<= getVmcntBitWidthLo();
  return VmcntLo | VmcntHi;
}

unsigned decodeExpcnt(const IsaVersion &Version, unsigned Waitcnt) {
  return unpackBits(Waitcnt, getExpcntBitShift(), getExpcntBitWidth());
}

unsigned decodeLgkmcnt(const IsaVersion &Version, unsigned Waitcnt) {
  return unpackBits(Waitcnt, getLgkmcntBitShift(),
                    getLgkmcntBitWidth(Version.Major));
}

void decodeWaitcnt(const IsaVersion &Version, unsigned Waitcnt,
                   unsigned &Vmcnt, unsigned &Expcnt, unsigned &Lgkmcnt) {
  Vmcnt = decodeVmcnt(Version, Waitcnt);
  Expcnt = decodeExpcnt(Version, Waitcnt);
  Lgkmcnt = decodeLgkmcnt(Version, Waitcnt);
}

Waitcnt decodeWaitcnt(const IsaVersion &Version, unsigned Encoded) {
  Waitcnt Decoded;
  Decoded.VmCnt = decodeVmcnt(Version, Encoded);
  Decoded.ExpCnt = decodeExpcnt(Version, Encoded);
  Decoded.LgkmCnt = decodeLgkmcnt(Version, Encoded);
  return Decoded;
}

unsigned encodeVmcnt(const IsaVersion &Version, unsigned Waitcnt,
                     unsigned Vmcnt) {
  Waitcnt =
      packBits(Vmcnt, Waitcnt, getVmcntBitShiftLo(), getVmcntBitWidthLo());
  if (Version.Major < 9)
    return Waitcnt;

  Vmcnt >>= getVmcntBitWidthLo();
  return packBits(Vmcnt, Waitcnt, getVmcntBitShiftHi(), getVmcntBitWidthHi());
}

unsigned encodeExpcnt(const IsaVersion &Version, unsigned Waitcnt,
                      unsigned Expcnt) {
  return packBits(Expcnt, Waitcnt, getExpcntBitShift(), getExpcntBitWidth());
}

unsigned encodeLgkmcnt(const IsaVersion &Version, unsigned Waitcnt,
                       unsigned Lgkmcnt) {
  return packBits(Lgkmcnt, Waitcnt, getLgkmcntBitShift(),
                                    getLgkmcntBitWidth(Version.Major));
}

unsigned encodeWaitcnt(const IsaVersion &Version,
                       unsigned Vmcnt, unsigned Expcnt, unsigned Lgkmcnt) {
  unsigned Waitcnt = getWaitcntBitMask(Version);
  Waitcnt = encodeVmcnt(Version, Waitcnt, Vmcnt);
  Waitcnt = encodeExpcnt(Version, Waitcnt, Expcnt);
  Waitcnt = encodeLgkmcnt(Version, Waitcnt, Lgkmcnt);
  return Waitcnt;
}

unsigned encodeWaitcnt(const IsaVersion &Version, const Waitcnt &Decoded) {
  return encodeWaitcnt(Version, Decoded.VmCnt, Decoded.ExpCnt, Decoded.LgkmCnt);
}

unsigned getInitialPSInputAddr(const Function &F) {
  return getIntegerAttribute(F, "InitialPSInputAddr", 0);
}

bool isShader(CallingConv::ID cc) {
  switch(cc) {
    case CallingConv::AMDGPU_VS:
    case CallingConv::AMDGPU_LS:
    case CallingConv::AMDGPU_HS:
    case CallingConv::AMDGPU_ES:
    case CallingConv::AMDGPU_GS:
    case CallingConv::AMDGPU_PS:
    case CallingConv::AMDGPU_CS:
      return true;
    default:
      return false;
  }
}

bool isCompute(CallingConv::ID cc) {
  return !isShader(cc) || cc == CallingConv::AMDGPU_CS;
}

bool isEntryFunctionCC(CallingConv::ID CC) {
  switch (CC) {
  case CallingConv::AMDGPU_KERNEL:
  case CallingConv::SPIR_KERNEL:
  case CallingConv::AMDGPU_VS:
  case CallingConv::AMDGPU_GS:
  case CallingConv::AMDGPU_PS:
  case CallingConv::AMDGPU_CS:
  case CallingConv::AMDGPU_ES:
  case CallingConv::AMDGPU_HS:
  case CallingConv::AMDGPU_LS:
    return true;
  default:
    return false;
  }
}

bool hasXNACK(const MCSubtargetInfo &STI) {
  return STI.getFeatureBits()[AMDGPU::FeatureXNACK];
}

bool hasSRAMECC(const MCSubtargetInfo &STI) {
  return STI.getFeatureBits()[AMDGPU::FeatureSRAMECC];
}

bool hasMIMG_R128(const MCSubtargetInfo &STI) {
  return STI.getFeatureBits()[AMDGPU::FeatureMIMG_R128];
}

bool hasPackedD16(const MCSubtargetInfo &STI) {
  return !STI.getFeatureBits()[AMDGPU::FeatureUnpackedD16VMem];
}

bool isSI(const MCSubtargetInfo &STI) {
  return STI.getFeatureBits()[AMDGPU::FeatureSouthernIslands];
}

bool isCI(const MCSubtargetInfo &STI) {
  return STI.getFeatureBits()[AMDGPU::FeatureSeaIslands];
}

bool isVI(const MCSubtargetInfo &STI) {
  return STI.getFeatureBits()[AMDGPU::FeatureVolcanicIslands];
}

bool isGFX9(const MCSubtargetInfo &STI) {
  return STI.getFeatureBits()[AMDGPU::FeatureGFX9];
}

bool isGFX10(const MCSubtargetInfo &STI) {
  return STI.getFeatureBits()[AMDGPU::FeatureGFX10];
}

bool isGCN3Encoding(const MCSubtargetInfo &STI) {
  return STI.getFeatureBits()[AMDGPU::FeatureGCN3Encoding];
}

bool isSGPR(unsigned Reg, const MCRegisterInfo* TRI) {
  const MCRegisterClass SGPRClass = TRI->getRegClass(AMDGPU::SReg_32RegClassID);
  const unsigned FirstSubReg = TRI->getSubReg(Reg, 1);
  return SGPRClass.contains(FirstSubReg != 0 ? FirstSubReg : Reg) ||
    Reg == AMDGPU::SCC;
}

bool isRegIntersect(unsigned Reg0, unsigned Reg1, const MCRegisterInfo* TRI) {
  for (MCRegAliasIterator R(Reg0, TRI, true); R.isValid(); ++R) {
    if (*R == Reg1) return true;
  }
  return false;
}

#define MAP_REG2REG \
  using namespace AMDGPU; \
  switch(Reg) { \
  default: return Reg; \
  CASE_CI_VI(FLAT_SCR) \
  CASE_CI_VI(FLAT_SCR_LO) \
  CASE_CI_VI(FLAT_SCR_HI) \
  CASE_VI_GFX9_GFX10(TTMP0) \
  CASE_VI_GFX9_GFX10(TTMP1) \
  CASE_VI_GFX9_GFX10(TTMP2) \
  CASE_VI_GFX9_GFX10(TTMP3) \
  CASE_VI_GFX9_GFX10(TTMP4) \
  CASE_VI_GFX9_GFX10(TTMP5) \
  CASE_VI_GFX9_GFX10(TTMP6) \
  CASE_VI_GFX9_GFX10(TTMP7) \
  CASE_VI_GFX9_GFX10(TTMP8) \
  CASE_VI_GFX9_GFX10(TTMP9) \
  CASE_VI_GFX9_GFX10(TTMP10) \
  CASE_VI_GFX9_GFX10(TTMP11) \
  CASE_VI_GFX9_GFX10(TTMP12) \
  CASE_VI_GFX9_GFX10(TTMP13) \
  CASE_VI_GFX9_GFX10(TTMP14) \
  CASE_VI_GFX9_GFX10(TTMP15) \
  CASE_VI_GFX9_GFX10(TTMP0_TTMP1) \
  CASE_VI_GFX9_GFX10(TTMP2_TTMP3) \
  CASE_VI_GFX9_GFX10(TTMP4_TTMP5) \
  CASE_VI_GFX9_GFX10(TTMP6_TTMP7) \
  CASE_VI_GFX9_GFX10(TTMP8_TTMP9) \
  CASE_VI_GFX9_GFX10(TTMP10_TTMP11) \
  CASE_VI_GFX9_GFX10(TTMP12_TTMP13) \
  CASE_VI_GFX9_GFX10(TTMP14_TTMP15) \
  CASE_VI_GFX9_GFX10(TTMP0_TTMP1_TTMP2_TTMP3) \
  CASE_VI_GFX9_GFX10(TTMP4_TTMP5_TTMP6_TTMP7) \
  CASE_VI_GFX9_GFX10(TTMP8_TTMP9_TTMP10_TTMP11) \
  CASE_VI_GFX9_GFX10(TTMP12_TTMP13_TTMP14_TTMP15) \
  CASE_VI_GFX9_GFX10(TTMP0_TTMP1_TTMP2_TTMP3_TTMP4_TTMP5_TTMP6_TTMP7) \
  CASE_VI_GFX9_GFX10(TTMP4_TTMP5_TTMP6_TTMP7_TTMP8_TTMP9_TTMP10_TTMP11) \
  CASE_VI_GFX9_GFX10(TTMP8_TTMP9_TTMP10_TTMP11_TTMP12_TTMP13_TTMP14_TTMP15) \
  CASE_VI_GFX9_GFX10(TTMP0_TTMP1_TTMP2_TTMP3_TTMP4_TTMP5_TTMP6_TTMP7_TTMP8_TTMP9_TTMP10_TTMP11_TTMP12_TTMP13_TTMP14_TTMP15) \
  }

#define CASE_CI_VI(node) \
  assert(!isSI(STI)); \
  case node: return isCI(STI) ? node##_ci : node##_vi;

#define CASE_VI_GFX9_GFX10(node) \
  case node: return (isGFX9(STI) || isGFX10(STI)) ? node##_gfx9_gfx10 : node##_vi;

unsigned getMCReg(unsigned Reg, const MCSubtargetInfo &STI) {
  if (STI.getTargetTriple().getArch() == Triple::r600)
    return Reg;
  MAP_REG2REG
}

#undef CASE_CI_VI
#undef CASE_VI_GFX9_GFX10

#define CASE_CI_VI(node)   case node##_ci: case node##_vi:   return node;
#define CASE_VI_GFX9_GFX10(node) case node##_vi: case node##_gfx9_gfx10: return node;

unsigned mc2PseudoReg(unsigned Reg) {
  MAP_REG2REG
}

#undef CASE_CI_VI
#undef CASE_VI_GFX9_GFX10
#undef MAP_REG2REG

bool isSISrcOperand(const MCInstrDesc &Desc, unsigned OpNo) {
  assert(OpNo < Desc.NumOperands);
  unsigned OpType = Desc.OpInfo[OpNo].OperandType;
  return OpType >= AMDGPU::OPERAND_SRC_FIRST &&
         OpType <= AMDGPU::OPERAND_SRC_LAST;
}

bool isSISrcFPOperand(const MCInstrDesc &Desc, unsigned OpNo) {
  assert(OpNo < Desc.NumOperands);
  unsigned OpType = Desc.OpInfo[OpNo].OperandType;
  switch (OpType) {
  case AMDGPU::OPERAND_REG_IMM_FP32:
  case AMDGPU::OPERAND_REG_IMM_FP64:
  case AMDGPU::OPERAND_REG_IMM_FP16:
  case AMDGPU::OPERAND_REG_IMM_V2FP16:
  case AMDGPU::OPERAND_REG_IMM_V2INT16:
  case AMDGPU::OPERAND_REG_INLINE_C_FP32:
  case AMDGPU::OPERAND_REG_INLINE_C_FP64:
  case AMDGPU::OPERAND_REG_INLINE_C_FP16:
  case AMDGPU::OPERAND_REG_INLINE_C_V2FP16:
  case AMDGPU::OPERAND_REG_INLINE_C_V2INT16:
    return true;
  default:
    return false;
  }
}

bool isSISrcInlinableOperand(const MCInstrDesc &Desc, unsigned OpNo) {
  assert(OpNo < Desc.NumOperands);
  unsigned OpType = Desc.OpInfo[OpNo].OperandType;
  return OpType >= AMDGPU::OPERAND_REG_INLINE_C_FIRST &&
         OpType <= AMDGPU::OPERAND_REG_INLINE_C_LAST;
}

// Avoid using MCRegisterClass::getSize, since that function will go away
// (move from MC* level to Target* level). Return size in bits.
unsigned getRegBitWidth(unsigned RCID) {
  switch (RCID) {
  case AMDGPU::SGPR_32RegClassID:
  case AMDGPU::VGPR_32RegClassID:
  case AMDGPU::VRegOrLds_32RegClassID:
  case AMDGPU::VS_32RegClassID:
  case AMDGPU::SReg_32RegClassID:
  case AMDGPU::SReg_32_XM0RegClassID:
  case AMDGPU::SRegOrLds_32RegClassID:
    return 32;
  case AMDGPU::SGPR_64RegClassID:
  case AMDGPU::VS_64RegClassID:
  case AMDGPU::SReg_64RegClassID:
  case AMDGPU::VReg_64RegClassID:
  case AMDGPU::SReg_64_XEXECRegClassID:
    return 64;
  case AMDGPU::SGPR_96RegClassID:
  case AMDGPU::SReg_96RegClassID:
  case AMDGPU::VReg_96RegClassID:
    return 96;
  case AMDGPU::SGPR_128RegClassID:
  case AMDGPU::SReg_128RegClassID:
  case AMDGPU::VReg_128RegClassID:
    return 128;
  case AMDGPU::SGPR_160RegClassID:
  case AMDGPU::SReg_160RegClassID:
  case AMDGPU::VReg_160RegClassID:
    return 160;
  case AMDGPU::SReg_256RegClassID:
  case AMDGPU::VReg_256RegClassID:
    return 256;
  case AMDGPU::SReg_512RegClassID:
  case AMDGPU::VReg_512RegClassID:
    return 512;
  default:
    llvm_unreachable("Unexpected register class");
  }
}

unsigned getRegBitWidth(const MCRegisterClass &RC) {
  return getRegBitWidth(RC.getID());
}

unsigned getRegOperandSize(const MCRegisterInfo *MRI, const MCInstrDesc &Desc,
                           unsigned OpNo) {
  assert(OpNo < Desc.NumOperands);
  unsigned RCID = Desc.OpInfo[OpNo].RegClass;
  return getRegBitWidth(MRI->getRegClass(RCID)) / 8;
}

bool isInlinableLiteral64(int64_t Literal, bool HasInv2Pi) {
  if (Literal >= -16 && Literal <= 64)
    return true;

  uint64_t Val = static_cast<uint64_t>(Literal);
  return (Val == DoubleToBits(0.0)) ||
         (Val == DoubleToBits(1.0)) ||
         (Val == DoubleToBits(-1.0)) ||
         (Val == DoubleToBits(0.5)) ||
         (Val == DoubleToBits(-0.5)) ||
         (Val == DoubleToBits(2.0)) ||
         (Val == DoubleToBits(-2.0)) ||
         (Val == DoubleToBits(4.0)) ||
         (Val == DoubleToBits(-4.0)) ||
         (Val == 0x3fc45f306dc9c882 && HasInv2Pi);
}

bool isInlinableLiteral32(int32_t Literal, bool HasInv2Pi) {
  if (Literal >= -16 && Literal <= 64)
    return true;

  // The actual type of the operand does not seem to matter as long
  // as the bits match one of the inline immediate values.  For example:
  //
  // -nan has the hexadecimal encoding of 0xfffffffe which is -2 in decimal,
  // so it is a legal inline immediate.
  //
  // 1065353216 has the hexadecimal encoding 0x3f800000 which is 1.0f in
  // floating-point, so it is a legal inline immediate.

  uint32_t Val = static_cast<uint32_t>(Literal);
  return (Val == FloatToBits(0.0f)) ||
         (Val == FloatToBits(1.0f)) ||
         (Val == FloatToBits(-1.0f)) ||
         (Val == FloatToBits(0.5f)) ||
         (Val == FloatToBits(-0.5f)) ||
         (Val == FloatToBits(2.0f)) ||
         (Val == FloatToBits(-2.0f)) ||
         (Val == FloatToBits(4.0f)) ||
         (Val == FloatToBits(-4.0f)) ||
         (Val == 0x3e22f983 && HasInv2Pi);
}

bool isInlinableLiteral16(int16_t Literal, bool HasInv2Pi) {
  if (!HasInv2Pi)
    return false;

  if (Literal >= -16 && Literal <= 64)
    return true;

  uint16_t Val = static_cast<uint16_t>(Literal);
  return Val == 0x3C00 || // 1.0
         Val == 0xBC00 || // -1.0
         Val == 0x3800 || // 0.5
         Val == 0xB800 || // -0.5
         Val == 0x4000 || // 2.0
         Val == 0xC000 || // -2.0
         Val == 0x4400 || // 4.0
         Val == 0xC400 || // -4.0
         Val == 0x3118;   // 1/2pi
}

bool isInlinableLiteralV216(int32_t Literal, bool HasInv2Pi) {
  assert(HasInv2Pi);

  if (isInt<16>(Literal) || isUInt<16>(Literal)) {
    int16_t Trunc = static_cast<int16_t>(Literal);
    return AMDGPU::isInlinableLiteral16(Trunc, HasInv2Pi);
  }
  if (!(Literal & 0xffff))
    return AMDGPU::isInlinableLiteral16(Literal >> 16, HasInv2Pi);

  int16_t Lo16 = static_cast<int16_t>(Literal);
  int16_t Hi16 = static_cast<int16_t>(Literal >> 16);
  return Lo16 == Hi16 && isInlinableLiteral16(Lo16, HasInv2Pi);
}

bool isArgPassedInSGPR(const Argument *A) {
  const Function *F = A->getParent();

  // Arguments to compute shaders are never a source of divergence.
  CallingConv::ID CC = F->getCallingConv();
  switch (CC) {
  case CallingConv::AMDGPU_KERNEL:
  case CallingConv::SPIR_KERNEL:
    return true;
  case CallingConv::AMDGPU_VS:
  case CallingConv::AMDGPU_LS:
  case CallingConv::AMDGPU_HS:
  case CallingConv::AMDGPU_ES:
  case CallingConv::AMDGPU_GS:
  case CallingConv::AMDGPU_PS:
  case CallingConv::AMDGPU_CS:
    // For non-compute shaders, SGPR inputs are marked with either inreg or byval.
    // Everything else is in VGPRs.
    return F->getAttributes().hasParamAttribute(A->getArgNo(), Attribute::InReg) ||
           F->getAttributes().hasParamAttribute(A->getArgNo(), Attribute::ByVal);
  default:
    // TODO: Should calls support inreg for SGPR inputs?
    return false;
  }
}

static bool hasSMEMByteOffset(const MCSubtargetInfo &ST) {
  return isGCN3Encoding(ST) || isGFX10(ST);
}

int64_t getSMRDEncodedOffset(const MCSubtargetInfo &ST, int64_t ByteOffset) {
  if (hasSMEMByteOffset(ST))
    return ByteOffset;
  return ByteOffset >> 2;
}

bool isLegalSMRDImmOffset(const MCSubtargetInfo &ST, int64_t ByteOffset) {
  int64_t EncodedOffset = getSMRDEncodedOffset(ST, ByteOffset);
  return (hasSMEMByteOffset(ST)) ?
    isUInt<20>(EncodedOffset) : isUInt<8>(EncodedOffset);
}

// Given Imm, split it into the values to put into the SOffset and ImmOffset
// fields in an MUBUF instruction. Return false if it is not possible (due to a
// hardware bug needing a workaround).
//
// The required alignment ensures that individual address components remain
// aligned if they are aligned to begin with. It also ensures that additional
// offsets within the given alignment can be added to the resulting ImmOffset.
bool splitMUBUFOffset(uint32_t Imm, uint32_t &SOffset, uint32_t &ImmOffset,
                      const GCNSubtarget *Subtarget, uint32_t Align) {
  const uint32_t MaxImm = alignDown(4095, Align);
  uint32_t Overflow = 0;

  if (Imm > MaxImm) {
    if (Imm <= MaxImm + 64) {
      // Use an SOffset inline constant for 4..64
      Overflow = Imm - MaxImm;
      Imm = MaxImm;
    } else {
      // Try to keep the same value in SOffset for adjacent loads, so that
      // the corresponding register contents can be re-used.
      //
      // Load values with all low-bits (except for alignment bits) set into
      // SOffset, so that a larger range of values can be covered using
      // s_movk_i32.
      //
      // Atomic operations fail to work correctly when individual address
      // components are unaligned, even if their sum is aligned.
      uint32_t High = (Imm + Align) & ~4095;
      uint32_t Low = (Imm + Align) & 4095;
      Imm = Low;
      Overflow = High - Align;
    }
  }

  // There is a hardware bug in SI and CI which prevents address clamping in
  // MUBUF instructions from working correctly with SOffsets. The immediate
  // offset is unaffected.
  if (Overflow > 0 &&
      Subtarget->getGeneration() <= AMDGPUSubtarget::SEA_ISLANDS)
    return false;

  ImmOffset = Imm;
  SOffset = Overflow;
  return true;
}

SIModeRegisterDefaults::SIModeRegisterDefaults(const Function &F) {
  *this = getDefaultForCallingConv(F.getCallingConv());

  StringRef IEEEAttr = F.getFnAttribute("amdgpu-ieee").getValueAsString();
  if (!IEEEAttr.empty())
    IEEE = IEEEAttr == "true";

  StringRef DX10ClampAttr
    = F.getFnAttribute("amdgpu-dx10-clamp").getValueAsString();
  if (!DX10ClampAttr.empty())
    DX10Clamp = DX10ClampAttr == "true";
}

namespace {

struct SourceOfDivergence {
  unsigned Intr;
};
const SourceOfDivergence *lookupSourceOfDivergence(unsigned Intr);

#define GET_SourcesOfDivergence_IMPL
#include "AMDGPUGenSearchableTables.inc"

} // end anonymous namespace

bool isIntrinsicSourceOfDivergence(unsigned IntrID) {
  return lookupSourceOfDivergence(IntrID);
}

} // namespace AMDGPU
} // namespace llvm