llvm.org GIT mirror llvm / 8b170f7 lib / Transforms / Utils / InlineFunction.cpp
8b170f7

Tree @8b170f7 (Download .tar.gz)

InlineFunction.cpp @8b170f7raw · history · blame

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
//===- InlineFunction.cpp - Code to perform function inlining -------------===//
//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements inlining of a function into a call site, resolving
// parameters and the return value as appropriate.
//
//===----------------------------------------------------------------------===//

#include "llvm/Transforms/Utils/Cloning.h"
#include "llvm/ADT/SmallSet.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/SetVector.h"
#include "llvm/ADT/StringExtras.h"
#include "llvm/Analysis/AliasAnalysis.h"
#include "llvm/Analysis/AssumptionCache.h"
#include "llvm/Analysis/CallGraph.h"
#include "llvm/Analysis/CaptureTracking.h"
#include "llvm/Analysis/InstructionSimplify.h"
#include "llvm/Analysis/ValueTracking.h"
#include "llvm/IR/Attributes.h"
#include "llvm/IR/CallSite.h"
#include "llvm/IR/CFG.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/DataLayout.h"
#include "llvm/IR/DebugInfo.h"
#include "llvm/IR/DerivedTypes.h"
#include "llvm/IR/DIBuilder.h"
#include "llvm/IR/Dominators.h"
#include "llvm/IR/IRBuilder.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/IntrinsicInst.h"
#include "llvm/IR/Intrinsics.h"
#include "llvm/IR/MDBuilder.h"
#include "llvm/IR/Module.h"
#include "llvm/Transforms/Utils/Local.h"
#include "llvm/Support/CommandLine.h"
#include <algorithm>

using namespace llvm;

static cl::opt<bool>
EnableNoAliasConversion("enable-noalias-to-md-conversion", cl::init(true),
  cl::Hidden,
  cl::desc("Convert noalias attributes to metadata during inlining."));

static cl::opt<bool>
PreserveAlignmentAssumptions("preserve-alignment-assumptions-during-inlining",
  cl::init(true), cl::Hidden,
  cl::desc("Convert align attributes to assumptions during inlining."));

bool llvm::InlineFunction(CallInst *CI, InlineFunctionInfo &IFI,
                          AAResults *CalleeAAR, bool InsertLifetime) {
  return InlineFunction(CallSite(CI), IFI, CalleeAAR, InsertLifetime);
}
bool llvm::InlineFunction(InvokeInst *II, InlineFunctionInfo &IFI,
                          AAResults *CalleeAAR, bool InsertLifetime) {
  return InlineFunction(CallSite(II), IFI, CalleeAAR, InsertLifetime);
}

namespace {
  /// A class for recording information about inlining a landing pad.
  class LandingPadInliningInfo {
    BasicBlock *OuterResumeDest; ///< Destination of the invoke's unwind.
    BasicBlock *InnerResumeDest; ///< Destination for the callee's resume.
    LandingPadInst *CallerLPad;  ///< LandingPadInst associated with the invoke.
    PHINode *InnerEHValuesPHI;   ///< PHI for EH values from landingpad insts.
    SmallVector<Value*, 8> UnwindDestPHIValues;

  public:
    LandingPadInliningInfo(InvokeInst *II)
      : OuterResumeDest(II->getUnwindDest()), InnerResumeDest(nullptr),
        CallerLPad(nullptr), InnerEHValuesPHI(nullptr) {
      // If there are PHI nodes in the unwind destination block, we need to keep
      // track of which values came into them from the invoke before removing
      // the edge from this block.
      llvm::BasicBlock *InvokeBB = II->getParent();
      BasicBlock::iterator I = OuterResumeDest->begin();
      for (; isa<PHINode>(I); ++I) {
        // Save the value to use for this edge.
        PHINode *PHI = cast<PHINode>(I);
        UnwindDestPHIValues.push_back(PHI->getIncomingValueForBlock(InvokeBB));
      }

      CallerLPad = cast<LandingPadInst>(I);
    }

    /// The outer unwind destination is the target of
    /// unwind edges introduced for calls within the inlined function.
    BasicBlock *getOuterResumeDest() const {
      return OuterResumeDest;
    }

    BasicBlock *getInnerResumeDest();

    LandingPadInst *getLandingPadInst() const { return CallerLPad; }

    /// Forward the 'resume' instruction to the caller's landing pad block.
    /// When the landing pad block has only one predecessor, this is
    /// a simple branch. When there is more than one predecessor, we need to
    /// split the landing pad block after the landingpad instruction and jump
    /// to there.
    void forwardResume(ResumeInst *RI,
                       SmallPtrSetImpl<LandingPadInst*> &InlinedLPads);

    /// Add incoming-PHI values to the unwind destination block for the given
    /// basic block, using the values for the original invoke's source block.
    void addIncomingPHIValuesFor(BasicBlock *BB) const {
      addIncomingPHIValuesForInto(BB, OuterResumeDest);
    }

    void addIncomingPHIValuesForInto(BasicBlock *src, BasicBlock *dest) const {
      BasicBlock::iterator I = dest->begin();
      for (unsigned i = 0, e = UnwindDestPHIValues.size(); i != e; ++i, ++I) {
        PHINode *phi = cast<PHINode>(I);
        phi->addIncoming(UnwindDestPHIValues[i], src);
      }
    }
  };
} // anonymous namespace

/// Get or create a target for the branch from ResumeInsts.
BasicBlock *LandingPadInliningInfo::getInnerResumeDest() {
  if (InnerResumeDest) return InnerResumeDest;

  // Split the landing pad.
  BasicBlock::iterator SplitPoint = ++CallerLPad->getIterator();
  InnerResumeDest =
    OuterResumeDest->splitBasicBlock(SplitPoint,
                                     OuterResumeDest->getName() + ".body");

  // The number of incoming edges we expect to the inner landing pad.
  const unsigned PHICapacity = 2;

  // Create corresponding new PHIs for all the PHIs in the outer landing pad.
  Instruction *InsertPoint = &InnerResumeDest->front();
  BasicBlock::iterator I = OuterResumeDest->begin();
  for (unsigned i = 0, e = UnwindDestPHIValues.size(); i != e; ++i, ++I) {
    PHINode *OuterPHI = cast<PHINode>(I);
    PHINode *InnerPHI = PHINode::Create(OuterPHI->getType(), PHICapacity,
                                        OuterPHI->getName() + ".lpad-body",
                                        InsertPoint);
    OuterPHI->replaceAllUsesWith(InnerPHI);
    InnerPHI->addIncoming(OuterPHI, OuterResumeDest);
  }

  // Create a PHI for the exception values.
  InnerEHValuesPHI = PHINode::Create(CallerLPad->getType(), PHICapacity,
                                     "eh.lpad-body", InsertPoint);
  CallerLPad->replaceAllUsesWith(InnerEHValuesPHI);
  InnerEHValuesPHI->addIncoming(CallerLPad, OuterResumeDest);

  // All done.
  return InnerResumeDest;
}

/// Forward the 'resume' instruction to the caller's landing pad block.
/// When the landing pad block has only one predecessor, this is a simple
/// branch. When there is more than one predecessor, we need to split the
/// landing pad block after the landingpad instruction and jump to there.
void LandingPadInliningInfo::forwardResume(
    ResumeInst *RI, SmallPtrSetImpl<LandingPadInst *> &InlinedLPads) {
  BasicBlock *Dest = getInnerResumeDest();
  BasicBlock *Src = RI->getParent();

  BranchInst::Create(Dest, Src);

  // Update the PHIs in the destination. They were inserted in an order which
  // makes this work.
  addIncomingPHIValuesForInto(Src, Dest);

  InnerEHValuesPHI->addIncoming(RI->getOperand(0), Src);
  RI->eraseFromParent();
}

/// When we inline a basic block into an invoke,
/// we have to turn all of the calls that can throw into invokes.
/// This function analyze BB to see if there are any calls, and if so,
/// it rewrites them to be invokes that jump to InvokeDest and fills in the PHI
/// nodes in that block with the values specified in InvokeDestPHIValues.
static BasicBlock *
HandleCallsInBlockInlinedThroughInvoke(BasicBlock *BB, BasicBlock *UnwindEdge) {
  for (BasicBlock::iterator BBI = BB->begin(), E = BB->end(); BBI != E; ) {
    Instruction *I = &*BBI++;

    // We only need to check for function calls: inlined invoke
    // instructions require no special handling.
    CallInst *CI = dyn_cast<CallInst>(I);

    // If this call cannot unwind, don't convert it to an invoke.
    // Inline asm calls cannot throw.
    if (!CI || CI->doesNotThrow() || isa<InlineAsm>(CI->getCalledValue()))
      continue;

    // Convert this function call into an invoke instruction.  First, split the
    // basic block.
    BasicBlock *Split =
        BB->splitBasicBlock(CI->getIterator(), CI->getName() + ".noexc");

    // Delete the unconditional branch inserted by splitBasicBlock
    BB->getInstList().pop_back();

    // Create the new invoke instruction.
    ImmutableCallSite CS(CI);
    SmallVector<Value*, 8> InvokeArgs(CS.arg_begin(), CS.arg_end());
    SmallVector<OperandBundleDef, 1> OpBundles;

    // Copy the OperandBundeUse instances to OperandBundleDefs.  These two are
    // *different* representations of operand bundles: see the documentation in
    // InstrTypes.h for more details.
    for (unsigned i = 0, e = CS.getNumOperandBundles(); i != e; ++i)
      OpBundles.emplace_back(CS.getOperandBundleAt(i));

    // Note: we're round tripping operand bundles through memory here, and that
    // can potentially be avoided with a cleverer API design that we do not have
    // as of this time.

    InvokeInst *II =
        InvokeInst::Create(CI->getCalledValue(), Split, UnwindEdge, InvokeArgs,
                           OpBundles, CI->getName(), BB);
    II->setDebugLoc(CI->getDebugLoc());
    II->setCallingConv(CI->getCallingConv());
    II->setAttributes(CI->getAttributes());
    
    // Make sure that anything using the call now uses the invoke!  This also
    // updates the CallGraph if present, because it uses a WeakVH.
    CI->replaceAllUsesWith(II);

    // Delete the original call
    Split->getInstList().pop_front();
    return BB;
  }
  return nullptr;
}

/// If we inlined an invoke site, we need to convert calls
/// in the body of the inlined function into invokes.
///
/// II is the invoke instruction being inlined.  FirstNewBlock is the first
/// block of the inlined code (the last block is the end of the function),
/// and InlineCodeInfo is information about the code that got inlined.
static void HandleInlinedLandingPad(InvokeInst *II, BasicBlock *FirstNewBlock,
                                    ClonedCodeInfo &InlinedCodeInfo) {
  BasicBlock *InvokeDest = II->getUnwindDest();

  Function *Caller = FirstNewBlock->getParent();

  // The inlined code is currently at the end of the function, scan from the
  // start of the inlined code to its end, checking for stuff we need to
  // rewrite.
  LandingPadInliningInfo Invoke(II);

  // Get all of the inlined landing pad instructions.
  SmallPtrSet<LandingPadInst*, 16> InlinedLPads;
  for (Function::iterator I = FirstNewBlock->getIterator(), E = Caller->end();
       I != E; ++I)
    if (InvokeInst *II = dyn_cast<InvokeInst>(I->getTerminator()))
      InlinedLPads.insert(II->getLandingPadInst());

  // Append the clauses from the outer landing pad instruction into the inlined
  // landing pad instructions.
  LandingPadInst *OuterLPad = Invoke.getLandingPadInst();
  for (LandingPadInst *InlinedLPad : InlinedLPads) {
    unsigned OuterNum = OuterLPad->getNumClauses();
    InlinedLPad->reserveClauses(OuterNum);
    for (unsigned OuterIdx = 0; OuterIdx != OuterNum; ++OuterIdx)
      InlinedLPad->addClause(OuterLPad->getClause(OuterIdx));
    if (OuterLPad->isCleanup())
      InlinedLPad->setCleanup(true);
  }

  for (Function::iterator BB = FirstNewBlock->getIterator(), E = Caller->end();
       BB != E; ++BB) {
    if (InlinedCodeInfo.ContainsCalls)
      if (BasicBlock *NewBB = HandleCallsInBlockInlinedThroughInvoke(
              &*BB, Invoke.getOuterResumeDest()))
        // Update any PHI nodes in the exceptional block to indicate that there
        // is now a new entry in them.
        Invoke.addIncomingPHIValuesFor(NewBB);

    // Forward any resumes that are remaining here.
    if (ResumeInst *RI = dyn_cast<ResumeInst>(BB->getTerminator()))
      Invoke.forwardResume(RI, InlinedLPads);
  }

  // Now that everything is happy, we have one final detail.  The PHI nodes in
  // the exception destination block still have entries due to the original
  // invoke instruction. Eliminate these entries (which might even delete the
  // PHI node) now.
  InvokeDest->removePredecessor(II->getParent());
}

/// If we inlined an invoke site, we need to convert calls
/// in the body of the inlined function into invokes.
///
/// II is the invoke instruction being inlined.  FirstNewBlock is the first
/// block of the inlined code (the last block is the end of the function),
/// and InlineCodeInfo is information about the code that got inlined.
static void HandleInlinedEHPad(InvokeInst *II, BasicBlock *FirstNewBlock,
                               ClonedCodeInfo &InlinedCodeInfo) {
  BasicBlock *UnwindDest = II->getUnwindDest();
  Function *Caller = FirstNewBlock->getParent();

  assert(UnwindDest->getFirstNonPHI()->isEHPad() && "unexpected BasicBlock!");

  // If there are PHI nodes in the unwind destination block, we need to keep
  // track of which values came into them from the invoke before removing the
  // edge from this block.
  SmallVector<Value *, 8> UnwindDestPHIValues;
  llvm::BasicBlock *InvokeBB = II->getParent();
  for (Instruction &I : *UnwindDest) {
    // Save the value to use for this edge.
    PHINode *PHI = dyn_cast<PHINode>(&I);
    if (!PHI)
      break;
    UnwindDestPHIValues.push_back(PHI->getIncomingValueForBlock(InvokeBB));
  }

  // Add incoming-PHI values to the unwind destination block for the given basic
  // block, using the values for the original invoke's source block.
  auto UpdatePHINodes = [&](BasicBlock *Src) {
    BasicBlock::iterator I = UnwindDest->begin();
    for (Value *V : UnwindDestPHIValues) {
      PHINode *PHI = cast<PHINode>(I);
      PHI->addIncoming(V, Src);
      ++I;
    }
  };

  // Forward EH terminator instructions to the caller's invoke destination.
  // This is as simple as connect all the instructions which 'unwind to caller'
  // to the invoke destination.
  for (Function::iterator BB = FirstNewBlock->getIterator(), E = Caller->end();
       BB != E; ++BB) {
    Instruction *I = BB->getFirstNonPHI();
    if (I->isEHPad()) {
      if (auto *CEPI = dyn_cast<CatchEndPadInst>(I)) {
        if (CEPI->unwindsToCaller()) {
          CatchEndPadInst::Create(CEPI->getContext(), UnwindDest, CEPI);
          CEPI->eraseFromParent();
          UpdatePHINodes(&*BB);
        }
      } else if (auto *CEPI = dyn_cast<CleanupEndPadInst>(I)) {
        if (CEPI->unwindsToCaller()) {
          CleanupEndPadInst::Create(CEPI->getCleanupPad(), UnwindDest, CEPI);
          CEPI->eraseFromParent();
          UpdatePHINodes(&*BB);
        }
      } else if (auto *TPI = dyn_cast<TerminatePadInst>(I)) {
        if (TPI->unwindsToCaller()) {
          SmallVector<Value *, 3> TerminatePadArgs;
          for (Value *ArgOperand : TPI->arg_operands())
            TerminatePadArgs.push_back(ArgOperand);
          TerminatePadInst::Create(TPI->getContext(), UnwindDest,
                                   TerminatePadArgs, TPI);
          TPI->eraseFromParent();
          UpdatePHINodes(&*BB);
        }
      } else {
        assert(isa<CatchPadInst>(I) || isa<CleanupPadInst>(I));
      }
    }

    if (auto *CRI = dyn_cast<CleanupReturnInst>(BB->getTerminator())) {
      if (CRI->unwindsToCaller()) {
        CleanupReturnInst::Create(CRI->getCleanupPad(), UnwindDest, CRI);
        CRI->eraseFromParent();
        UpdatePHINodes(&*BB);
      }
    }
  }

  if (InlinedCodeInfo.ContainsCalls)
    for (Function::iterator BB = FirstNewBlock->getIterator(),
                            E = Caller->end();
         BB != E; ++BB)
      if (BasicBlock *NewBB =
              HandleCallsInBlockInlinedThroughInvoke(&*BB, UnwindDest))
        // Update any PHI nodes in the exceptional block to indicate that there
        // is now a new entry in them.
        UpdatePHINodes(NewBB);

  // Now that everything is happy, we have one final detail.  The PHI nodes in
  // the exception destination block still have entries due to the original
  // invoke instruction. Eliminate these entries (which might even delete the
  // PHI node) now.
  UnwindDest->removePredecessor(InvokeBB);
}

/// When inlining a function that contains noalias scope metadata,
/// this metadata needs to be cloned so that the inlined blocks
/// have different "unqiue scopes" at every call site. Were this not done, then
/// aliasing scopes from a function inlined into a caller multiple times could
/// not be differentiated (and this would lead to miscompiles because the
/// non-aliasing property communicated by the metadata could have
/// call-site-specific control dependencies).
static void CloneAliasScopeMetadata(CallSite CS, ValueToValueMapTy &VMap) {
  const Function *CalledFunc = CS.getCalledFunction();
  SetVector<const MDNode *> MD;

  // Note: We could only clone the metadata if it is already used in the
  // caller. I'm omitting that check here because it might confuse
  // inter-procedural alias analysis passes. We can revisit this if it becomes
  // an efficiency or overhead problem.

  for (Function::const_iterator I = CalledFunc->begin(), IE = CalledFunc->end();
       I != IE; ++I)
    for (BasicBlock::const_iterator J = I->begin(), JE = I->end(); J != JE; ++J) {
      if (const MDNode *M = J->getMetadata(LLVMContext::MD_alias_scope))
        MD.insert(M);
      if (const MDNode *M = J->getMetadata(LLVMContext::MD_noalias))
        MD.insert(M);
    }

  if (MD.empty())
    return;

  // Walk the existing metadata, adding the complete (perhaps cyclic) chain to
  // the set.
  SmallVector<const Metadata *, 16> Queue(MD.begin(), MD.end());
  while (!Queue.empty()) {
    const MDNode *M = cast<MDNode>(Queue.pop_back_val());
    for (unsigned i = 0, ie = M->getNumOperands(); i != ie; ++i)
      if (const MDNode *M1 = dyn_cast<MDNode>(M->getOperand(i)))
        if (MD.insert(M1))
          Queue.push_back(M1);
  }

  // Now we have a complete set of all metadata in the chains used to specify
  // the noalias scopes and the lists of those scopes.
  SmallVector<TempMDTuple, 16> DummyNodes;
  DenseMap<const MDNode *, TrackingMDNodeRef> MDMap;
  for (SetVector<const MDNode *>::iterator I = MD.begin(), IE = MD.end();
       I != IE; ++I) {
    DummyNodes.push_back(MDTuple::getTemporary(CalledFunc->getContext(), None));
    MDMap[*I].reset(DummyNodes.back().get());
  }

  // Create new metadata nodes to replace the dummy nodes, replacing old
  // metadata references with either a dummy node or an already-created new
  // node.
  for (SetVector<const MDNode *>::iterator I = MD.begin(), IE = MD.end();
       I != IE; ++I) {
    SmallVector<Metadata *, 4> NewOps;
    for (unsigned i = 0, ie = (*I)->getNumOperands(); i != ie; ++i) {
      const Metadata *V = (*I)->getOperand(i);
      if (const MDNode *M = dyn_cast<MDNode>(V))
        NewOps.push_back(MDMap[M]);
      else
        NewOps.push_back(const_cast<Metadata *>(V));
    }

    MDNode *NewM = MDNode::get(CalledFunc->getContext(), NewOps);
    MDTuple *TempM = cast<MDTuple>(MDMap[*I]);
    assert(TempM->isTemporary() && "Expected temporary node");

    TempM->replaceAllUsesWith(NewM);
  }

  // Now replace the metadata in the new inlined instructions with the
  // repacements from the map.
  for (ValueToValueMapTy::iterator VMI = VMap.begin(), VMIE = VMap.end();
       VMI != VMIE; ++VMI) {
    if (!VMI->second)
      continue;

    Instruction *NI = dyn_cast<Instruction>(VMI->second);
    if (!NI)
      continue;

    if (MDNode *M = NI->getMetadata(LLVMContext::MD_alias_scope)) {
      MDNode *NewMD = MDMap[M];
      // If the call site also had alias scope metadata (a list of scopes to
      // which instructions inside it might belong), propagate those scopes to
      // the inlined instructions.
      if (MDNode *CSM =
              CS.getInstruction()->getMetadata(LLVMContext::MD_alias_scope))
        NewMD = MDNode::concatenate(NewMD, CSM);
      NI->setMetadata(LLVMContext::MD_alias_scope, NewMD);
    } else if (NI->mayReadOrWriteMemory()) {
      if (MDNode *M =
              CS.getInstruction()->getMetadata(LLVMContext::MD_alias_scope))
        NI->setMetadata(LLVMContext::MD_alias_scope, M);
    }

    if (MDNode *M = NI->getMetadata(LLVMContext::MD_noalias)) {
      MDNode *NewMD = MDMap[M];
      // If the call site also had noalias metadata (a list of scopes with
      // which instructions inside it don't alias), propagate those scopes to
      // the inlined instructions.
      if (MDNode *CSM =
              CS.getInstruction()->getMetadata(LLVMContext::MD_noalias))
        NewMD = MDNode::concatenate(NewMD, CSM);
      NI->setMetadata(LLVMContext::MD_noalias, NewMD);
    } else if (NI->mayReadOrWriteMemory()) {
      if (MDNode *M = CS.getInstruction()->getMetadata(LLVMContext::MD_noalias))
        NI->setMetadata(LLVMContext::MD_noalias, M);
    }
  }
}

/// If the inlined function has noalias arguments,
/// then add new alias scopes for each noalias argument, tag the mapped noalias
/// parameters with noalias metadata specifying the new scope, and tag all
/// non-derived loads, stores and memory intrinsics with the new alias scopes.
static void AddAliasScopeMetadata(CallSite CS, ValueToValueMapTy &VMap,
                                  const DataLayout &DL, AAResults *CalleeAAR) {
  if (!EnableNoAliasConversion)
    return;

  const Function *CalledFunc = CS.getCalledFunction();
  SmallVector<const Argument *, 4> NoAliasArgs;

  for (const Argument &I : CalledFunc->args()) {
    if (I.hasNoAliasAttr() && !I.hasNUses(0))
      NoAliasArgs.push_back(&I);
  }

  if (NoAliasArgs.empty())
    return;

  // To do a good job, if a noalias variable is captured, we need to know if
  // the capture point dominates the particular use we're considering.
  DominatorTree DT;
  DT.recalculate(const_cast<Function&>(*CalledFunc));

  // noalias indicates that pointer values based on the argument do not alias
  // pointer values which are not based on it. So we add a new "scope" for each
  // noalias function argument. Accesses using pointers based on that argument
  // become part of that alias scope, accesses using pointers not based on that
  // argument are tagged as noalias with that scope.

  DenseMap<const Argument *, MDNode *> NewScopes;
  MDBuilder MDB(CalledFunc->getContext());

  // Create a new scope domain for this function.
  MDNode *NewDomain =
    MDB.createAnonymousAliasScopeDomain(CalledFunc->getName());
  for (unsigned i = 0, e = NoAliasArgs.size(); i != e; ++i) {
    const Argument *A = NoAliasArgs[i];

    std::string Name = CalledFunc->getName();
    if (A->hasName()) {
      Name += ": %";
      Name += A->getName();
    } else {
      Name += ": argument ";
      Name += utostr(i);
    }

    // Note: We always create a new anonymous root here. This is true regardless
    // of the linkage of the callee because the aliasing "scope" is not just a
    // property of the callee, but also all control dependencies in the caller.
    MDNode *NewScope = MDB.createAnonymousAliasScope(NewDomain, Name);
    NewScopes.insert(std::make_pair(A, NewScope));
  }

  // Iterate over all new instructions in the map; for all memory-access
  // instructions, add the alias scope metadata.
  for (ValueToValueMapTy::iterator VMI = VMap.begin(), VMIE = VMap.end();
       VMI != VMIE; ++VMI) {
    if (const Instruction *I = dyn_cast<Instruction>(VMI->first)) {
      if (!VMI->second)
        continue;

      Instruction *NI = dyn_cast<Instruction>(VMI->second);
      if (!NI)
        continue;

      bool IsArgMemOnlyCall = false, IsFuncCall = false;
      SmallVector<const Value *, 2> PtrArgs;

      if (const LoadInst *LI = dyn_cast<LoadInst>(I))
        PtrArgs.push_back(LI->getPointerOperand());
      else if (const StoreInst *SI = dyn_cast<StoreInst>(I))
        PtrArgs.push_back(SI->getPointerOperand());
      else if (const VAArgInst *VAAI = dyn_cast<VAArgInst>(I))
        PtrArgs.push_back(VAAI->getPointerOperand());
      else if (const AtomicCmpXchgInst *CXI = dyn_cast<AtomicCmpXchgInst>(I))
        PtrArgs.push_back(CXI->getPointerOperand());
      else if (const AtomicRMWInst *RMWI = dyn_cast<AtomicRMWInst>(I))
        PtrArgs.push_back(RMWI->getPointerOperand());
      else if (ImmutableCallSite ICS = ImmutableCallSite(I)) {
        // If we know that the call does not access memory, then we'll still
        // know that about the inlined clone of this call site, and we don't
        // need to add metadata.
        if (ICS.doesNotAccessMemory())
          continue;

        IsFuncCall = true;
        if (CalleeAAR) {
          FunctionModRefBehavior MRB = CalleeAAR->getModRefBehavior(ICS);
          if (MRB == FMRB_OnlyAccessesArgumentPointees ||
              MRB == FMRB_OnlyReadsArgumentPointees)
            IsArgMemOnlyCall = true;
        }

        for (ImmutableCallSite::arg_iterator AI = ICS.arg_begin(),
             AE = ICS.arg_end(); AI != AE; ++AI) {
          // We need to check the underlying objects of all arguments, not just
          // the pointer arguments, because we might be passing pointers as
          // integers, etc.
          // However, if we know that the call only accesses pointer arguments,
          // then we only need to check the pointer arguments.
          if (IsArgMemOnlyCall && !(*AI)->getType()->isPointerTy())
            continue;

          PtrArgs.push_back(*AI);
        }
      }

      // If we found no pointers, then this instruction is not suitable for
      // pairing with an instruction to receive aliasing metadata.
      // However, if this is a call, this we might just alias with none of the
      // noalias arguments.
      if (PtrArgs.empty() && !IsFuncCall)
        continue;

      // It is possible that there is only one underlying object, but you
      // need to go through several PHIs to see it, and thus could be
      // repeated in the Objects list.
      SmallPtrSet<const Value *, 4> ObjSet;
      SmallVector<Metadata *, 4> Scopes, NoAliases;

      SmallSetVector<const Argument *, 4> NAPtrArgs;
      for (unsigned i = 0, ie = PtrArgs.size(); i != ie; ++i) {
        SmallVector<Value *, 4> Objects;
        GetUnderlyingObjects(const_cast<Value*>(PtrArgs[i]),
                             Objects, DL, /* LI = */ nullptr);

        for (Value *O : Objects)
          ObjSet.insert(O);
      }

      // Figure out if we're derived from anything that is not a noalias
      // argument.
      bool CanDeriveViaCapture = false, UsesAliasingPtr = false;
      for (const Value *V : ObjSet) {
        // Is this value a constant that cannot be derived from any pointer
        // value (we need to exclude constant expressions, for example, that
        // are formed from arithmetic on global symbols).
        bool IsNonPtrConst = isa<ConstantInt>(V) || isa<ConstantFP>(V) ||
                             isa<ConstantPointerNull>(V) ||
                             isa<ConstantDataVector>(V) || isa<UndefValue>(V);
        if (IsNonPtrConst)
          continue;

        // If this is anything other than a noalias argument, then we cannot
        // completely describe the aliasing properties using alias.scope
        // metadata (and, thus, won't add any).
        if (const Argument *A = dyn_cast<Argument>(V)) {
          if (!A->hasNoAliasAttr())
            UsesAliasingPtr = true;
        } else {
          UsesAliasingPtr = true;
        }

        // If this is not some identified function-local object (which cannot
        // directly alias a noalias argument), or some other argument (which,
        // by definition, also cannot alias a noalias argument), then we could
        // alias a noalias argument that has been captured).
        if (!isa<Argument>(V) &&
            !isIdentifiedFunctionLocal(const_cast<Value*>(V)))
          CanDeriveViaCapture = true;
      }

      // A function call can always get captured noalias pointers (via other
      // parameters, globals, etc.).
      if (IsFuncCall && !IsArgMemOnlyCall)
        CanDeriveViaCapture = true;

      // First, we want to figure out all of the sets with which we definitely
      // don't alias. Iterate over all noalias set, and add those for which:
      //   1. The noalias argument is not in the set of objects from which we
      //      definitely derive.
      //   2. The noalias argument has not yet been captured.
      // An arbitrary function that might load pointers could see captured
      // noalias arguments via other noalias arguments or globals, and so we
      // must always check for prior capture.
      for (const Argument *A : NoAliasArgs) {
        if (!ObjSet.count(A) && (!CanDeriveViaCapture ||
                                 // It might be tempting to skip the
                                 // PointerMayBeCapturedBefore check if
                                 // A->hasNoCaptureAttr() is true, but this is
                                 // incorrect because nocapture only guarantees
                                 // that no copies outlive the function, not
                                 // that the value cannot be locally captured.
                                 !PointerMayBeCapturedBefore(A,
                                   /* ReturnCaptures */ false,
                                   /* StoreCaptures */ false, I, &DT)))
          NoAliases.push_back(NewScopes[A]);
      }

      if (!NoAliases.empty())
        NI->setMetadata(LLVMContext::MD_noalias,
                        MDNode::concatenate(
                            NI->getMetadata(LLVMContext::MD_noalias),
                            MDNode::get(CalledFunc->getContext(), NoAliases)));

      // Next, we want to figure out all of the sets to which we might belong.
      // We might belong to a set if the noalias argument is in the set of
      // underlying objects. If there is some non-noalias argument in our list
      // of underlying objects, then we cannot add a scope because the fact
      // that some access does not alias with any set of our noalias arguments
      // cannot itself guarantee that it does not alias with this access
      // (because there is some pointer of unknown origin involved and the
      // other access might also depend on this pointer). We also cannot add
      // scopes to arbitrary functions unless we know they don't access any
      // non-parameter pointer-values.
      bool CanAddScopes = !UsesAliasingPtr;
      if (CanAddScopes && IsFuncCall)
        CanAddScopes = IsArgMemOnlyCall;

      if (CanAddScopes)
        for (const Argument *A : NoAliasArgs) {
          if (ObjSet.count(A))
            Scopes.push_back(NewScopes[A]);
        }

      if (!Scopes.empty())
        NI->setMetadata(
            LLVMContext::MD_alias_scope,
            MDNode::concatenate(NI->getMetadata(LLVMContext::MD_alias_scope),
                                MDNode::get(CalledFunc->getContext(), Scopes)));
    }
  }
}

/// If the inlined function has non-byval align arguments, then
/// add @llvm.assume-based alignment assumptions to preserve this information.
static void AddAlignmentAssumptions(CallSite CS, InlineFunctionInfo &IFI) {
  if (!PreserveAlignmentAssumptions)
    return;
  auto &DL = CS.getCaller()->getParent()->getDataLayout();

  // To avoid inserting redundant assumptions, we should check for assumptions
  // already in the caller. To do this, we might need a DT of the caller.
  DominatorTree DT;
  bool DTCalculated = false;

  Function *CalledFunc = CS.getCalledFunction();
  for (Function::arg_iterator I = CalledFunc->arg_begin(),
                              E = CalledFunc->arg_end();
       I != E; ++I) {
    unsigned Align = I->getType()->isPointerTy() ? I->getParamAlignment() : 0;
    if (Align && !I->hasByValOrInAllocaAttr() && !I->hasNUses(0)) {
      if (!DTCalculated) {
        DT.recalculate(const_cast<Function&>(*CS.getInstruction()->getParent()
                                               ->getParent()));
        DTCalculated = true;
      }

      // If we can already prove the asserted alignment in the context of the
      // caller, then don't bother inserting the assumption.
      Value *Arg = CS.getArgument(I->getArgNo());
      if (getKnownAlignment(Arg, DL, CS.getInstruction(),
                            &IFI.ACT->getAssumptionCache(*CS.getCaller()),
                            &DT) >= Align)
        continue;

      IRBuilder<>(CS.getInstruction())
          .CreateAlignmentAssumption(DL, Arg, Align);
    }
  }
}

/// Once we have cloned code over from a callee into the caller,
/// update the specified callgraph to reflect the changes we made.
/// Note that it's possible that not all code was copied over, so only
/// some edges of the callgraph may remain.
static void UpdateCallGraphAfterInlining(CallSite CS,
                                         Function::iterator FirstNewBlock,
                                         ValueToValueMapTy &VMap,
                                         InlineFunctionInfo &IFI) {
  CallGraph &CG = *IFI.CG;
  const Function *Caller = CS.getInstruction()->getParent()->getParent();
  const Function *Callee = CS.getCalledFunction();
  CallGraphNode *CalleeNode = CG[Callee];
  CallGraphNode *CallerNode = CG[Caller];

  // Since we inlined some uninlined call sites in the callee into the caller,
  // add edges from the caller to all of the callees of the callee.
  CallGraphNode::iterator I = CalleeNode->begin(), E = CalleeNode->end();

  // Consider the case where CalleeNode == CallerNode.
  CallGraphNode::CalledFunctionsVector CallCache;
  if (CalleeNode == CallerNode) {
    CallCache.assign(I, E);
    I = CallCache.begin();
    E = CallCache.end();
  }

  for (; I != E; ++I) {
    const Value *OrigCall = I->first;

    ValueToValueMapTy::iterator VMI = VMap.find(OrigCall);
    // Only copy the edge if the call was inlined!
    if (VMI == VMap.end() || VMI->second == nullptr)
      continue;
    
    // If the call was inlined, but then constant folded, there is no edge to
    // add.  Check for this case.
    Instruction *NewCall = dyn_cast<Instruction>(VMI->second);
    if (!NewCall)
      continue;

    // We do not treat intrinsic calls like real function calls because we
    // expect them to become inline code; do not add an edge for an intrinsic.
    CallSite CS = CallSite(NewCall);
    if (CS && CS.getCalledFunction() && CS.getCalledFunction()->isIntrinsic())
      continue;
    
    // Remember that this call site got inlined for the client of
    // InlineFunction.
    IFI.InlinedCalls.push_back(NewCall);

    // It's possible that inlining the callsite will cause it to go from an
    // indirect to a direct call by resolving a function pointer.  If this
    // happens, set the callee of the new call site to a more precise
    // destination.  This can also happen if the call graph node of the caller
    // was just unnecessarily imprecise.
    if (!I->second->getFunction())
      if (Function *F = CallSite(NewCall).getCalledFunction()) {
        // Indirect call site resolved to direct call.
        CallerNode->addCalledFunction(CallSite(NewCall), CG[F]);

        continue;
      }

    CallerNode->addCalledFunction(CallSite(NewCall), I->second);
  }
  
  // Update the call graph by deleting the edge from Callee to Caller.  We must
  // do this after the loop above in case Caller and Callee are the same.
  CallerNode->removeCallEdgeFor(CS);
}

static void HandleByValArgumentInit(Value *Dst, Value *Src, Module *M,
                                    BasicBlock *InsertBlock,
                                    InlineFunctionInfo &IFI) {
  Type *AggTy = cast<PointerType>(Src->getType())->getElementType();
  IRBuilder<> Builder(InsertBlock, InsertBlock->begin());

  Value *Size = Builder.getInt64(M->getDataLayout().getTypeStoreSize(AggTy));

  // Always generate a memcpy of alignment 1 here because we don't know
  // the alignment of the src pointer.  Other optimizations can infer
  // better alignment.
  Builder.CreateMemCpy(Dst, Src, Size, /*DestAlign=*/1, /*SrcAlign=*/1);
}

/// When inlining a call site that has a byval argument,
/// we have to make the implicit memcpy explicit by adding it.
static Value *HandleByValArgument(Value *Arg, Instruction *TheCall,
                                  const Function *CalledFunc,
                                  InlineFunctionInfo &IFI,
                                  unsigned ByValAlignment) {
  PointerType *ArgTy = cast<PointerType>(Arg->getType());
  Type *AggTy = ArgTy->getElementType();

  Function *Caller = TheCall->getParent()->getParent();

  // If the called function is readonly, then it could not mutate the caller's
  // copy of the byval'd memory.  In this case, it is safe to elide the copy and
  // temporary.
  if (CalledFunc->onlyReadsMemory()) {
    // If the byval argument has a specified alignment that is greater than the
    // passed in pointer, then we either have to round up the input pointer or
    // give up on this transformation.
    if (ByValAlignment <= 1)  // 0 = unspecified, 1 = no particular alignment.
      return Arg;

    const DataLayout &DL = Caller->getParent()->getDataLayout();

    // If the pointer is already known to be sufficiently aligned, or if we can
    // round it up to a larger alignment, then we don't need a temporary.
    if (getOrEnforceKnownAlignment(Arg, ByValAlignment, DL, TheCall,
                                   &IFI.ACT->getAssumptionCache(*Caller)) >=
        ByValAlignment)
      return Arg;
    
    // Otherwise, we have to make a memcpy to get a safe alignment.  This is bad
    // for code quality, but rarely happens and is required for correctness.
  }

  // Create the alloca.  If we have DataLayout, use nice alignment.
  unsigned Align =
      Caller->getParent()->getDataLayout().getPrefTypeAlignment(AggTy);

  // If the byval had an alignment specified, we *must* use at least that
  // alignment, as it is required by the byval argument (and uses of the
  // pointer inside the callee).
  Align = std::max(Align, ByValAlignment);
  
  Value *NewAlloca = new AllocaInst(AggTy, nullptr, Align, Arg->getName(), 
                                    &*Caller->begin()->begin());
  IFI.StaticAllocas.push_back(cast<AllocaInst>(NewAlloca));
  
  // Uses of the argument in the function should use our new alloca
  // instead.
  return NewAlloca;
}

// Check whether this Value is used by a lifetime intrinsic.
static bool isUsedByLifetimeMarker(Value *V) {
  for (User *U : V->users()) {
    if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(U)) {
      switch (II->getIntrinsicID()) {
      default: break;
      case Intrinsic::lifetime_start:
      case Intrinsic::lifetime_end:
        return true;
      }
    }
  }
  return false;
}

// Check whether the given alloca already has
// lifetime.start or lifetime.end intrinsics.
static bool hasLifetimeMarkers(AllocaInst *AI) {
  Type *Ty = AI->getType();
  Type *Int8PtrTy = Type::getInt8PtrTy(Ty->getContext(),
                                       Ty->getPointerAddressSpace());
  if (Ty == Int8PtrTy)
    return isUsedByLifetimeMarker(AI);

  // Do a scan to find all the casts to i8*.
  for (User *U : AI->users()) {
    if (U->getType() != Int8PtrTy) continue;
    if (U->stripPointerCasts() != AI) continue;
    if (isUsedByLifetimeMarker(U))
      return true;
  }
  return false;
}

/// Rebuild the entire inlined-at chain for this instruction so that the top of
/// the chain now is inlined-at the new call site.
static DebugLoc
updateInlinedAtInfo(DebugLoc DL, DILocation *InlinedAtNode, LLVMContext &Ctx,
                    DenseMap<const DILocation *, DILocation *> &IANodes) {
  SmallVector<DILocation *, 3> InlinedAtLocations;
  DILocation *Last = InlinedAtNode;
  DILocation *CurInlinedAt = DL;

  // Gather all the inlined-at nodes
  while (DILocation *IA = CurInlinedAt->getInlinedAt()) {
    // Skip any we've already built nodes for
    if (DILocation *Found = IANodes[IA]) {
      Last = Found;
      break;
    }

    InlinedAtLocations.push_back(IA);
    CurInlinedAt = IA;
  }

  // Starting from the top, rebuild the nodes to point to the new inlined-at
  // location (then rebuilding the rest of the chain behind it) and update the
  // map of already-constructed inlined-at nodes.
  for (const DILocation *MD : make_range(InlinedAtLocations.rbegin(),
                                         InlinedAtLocations.rend())) {
    Last = IANodes[MD] = DILocation::getDistinct(
        Ctx, MD->getLine(), MD->getColumn(), MD->getScope(), Last);
  }

  // And finally create the normal location for this instruction, referring to
  // the new inlined-at chain.
  return DebugLoc::get(DL.getLine(), DL.getCol(), DL.getScope(), Last);
}

/// Update inlined instructions' line numbers to
/// to encode location where these instructions are inlined.
static void fixupLineNumbers(Function *Fn, Function::iterator FI,
                             Instruction *TheCall) {
  DebugLoc TheCallDL = TheCall->getDebugLoc();
  if (!TheCallDL)
    return;

  auto &Ctx = Fn->getContext();
  DILocation *InlinedAtNode = TheCallDL;

  // Create a unique call site, not to be confused with any other call from the
  // same location.
  InlinedAtNode = DILocation::getDistinct(
      Ctx, InlinedAtNode->getLine(), InlinedAtNode->getColumn(),
      InlinedAtNode->getScope(), InlinedAtNode->getInlinedAt());

  // Cache the inlined-at nodes as they're built so they are reused, without
  // this every instruction's inlined-at chain would become distinct from each
  // other.
  DenseMap<const DILocation *, DILocation *> IANodes;

  for (; FI != Fn->end(); ++FI) {
    for (BasicBlock::iterator BI = FI->begin(), BE = FI->end();
         BI != BE; ++BI) {
      DebugLoc DL = BI->getDebugLoc();
      if (!DL) {
        // If the inlined instruction has no line number, make it look as if it
        // originates from the call location. This is important for
        // ((__always_inline__, __nodebug__)) functions which must use caller
        // location for all instructions in their function body.

        // Don't update static allocas, as they may get moved later.
        if (auto *AI = dyn_cast<AllocaInst>(BI))
          if (isa<Constant>(AI->getArraySize()))
            continue;

        BI->setDebugLoc(TheCallDL);
      } else {
        BI->setDebugLoc(updateInlinedAtInfo(DL, InlinedAtNode, BI->getContext(), IANodes));
      }
    }
  }
}

/// This function inlines the called function into the basic block of the
/// caller. This returns false if it is not possible to inline this call.
/// The program is still in a well defined state if this occurs though.
///
/// Note that this only does one level of inlining.  For example, if the
/// instruction 'call B' is inlined, and 'B' calls 'C', then the call to 'C' now
/// exists in the instruction stream.  Similarly this will inline a recursive
/// function by one level.
bool llvm::InlineFunction(CallSite CS, InlineFunctionInfo &IFI,
                          AAResults *CalleeAAR, bool InsertLifetime) {
  Instruction *TheCall = CS.getInstruction();
  assert(TheCall->getParent() && TheCall->getParent()->getParent() &&
         "Instruction not in function!");

  // If IFI has any state in it, zap it before we fill it in.
  IFI.reset();
  
  const Function *CalledFunc = CS.getCalledFunction();
  if (!CalledFunc ||              // Can't inline external function or indirect
      CalledFunc->isDeclaration() || // call, or call to a vararg function!
      CalledFunc->getFunctionType()->isVarArg()) return false;

  // The inliner does not know how to inline through calls with operand bundles
  // in general ...
  if (CS.hasOperandBundles()) {
    // ... but it knows how to inline through "deopt" operand bundles.
    bool CanInline =
        CS.getNumOperandBundles() == 1 &&
        CS.getOperandBundleAt(0).getTagID() == LLVMContext::OB_deopt;
    if (!CanInline)
      return false;
  }

  // If the call to the callee cannot throw, set the 'nounwind' flag on any
  // calls that we inline.
  bool MarkNoUnwind = CS.doesNotThrow();

  BasicBlock *OrigBB = TheCall->getParent();
  Function *Caller = OrigBB->getParent();

  // GC poses two hazards to inlining, which only occur when the callee has GC:
  //  1. If the caller has no GC, then the callee's GC must be propagated to the
  //     caller.
  //  2. If the caller has a differing GC, it is invalid to inline.
  if (CalledFunc->hasGC()) {
    if (!Caller->hasGC())
      Caller->setGC(CalledFunc->getGC());
    else if (CalledFunc->getGC() != Caller->getGC())
      return false;
  }

  // Get the personality function from the callee if it contains a landing pad.
  Constant *CalledPersonality =
      CalledFunc->hasPersonalityFn()
          ? CalledFunc->getPersonalityFn()->stripPointerCasts()
          : nullptr;

  // Find the personality function used by the landing pads of the caller. If it
  // exists, then check to see that it matches the personality function used in
  // the callee.
  Constant *CallerPersonality =
      Caller->hasPersonalityFn()
          ? Caller->getPersonalityFn()->stripPointerCasts()
          : nullptr;
  if (CalledPersonality) {
    if (!CallerPersonality)
      Caller->setPersonalityFn(CalledPersonality);
    // If the personality functions match, then we can perform the
    // inlining. Otherwise, we can't inline.
    // TODO: This isn't 100% true. Some personality functions are proper
    //       supersets of others and can be used in place of the other.
    else if (CalledPersonality != CallerPersonality)
      return false;
  }

  // Get an iterator to the last basic block in the function, which will have
  // the new function inlined after it.
  Function::iterator LastBlock = --Caller->end();

  // Make sure to capture all of the return instructions from the cloned
  // function.
  SmallVector<ReturnInst*, 8> Returns;
  ClonedCodeInfo InlinedFunctionInfo;
  Function::iterator FirstNewBlock;

  { // Scope to destroy VMap after cloning.
    ValueToValueMapTy VMap;
    // Keep a list of pair (dst, src) to emit byval initializations.
    SmallVector<std::pair<Value*, Value*>, 4> ByValInit;

    auto &DL = Caller->getParent()->getDataLayout();

    assert(CalledFunc->arg_size() == CS.arg_size() &&
           "No varargs calls can be inlined!");

    // Calculate the vector of arguments to pass into the function cloner, which
    // matches up the formal to the actual argument values.
    CallSite::arg_iterator AI = CS.arg_begin();
    unsigned ArgNo = 0;
    for (Function::const_arg_iterator I = CalledFunc->arg_begin(),
         E = CalledFunc->arg_end(); I != E; ++I, ++AI, ++ArgNo) {
      Value *ActualArg = *AI;

      // When byval arguments actually inlined, we need to make the copy implied
      // by them explicit.  However, we don't do this if the callee is readonly
      // or readnone, because the copy would be unneeded: the callee doesn't
      // modify the struct.
      if (CS.isByValArgument(ArgNo)) {
        ActualArg = HandleByValArgument(ActualArg, TheCall, CalledFunc, IFI,
                                        CalledFunc->getParamAlignment(ArgNo+1));
        if (ActualArg != *AI)
          ByValInit.push_back(std::make_pair(ActualArg, (Value*) *AI));
      }

      VMap[&*I] = ActualArg;
    }

    // Add alignment assumptions if necessary. We do this before the inlined
    // instructions are actually cloned into the caller so that we can easily
    // check what will be known at the start of the inlined code.
    AddAlignmentAssumptions(CS, IFI);

    // We want the inliner to prune the code as it copies.  We would LOVE to
    // have no dead or constant instructions leftover after inlining occurs
    // (which can happen, e.g., because an argument was constant), but we'll be
    // happy with whatever the cloner can do.
    CloneAndPruneFunctionInto(Caller, CalledFunc, VMap,
                              /*ModuleLevelChanges=*/false, Returns, ".i",
                              &InlinedFunctionInfo, TheCall);

    // Remember the first block that is newly cloned over.
    FirstNewBlock = LastBlock; ++FirstNewBlock;

    // Inject byval arguments initialization.
    for (std::pair<Value*, Value*> &Init : ByValInit)
      HandleByValArgumentInit(Init.first, Init.second, Caller->getParent(),
                              &*FirstNewBlock, IFI);

    if (CS.hasOperandBundles()) {
      auto ParentDeopt = CS.getOperandBundleAt(0);
      assert(ParentDeopt.getTagID() == LLVMContext::OB_deopt &&
             "Checked on entry!");

      SmallVector<OperandBundleDef, 2> OpDefs;

      for (auto &VH : InlinedFunctionInfo.OperandBundleCallSites) {
        Instruction *I = VH;

        OpDefs.clear();

        CallSite ICS(I);
        OpDefs.reserve(ICS.getNumOperandBundles());

        for (unsigned i = 0, e = ICS.getNumOperandBundles(); i < e; ++i) {
          auto ChildOB = ICS.getOperandBundleAt(i);
          if (ChildOB.getTagID() != LLVMContext::OB_deopt) {
            // If the inlined call has other operand bundles, let them be
            OpDefs.emplace_back(ChildOB);
            continue;
          }

          // It may be useful to separate this logic (of handling operand
          // bundles) out to a separate "policy" component if this gets crowded.
          // Prepend the parent's deoptimization continuation to the newly
          // inlined call's deoptimization continuation.
          std::vector<Value *> MergedDeoptArgs;
          MergedDeoptArgs.reserve(ParentDeopt.Inputs.size() +
                                  ChildOB.Inputs.size());

          MergedDeoptArgs.insert(MergedDeoptArgs.end(),
                                 ParentDeopt.Inputs.begin(),
                                 ParentDeopt.Inputs.end());
          MergedDeoptArgs.insert(MergedDeoptArgs.end(), ChildOB.Inputs.begin(),
                                 ChildOB.Inputs.end());

          OpDefs.emplace_back(StringRef("deopt"), std::move(MergedDeoptArgs));
        }

        Instruction *NewI = nullptr;
        if (isa<CallInst>(I))
          NewI = CallInst::Create(cast<CallInst>(I), OpDefs, I);
        else
          NewI = InvokeInst::Create(cast<InvokeInst>(I), OpDefs, I);

        // Note: the RAUW does the appropriate fixup in VMap, so we need to do
        // this even if the call returns void.
        I->replaceAllUsesWith(NewI);

        VH = nullptr;
        I->eraseFromParent();
      }
    }

    // Update the callgraph if requested.
    if (IFI.CG)
      UpdateCallGraphAfterInlining(CS, FirstNewBlock, VMap, IFI);

    // Update inlined instructions' line number information.
    fixupLineNumbers(Caller, FirstNewBlock, TheCall);

    // Clone existing noalias metadata if necessary.
    CloneAliasScopeMetadata(CS, VMap);

    // Add noalias metadata if necessary.
    AddAliasScopeMetadata(CS, VMap, DL, CalleeAAR);

    // FIXME: We could register any cloned assumptions instead of clearing the
    // whole function's cache.
    if (IFI.ACT)
      IFI.ACT->getAssumptionCache(*Caller).clear();
  }

  // If there are any alloca instructions in the block that used to be the entry
  // block for the callee, move them to the entry block of the caller.  First
  // calculate which instruction they should be inserted before.  We insert the
  // instructions at the end of the current alloca list.
  {
    BasicBlock::iterator InsertPoint = Caller->begin()->begin();
    for (BasicBlock::iterator I = FirstNewBlock->begin(),
         E = FirstNewBlock->end(); I != E; ) {
      AllocaInst *AI = dyn_cast<AllocaInst>(I++);
      if (!AI) continue;
      
      // If the alloca is now dead, remove it.  This often occurs due to code
      // specialization.
      if (AI->use_empty()) {
        AI->eraseFromParent();
        continue;
      }

      if (!isa<Constant>(AI->getArraySize()))
        continue;
      
      // Keep track of the static allocas that we inline into the caller.
      IFI.StaticAllocas.push_back(AI);
      
      // Scan for the block of allocas that we can move over, and move them
      // all at once.
      while (isa<AllocaInst>(I) &&
             isa<Constant>(cast<AllocaInst>(I)->getArraySize())) {
        IFI.StaticAllocas.push_back(cast<AllocaInst>(I));
        ++I;
      }

      // Transfer all of the allocas over in a block.  Using splice means
      // that the instructions aren't removed from the symbol table, then
      // reinserted.
      Caller->getEntryBlock().getInstList().splice(
          InsertPoint, FirstNewBlock->getInstList(), AI->getIterator(), I);
    }
    // Move any dbg.declares describing the allocas into the entry basic block.
    DIBuilder DIB(*Caller->getParent());
    for (auto &AI : IFI.StaticAllocas)
      replaceDbgDeclareForAlloca(AI, AI, DIB, /*Deref=*/false);
  }

  bool InlinedMustTailCalls = false;
  if (InlinedFunctionInfo.ContainsCalls) {
    CallInst::TailCallKind CallSiteTailKind = CallInst::TCK_None;
    if (CallInst *CI = dyn_cast<CallInst>(TheCall))
      CallSiteTailKind = CI->getTailCallKind();

    for (Function::iterator BB = FirstNewBlock, E = Caller->end(); BB != E;
         ++BB) {
      for (Instruction &I : *BB) {
        CallInst *CI = dyn_cast<CallInst>(&I);
        if (!CI)
          continue;

        // We need to reduce the strength of any inlined tail calls.  For
        // musttail, we have to avoid introducing potential unbounded stack
        // growth.  For example, if functions 'f' and 'g' are mutually recursive
        // with musttail, we can inline 'g' into 'f' so long as we preserve
        // musttail on the cloned call to 'f'.  If either the inlined call site
        // or the cloned call site is *not* musttail, the program already has
        // one frame of stack growth, so it's safe to remove musttail.  Here is
        // a table of example transformations:
        //
        //    f -> musttail g -> musttail f  ==>  f -> musttail f
        //    f -> musttail g ->     tail f  ==>  f ->     tail f
        //    f ->          g -> musttail f  ==>  f ->          f
        //    f ->          g ->     tail f  ==>  f ->          f
        CallInst::TailCallKind ChildTCK = CI->getTailCallKind();
        ChildTCK = std::min(CallSiteTailKind, ChildTCK);
        CI->setTailCallKind(ChildTCK);
        InlinedMustTailCalls |= CI->isMustTailCall();

        // Calls inlined through a 'nounwind' call site should be marked
        // 'nounwind'.
        if (MarkNoUnwind)
          CI->setDoesNotThrow();
      }
    }
  }

  // Leave lifetime markers for the static alloca's, scoping them to the
  // function we just inlined.
  if (InsertLifetime && !IFI.StaticAllocas.empty()) {
    IRBuilder<> builder(&FirstNewBlock->front());
    for (unsigned ai = 0, ae = IFI.StaticAllocas.size(); ai != ae; ++ai) {
      AllocaInst *AI = IFI.StaticAllocas[ai];

      // If the alloca is already scoped to something smaller than the whole
      // function then there's no need to add redundant, less accurate markers.
      if (hasLifetimeMarkers(AI))
        continue;

      // Try to determine the size of the allocation.
      ConstantInt *AllocaSize = nullptr;
      if (ConstantInt *AIArraySize =
          dyn_cast<ConstantInt>(AI->getArraySize())) {
        auto &DL = Caller->getParent()->getDataLayout();
        Type *AllocaType = AI->getAllocatedType();
        uint64_t AllocaTypeSize = DL.getTypeAllocSize(AllocaType);
        uint64_t AllocaArraySize = AIArraySize->getLimitedValue();

        // Don't add markers for zero-sized allocas.
        if (AllocaArraySize == 0)
          continue;

        // Check that array size doesn't saturate uint64_t and doesn't
        // overflow when it's multiplied by type size.
        if (AllocaArraySize != ~0ULL &&
            UINT64_MAX / AllocaArraySize >= AllocaTypeSize) {
          AllocaSize = ConstantInt::get(Type::getInt64Ty(AI->getContext()),
                                        AllocaArraySize * AllocaTypeSize);
        }
      }

      builder.CreateLifetimeStart(AI, AllocaSize);
      for (ReturnInst *RI : Returns) {
        // Don't insert llvm.lifetime.end calls between a musttail call and a
        // return.  The return kills all local allocas.
        if (InlinedMustTailCalls &&
            RI->getParent()->getTerminatingMustTailCall())
          continue;
        IRBuilder<>(RI).CreateLifetimeEnd(AI, AllocaSize);
      }
    }
  }

  // If the inlined code contained dynamic alloca instructions, wrap the inlined
  // code with llvm.stacksave/llvm.stackrestore intrinsics.
  if (InlinedFunctionInfo.ContainsDynamicAllocas) {
    Module *M = Caller->getParent();
    // Get the two intrinsics we care about.
    Function *StackSave = Intrinsic::getDeclaration(M, Intrinsic::stacksave);
    Function *StackRestore=Intrinsic::getDeclaration(M,Intrinsic::stackrestore);

    // Insert the llvm.stacksave.
    CallInst *SavedPtr = IRBuilder<>(&*FirstNewBlock, FirstNewBlock->begin())
                             .CreateCall(StackSave, {}, "savedstack");

    // Insert a call to llvm.stackrestore before any return instructions in the
    // inlined function.
    for (ReturnInst *RI : Returns) {
      // Don't insert llvm.stackrestore calls between a musttail call and a
      // return.  The return will restore the stack pointer.
      if (InlinedMustTailCalls && RI->getParent()->getTerminatingMustTailCall())
        continue;
      IRBuilder<>(RI).CreateCall(StackRestore, SavedPtr);
    }
  }

  // If we are inlining for an invoke instruction, we must make sure to rewrite
  // any call instructions into invoke instructions.
  if (auto *II = dyn_cast<InvokeInst>(TheCall)) {
    BasicBlock *UnwindDest = II->getUnwindDest();
    Instruction *FirstNonPHI = UnwindDest->getFirstNonPHI();
    if (isa<LandingPadInst>(FirstNonPHI)) {
      HandleInlinedLandingPad(II, &*FirstNewBlock, InlinedFunctionInfo);
    } else {
      HandleInlinedEHPad(II, &*FirstNewBlock, InlinedFunctionInfo);
    }
  }

  // Handle any inlined musttail call sites.  In order for a new call site to be
  // musttail, the source of the clone and the inlined call site must have been
  // musttail.  Therefore it's safe to return without merging control into the
  // phi below.
  if (InlinedMustTailCalls) {
    // Check if we need to bitcast the result of any musttail calls.
    Type *NewRetTy = Caller->getReturnType();
    bool NeedBitCast = !TheCall->use_empty() && TheCall->getType() != NewRetTy;

    // Handle the returns preceded by musttail calls separately.
    SmallVector<ReturnInst *, 8> NormalReturns;
    for (ReturnInst *RI : Returns) {
      CallInst *ReturnedMustTail =
          RI->getParent()->getTerminatingMustTailCall();
      if (!ReturnedMustTail) {
        NormalReturns.push_back(RI);
        continue;
      }
      if (!NeedBitCast)
        continue;

      // Delete the old return and any preceding bitcast.
      BasicBlock *CurBB = RI->getParent();
      auto *OldCast = dyn_cast_or_null<BitCastInst>(RI->getReturnValue());
      RI->eraseFromParent();
      if (OldCast)
        OldCast->eraseFromParent();

      // Insert a new bitcast and return with the right type.
      IRBuilder<> Builder(CurBB);
      Builder.CreateRet(Builder.CreateBitCast(ReturnedMustTail, NewRetTy));
    }

    // Leave behind the normal returns so we can merge control flow.
    std::swap(Returns, NormalReturns);
  }

  // If we cloned in _exactly one_ basic block, and if that block ends in a
  // return instruction, we splice the body of the inlined callee directly into
  // the calling basic block.
  if (Returns.size() == 1 && std::distance(FirstNewBlock, Caller->end()) == 1) {
    // Move all of the instructions right before the call.
    OrigBB->getInstList().splice(TheCall->getIterator(),
                                 FirstNewBlock->getInstList(),
                                 FirstNewBlock->begin(), FirstNewBlock->end());
    // Remove the cloned basic block.
    Caller->getBasicBlockList().pop_back();

    // If the call site was an invoke instruction, add a branch to the normal
    // destination.
    if (InvokeInst *II = dyn_cast<InvokeInst>(TheCall)) {
      BranchInst *NewBr = BranchInst::Create(II->getNormalDest(), TheCall);
      NewBr->setDebugLoc(Returns[0]->getDebugLoc());
    }

    // If the return instruction returned a value, replace uses of the call with
    // uses of the returned value.
    if (!TheCall->use_empty()) {
      ReturnInst *R = Returns[0];
      if (TheCall == R->getReturnValue())
        TheCall->replaceAllUsesWith(UndefValue::get(TheCall->getType()));
      else
        TheCall->replaceAllUsesWith(R->getReturnValue());
    }
    // Since we are now done with the Call/Invoke, we can delete it.
    TheCall->eraseFromParent();

    // Since we are now done with the return instruction, delete it also.
    Returns[0]->eraseFromParent();

    // We are now done with the inlining.
    return true;
  }

  // Otherwise, we have the normal case, of more than one block to inline or
  // multiple return sites.

  // We want to clone the entire callee function into the hole between the
  // "starter" and "ender" blocks.  How we accomplish this depends on whether
  // this is an invoke instruction or a call instruction.
  BasicBlock *AfterCallBB;
  BranchInst *CreatedBranchToNormalDest = nullptr;
  if (InvokeInst *II = dyn_cast<InvokeInst>(TheCall)) {

    // Add an unconditional branch to make this look like the CallInst case...
    CreatedBranchToNormalDest = BranchInst::Create(II->getNormalDest(), TheCall);

    // Split the basic block.  This guarantees that no PHI nodes will have to be
    // updated due to new incoming edges, and make the invoke case more
    // symmetric to the call case.
    AfterCallBB =
        OrigBB->splitBasicBlock(CreatedBranchToNormalDest->getIterator(),
                                CalledFunc->getName() + ".exit");

  } else {  // It's a call
    // If this is a call instruction, we need to split the basic block that
    // the call lives in.
    //
    AfterCallBB = OrigBB->splitBasicBlock(TheCall->getIterator(),
                                          CalledFunc->getName() + ".exit");
  }

  // Change the branch that used to go to AfterCallBB to branch to the first
  // basic block of the inlined function.
  //
  TerminatorInst *Br = OrigBB->getTerminator();
  assert(Br && Br->getOpcode() == Instruction::Br &&
         "splitBasicBlock broken!");
  Br->setOperand(0, &*FirstNewBlock);

  // Now that the function is correct, make it a little bit nicer.  In
  // particular, move the basic blocks inserted from the end of the function
  // into the space made by splitting the source basic block.
  Caller->getBasicBlockList().splice(AfterCallBB->getIterator(),
                                     Caller->getBasicBlockList(), FirstNewBlock,
                                     Caller->end());

  // Handle all of the return instructions that we just cloned in, and eliminate
  // any users of the original call/invoke instruction.
  Type *RTy = CalledFunc->getReturnType();

  PHINode *PHI = nullptr;
  if (Returns.size() > 1) {
    // The PHI node should go at the front of the new basic block to merge all
    // possible incoming values.
    if (!TheCall->use_empty()) {
      PHI = PHINode::Create(RTy, Returns.size(), TheCall->getName(),
                            &AfterCallBB->front());
      // Anything that used the result of the function call should now use the
      // PHI node as their operand.
      TheCall->replaceAllUsesWith(PHI);
    }

    // Loop over all of the return instructions adding entries to the PHI node
    // as appropriate.
    if (PHI) {
      for (unsigned i = 0, e = Returns.size(); i != e; ++i) {
        ReturnInst *RI = Returns[i];
        assert(RI->getReturnValue()->getType() == PHI->getType() &&
               "Ret value not consistent in function!");
        PHI->addIncoming(RI->getReturnValue(), RI->getParent());
      }
    }

    // Add a branch to the merge points and remove return instructions.
    DebugLoc Loc;
    for (unsigned i = 0, e = Returns.size(); i != e; ++i) {
      ReturnInst *RI = Returns[i];
      BranchInst* BI = BranchInst::Create(AfterCallBB, RI);
      Loc = RI->getDebugLoc();
      BI->setDebugLoc(Loc);
      RI->eraseFromParent();
    }
    // We need to set the debug location to *somewhere* inside the
    // inlined function. The line number may be nonsensical, but the
    // instruction will at least be associated with the right
    // function.
    if (CreatedBranchToNormalDest)
      CreatedBranchToNormalDest->setDebugLoc(Loc);
  } else if (!Returns.empty()) {
    // Otherwise, if there is exactly one return value, just replace anything
    // using the return value of the call with the computed value.
    if (!TheCall->use_empty()) {
      if (TheCall == Returns[0]->getReturnValue())
        TheCall->replaceAllUsesWith(UndefValue::get(TheCall->getType()));
      else
        TheCall->replaceAllUsesWith(Returns[0]->getReturnValue());
    }

    // Update PHI nodes that use the ReturnBB to use the AfterCallBB.
    BasicBlock *ReturnBB = Returns[0]->getParent();
    ReturnBB->replaceAllUsesWith(AfterCallBB);

    // Splice the code from the return block into the block that it will return
    // to, which contains the code that was after the call.
    AfterCallBB->getInstList().splice(AfterCallBB->begin(),
                                      ReturnBB->getInstList());

    if (CreatedBranchToNormalDest)
      CreatedBranchToNormalDest->setDebugLoc(Returns[0]->getDebugLoc());

    // Delete the return instruction now and empty ReturnBB now.
    Returns[0]->eraseFromParent();
    ReturnBB->eraseFromParent();
  } else if (!TheCall->use_empty()) {
    // No returns, but something is using the return value of the call.  Just
    // nuke the result.
    TheCall->replaceAllUsesWith(UndefValue::get(TheCall->getType()));
  }

  // Since we are now done with the Call/Invoke, we can delete it.
  TheCall->eraseFromParent();

  // If we inlined any musttail calls and the original return is now
  // unreachable, delete it.  It can only contain a bitcast and ret.
  if (InlinedMustTailCalls && pred_begin(AfterCallBB) == pred_end(AfterCallBB))
    AfterCallBB->eraseFromParent();

  // We should always be able to fold the entry block of the function into the
  // single predecessor of the block...
  assert(cast<BranchInst>(Br)->isUnconditional() && "splitBasicBlock broken!");
  BasicBlock *CalleeEntry = cast<BranchInst>(Br)->getSuccessor(0);

  // Splice the code entry block into calling block, right before the
  // unconditional branch.
  CalleeEntry->replaceAllUsesWith(OrigBB);  // Update PHI nodes
  OrigBB->getInstList().splice(Br->getIterator(), CalleeEntry->getInstList());

  // Remove the unconditional branch.
  OrigBB->getInstList().erase(Br);

  // Now we can remove the CalleeEntry block, which is now empty.
  Caller->getBasicBlockList().erase(CalleeEntry);

  // If we inserted a phi node, check to see if it has a single value (e.g. all
  // the entries are the same or undef).  If so, remove the PHI so it doesn't
  // block other optimizations.
  if (PHI) {
    auto &DL = Caller->getParent()->getDataLayout();
    if (Value *V = SimplifyInstruction(PHI, DL, nullptr, nullptr,
                                       &IFI.ACT->getAssumptionCache(*Caller))) {
      PHI->replaceAllUsesWith(V);
      PHI->eraseFromParent();
    }
  }

  return true;
}