llvm.org GIT mirror llvm / 8a028a2 lib / Target / X86 / X86ISelLowering.h
8a028a2

Tree @8a028a2 (Download .tar.gz)

X86ISelLowering.h @8a028a2raw · history · blame

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
//===-- X86ISelLowering.h - X86 DAG Lowering Interface ----------*- C++ -*-===//
//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file defines the interfaces that X86 uses to lower LLVM code into a
// selection DAG.
//
//===----------------------------------------------------------------------===//

#ifndef LLVM_LIB_TARGET_X86_X86ISELLOWERING_H
#define LLVM_LIB_TARGET_X86_X86ISELLOWERING_H

#include "llvm/CodeGen/CallingConvLower.h"
#include "llvm/CodeGen/SelectionDAG.h"
#include "llvm/Target/TargetLowering.h"
#include "llvm/Target/TargetOptions.h"

namespace llvm {
  class X86Subtarget;
  class X86TargetMachine;

  namespace X86ISD {
    // X86 Specific DAG Nodes
    enum NodeType : unsigned {
      // Start the numbering where the builtin ops leave off.
      FIRST_NUMBER = ISD::BUILTIN_OP_END,

      /// Bit scan forward.
      BSF,
      /// Bit scan reverse.
      BSR,

      /// Double shift instructions. These correspond to
      /// X86::SHLDxx and X86::SHRDxx instructions.
      SHLD,
      SHRD,

      /// Bitwise logical AND of floating point values. This corresponds
      /// to X86::ANDPS or X86::ANDPD.
      FAND,

      /// Bitwise logical OR of floating point values. This corresponds
      /// to X86::ORPS or X86::ORPD.
      FOR,

      /// Bitwise logical XOR of floating point values. This corresponds
      /// to X86::XORPS or X86::XORPD.
      FXOR,

      ///  Bitwise logical ANDNOT of floating point values. This
      /// corresponds to X86::ANDNPS or X86::ANDNPD.
      FANDN,

      /// These operations represent an abstract X86 call
      /// instruction, which includes a bunch of information.  In particular the
      /// operands of these node are:
      ///
      ///     #0 - The incoming token chain
      ///     #1 - The callee
      ///     #2 - The number of arg bytes the caller pushes on the stack.
      ///     #3 - The number of arg bytes the callee pops off the stack.
      ///     #4 - The value to pass in AL/AX/EAX (optional)
      ///     #5 - The value to pass in DL/DX/EDX (optional)
      ///
      /// The result values of these nodes are:
      ///
      ///     #0 - The outgoing token chain
      ///     #1 - The first register result value (optional)
      ///     #2 - The second register result value (optional)
      ///
      CALL,

      /// This operation implements the lowering for readcyclecounter.
      RDTSC_DAG,

      /// X86 Read Time-Stamp Counter and Processor ID.
      RDTSCP_DAG,

      /// X86 Read Performance Monitoring Counters.
      RDPMC_DAG,

      /// X86 compare and logical compare instructions.
      CMP, COMI, UCOMI,

      /// X86 bit-test instructions.
      BT,

      /// X86 SetCC. Operand 0 is condition code, and operand 1 is the EFLAGS
      /// operand, usually produced by a CMP instruction.
      SETCC,

      /// X86 Select
      SELECT, SELECTS,

      // Same as SETCC except it's materialized with a sbb and the value is all
      // one's or all zero's.
      SETCC_CARRY,  // R = carry_bit ? ~0 : 0

      /// X86 FP SETCC, implemented with CMP{cc}SS/CMP{cc}SD.
      /// Operands are two FP values to compare; result is a mask of
      /// 0s or 1s.  Generally DTRT for C/C++ with NaNs.
      FSETCC,

      /// X86 FP SETCC, similar to above, but with output as an i1 mask and
      /// with optional rounding mode.
      FSETCCM, FSETCCM_RND,

      /// X86 conditional moves. Operand 0 and operand 1 are the two values
      /// to select from. Operand 2 is the condition code, and operand 3 is the
      /// flag operand produced by a CMP or TEST instruction. It also writes a
      /// flag result.
      CMOV,

      /// X86 conditional branches. Operand 0 is the chain operand, operand 1
      /// is the block to branch if condition is true, operand 2 is the
      /// condition code, and operand 3 is the flag operand produced by a CMP
      /// or TEST instruction.
      BRCOND,

      /// Return with a flag operand. Operand 0 is the chain operand, operand
      /// 1 is the number of bytes of stack to pop.
      RET_FLAG,

      /// Return from interrupt. Operand 0 is the number of bytes to pop.
      IRET,

      /// Repeat fill, corresponds to X86::REP_STOSx.
      REP_STOS,

      /// Repeat move, corresponds to X86::REP_MOVSx.
      REP_MOVS,

      /// On Darwin, this node represents the result of the popl
      /// at function entry, used for PIC code.
      GlobalBaseReg,

      /// A wrapper node for TargetConstantPool, TargetJumpTable,
      /// TargetExternalSymbol, TargetGlobalAddress, TargetGlobalTLSAddress,
      /// MCSymbol and TargetBlockAddress.
      Wrapper,

      /// Special wrapper used under X86-64 PIC mode for RIP
      /// relative displacements.
      WrapperRIP,

      /// Copies a 64-bit value from the low word of an XMM vector
      /// to an MMX vector.  If you think this is too close to the previous
      /// mnemonic, so do I; blame Intel.
      MOVDQ2Q,

      /// Copies a 32-bit value from the low word of a MMX
      /// vector to a GPR.
      MMX_MOVD2W,

      /// Copies a GPR into the low 32-bit word of a MMX vector
      /// and zero out the high word.
      MMX_MOVW2D,

      /// Extract an 8-bit value from a vector and zero extend it to
      /// i32, corresponds to X86::PEXTRB.
      PEXTRB,

      /// Extract a 16-bit value from a vector and zero extend it to
      /// i32, corresponds to X86::PEXTRW.
      PEXTRW,

      /// Insert any element of a 4 x float vector into any element
      /// of a destination 4 x floatvector.
      INSERTPS,

      /// Insert the lower 8-bits of a 32-bit value to a vector,
      /// corresponds to X86::PINSRB.
      PINSRB,

      /// Insert the lower 16-bits of a 32-bit value to a vector,
      /// corresponds to X86::PINSRW.
      PINSRW, MMX_PINSRW,

      /// Shuffle 16 8-bit values within a vector.
      PSHUFB,

      /// Compute Sum of Absolute Differences.
      PSADBW,
      /// Compute Double Block Packed Sum-Absolute-Differences
      DBPSADBW,

      /// Bitwise Logical AND NOT of Packed FP values.
      ANDNP,

      /// Blend where the selector is an immediate.
      BLENDI,

      /// Blend where the condition has been shrunk.
      /// This is used to emphasize that the condition mask is
      /// no more valid for generic VSELECT optimizations.
      SHRUNKBLEND,

      /// Combined add and sub on an FP vector.
      ADDSUB,

      //  FP vector ops with rounding mode.
      FADD_RND,
      FSUB_RND,
      FMUL_RND,
      FDIV_RND,
      FMAX_RND,
      FMIN_RND,
      FSQRT_RND, FSQRTS_RND,

      // FP vector get exponent.
      FGETEXP_RND, FGETEXPS_RND,
      // Extract Normalized Mantissas.
      VGETMANT, VGETMANTS,
      // FP Scale.
      SCALEF,
      SCALEFS,

      // Integer add/sub with unsigned saturation.
      ADDUS,
      SUBUS,

      // Integer add/sub with signed saturation.
      ADDS,
      SUBS,

      // Unsigned Integer average.
      AVG,

      /// Integer horizontal add/sub.
      HADD,
      HSUB,

      /// Floating point horizontal add/sub.
      FHADD,
      FHSUB,

      // Integer absolute value
      ABS,

      // Detect Conflicts Within a Vector
      CONFLICT,

      /// Floating point max and min.
      FMAX, FMIN,

      /// Commutative FMIN and FMAX.
      FMAXC, FMINC,

      /// Floating point reciprocal-sqrt and reciprocal approximation.
      /// Note that these typically require refinement
      /// in order to obtain suitable precision.
      FRSQRT, FRCP,
      FRSQRTS, FRCPS,

      // Thread Local Storage.
      TLSADDR,

      // Thread Local Storage. A call to get the start address
      // of the TLS block for the current module.
      TLSBASEADDR,

      // Thread Local Storage.  When calling to an OS provided
      // thunk at the address from an earlier relocation.
      TLSCALL,

      // Exception Handling helpers.
      EH_RETURN,

      // SjLj exception handling setjmp.
      EH_SJLJ_SETJMP,

      // SjLj exception handling longjmp.
      EH_SJLJ_LONGJMP,

      // SjLj exception handling dispatch.
      EH_SJLJ_SETUP_DISPATCH,

      /// Tail call return. See X86TargetLowering::LowerCall for
      /// the list of operands.
      TC_RETURN,

      // Vector move to low scalar and zero higher vector elements.
      VZEXT_MOVL,

      // Vector integer zero-extend.
      VZEXT,
      // Vector integer signed-extend.
      VSEXT,

      // Vector integer truncate.
      VTRUNC,
      // Vector integer truncate with unsigned/signed saturation.
      VTRUNCUS, VTRUNCS,

      // Vector FP extend.
      VFPEXT, VFPEXT_RND, VFPEXTS_RND,

      // Vector FP round.
      VFPROUND, VFPROUND_RND, VFPROUNDS_RND,

      // Convert a vector to mask, set bits base on MSB.
      CVT2MASK,

      // 128-bit vector logical left / right shift
      VSHLDQ, VSRLDQ,

      // Vector shift elements
      VSHL, VSRL, VSRA,

      // Vector variable shift right arithmetic.
      // Unlike ISD::SRA, in case shift count greater then element size
      // use sign bit to fill destination data element.
      VSRAV,

      // Vector shift elements by immediate
      VSHLI, VSRLI, VSRAI,

      // Bit rotate by immediate
      VROTLI, VROTRI,

      // Vector packed double/float comparison.
      CMPP,

      // Vector integer comparisons.
      PCMPEQ, PCMPGT,
      // Vector integer comparisons, the result is in a mask vector.
      PCMPEQM, PCMPGTM,

      MULTISHIFT,

      /// Vector comparison generating mask bits for fp and
      /// integer signed and unsigned data types.
      CMPM,
      CMPMU,
      // Vector comparison with rounding mode for FP values
      CMPM_RND,

      // Arithmetic operations with FLAGS results.
      ADD, SUB, ADC, SBB, SMUL,
      INC, DEC, OR, XOR, AND,

      // Bit field extract.
      BEXTR,

      // LOW, HI, FLAGS = umul LHS, RHS.
      UMUL,

      // 8-bit SMUL/UMUL - AX, FLAGS = smul8/umul8 AL, RHS.
      SMUL8, UMUL8,

      // 8-bit divrem that zero-extend the high result (AH).
      UDIVREM8_ZEXT_HREG,
      SDIVREM8_SEXT_HREG,

      // X86-specific multiply by immediate.
      MUL_IMM,

      // Vector sign bit extraction.
      MOVMSK,

      // Vector bitwise comparisons.
      PTEST,

      // Vector packed fp sign bitwise comparisons.
      TESTP,

      // Vector "test" in AVX-512, the result is in a mask vector.
      TESTM,
      TESTNM,

      // OR/AND test for masks.
      KORTEST,
      KTEST,

      // Several flavors of instructions with vector shuffle behaviors.
      // Saturated signed/unnsigned packing.
      PACKSS,
      PACKUS,
      // Intra-lane alignr.
      PALIGNR,
      // AVX512 inter-lane alignr.
      VALIGN,
      PSHUFD,
      PSHUFHW,
      PSHUFLW,
      SHUFP,
      //Shuffle Packed Values at 128-bit granularity.
      SHUF128,
      MOVDDUP,
      MOVSHDUP,
      MOVSLDUP,
      MOVLHPS,
      MOVLHPD,
      MOVHLPS,
      MOVLPS,
      MOVLPD,
      MOVSD,
      MOVSS,
      UNPCKL,
      UNPCKH,
      VPERMILPV,
      VPERMILPI,
      VPERMI,
      VPERM2X128,

      // Variable Permute (VPERM).
      // Res = VPERMV MaskV, V0
      VPERMV,

      // 3-op Variable Permute (VPERMT2).
      // Res = VPERMV3 V0, MaskV, V1
      VPERMV3,

      // 3-op Variable Permute overwriting the index (VPERMI2).
      // Res = VPERMIV3 V0, MaskV, V1
      VPERMIV3,

      // Bitwise ternary logic.
      VPTERNLOG,
      // Fix Up Special Packed Float32/64 values.
      VFIXUPIMM,
      VFIXUPIMMS,
      // Range Restriction Calculation For Packed Pairs of Float32/64 values.
      VRANGE,
      // Reduce - Perform Reduction Transformation on scalar\packed FP.
      VREDUCE, VREDUCES,
      // RndScale - Round FP Values To Include A Given Number Of Fraction Bits.
      VRNDSCALE, VRNDSCALES,
      // Tests Types Of a FP Values for packed types.
      VFPCLASS,
      // Tests Types Of a FP Values for scalar types.
      VFPCLASSS,

      // Broadcast scalar to vector.
      VBROADCAST,
      // Broadcast mask to vector.
      VBROADCASTM,
      // Broadcast subvector to vector.
      SUBV_BROADCAST,

      // Insert/Extract vector element.
      VINSERT,
      VEXTRACT,

      /// SSE4A Extraction and Insertion.
      EXTRQI, INSERTQI,

      // XOP variable/immediate rotations.
      VPROT, VPROTI,
      // XOP arithmetic/logical shifts.
      VPSHA, VPSHL,
      // XOP signed/unsigned integer comparisons.
      VPCOM, VPCOMU,
      // XOP packed permute bytes.
      VPPERM,
      // XOP two source permutation.
      VPERMIL2,

      // Vector multiply packed unsigned doubleword integers.
      PMULUDQ,
      // Vector multiply packed signed doubleword integers.
      PMULDQ,
      // Vector Multiply Packed UnsignedIntegers with Round and Scale.
      MULHRS,

      // Multiply and Add Packed Integers.
      VPMADDUBSW, VPMADDWD,
      VPMADD52L, VPMADD52H,

      // FMA nodes.
      FMADD,
      FNMADD,
      FMSUB,
      FNMSUB,
      FMADDSUB,
      FMSUBADD,

      // FMA with rounding mode.
      FMADD_RND,
      FNMADD_RND,
      FMSUB_RND,
      FNMSUB_RND,
      FMADDSUB_RND,
      FMSUBADD_RND,

      // Scalar intrinsic FMA with rounding mode.
      // Two versions, passthru bits on op1 or op3.
      FMADDS1_RND, FMADDS3_RND,
      FNMADDS1_RND, FNMADDS3_RND,
      FMSUBS1_RND, FMSUBS3_RND,
      FNMSUBS1_RND, FNMSUBS3_RND,

      // Compress and expand.
      COMPRESS,
      EXPAND,

      // Convert Unsigned/Integer to Floating-Point Value with rounding mode.
      SINT_TO_FP_RND, UINT_TO_FP_RND,
      SCALAR_SINT_TO_FP_RND, SCALAR_UINT_TO_FP_RND,

      // Vector float/double to signed/unsigned integer.
      CVTP2SI, CVTP2UI, CVTP2SI_RND, CVTP2UI_RND,
      // Scalar float/double to signed/unsigned integer.
      CVTS2SI_RND, CVTS2UI_RND,

      // Vector float/double to signed/unsigned integer with truncation.
      CVTTP2SI, CVTTP2UI, CVTTP2SI_RND, CVTTP2UI_RND,
      // Scalar float/double to signed/unsigned integer with truncation.
      CVTTS2SI_RND, CVTTS2UI_RND,

      // Vector signed/unsigned integer to float/double.
      CVTSI2P, CVTUI2P,

      // Save xmm argument registers to the stack, according to %al. An operator
      // is needed so that this can be expanded with control flow.
      VASTART_SAVE_XMM_REGS,

      // Windows's _chkstk call to do stack probing.
      WIN_ALLOCA,

      // For allocating variable amounts of stack space when using
      // segmented stacks. Check if the current stacklet has enough space, and
      // falls back to heap allocation if not.
      SEG_ALLOCA,

      // Memory barriers.
      MEMBARRIER,
      MFENCE,

      // Store FP status word into i16 register.
      FNSTSW16r,

      // Store contents of %ah into %eflags.
      SAHF,

      // Get a random integer and indicate whether it is valid in CF.
      RDRAND,

      // Get a NIST SP800-90B & C compliant random integer and
      // indicate whether it is valid in CF.
      RDSEED,

      // SSE42 string comparisons.
      PCMPISTRI,
      PCMPESTRI,

      // Test if in transactional execution.
      XTEST,

      // ERI instructions.
      RSQRT28, RSQRT28S, RCP28, RCP28S, EXP2,

      // Conversions between float and half-float.
      CVTPS2PH, CVTPH2PS,

      // Compare and swap.
      LCMPXCHG_DAG = ISD::FIRST_TARGET_MEMORY_OPCODE,
      LCMPXCHG8_DAG,
      LCMPXCHG16_DAG,
      LCMPXCHG8_SAVE_EBX_DAG,
      LCMPXCHG16_SAVE_RBX_DAG,

      /// LOCK-prefixed arithmetic read-modify-write instructions.
      /// EFLAGS, OUTCHAIN = LADD(INCHAIN, PTR, RHS)
      LADD, LSUB, LOR, LXOR, LAND,

      // Load, scalar_to_vector, and zero extend.
      VZEXT_LOAD,

      // Store FP control world into i16 memory.
      FNSTCW16m,

      /// This instruction implements FP_TO_SINT with the
      /// integer destination in memory and a FP reg source.  This corresponds
      /// to the X86::FIST*m instructions and the rounding mode change stuff. It
      /// has two inputs (token chain and address) and two outputs (int value
      /// and token chain).
      FP_TO_INT16_IN_MEM,
      FP_TO_INT32_IN_MEM,
      FP_TO_INT64_IN_MEM,

      /// This instruction implements SINT_TO_FP with the
      /// integer source in memory and FP reg result.  This corresponds to the
      /// X86::FILD*m instructions. It has three inputs (token chain, address,
      /// and source type) and two outputs (FP value and token chain). FILD_FLAG
      /// also produces a flag).
      FILD,
      FILD_FLAG,

      /// This instruction implements an extending load to FP stack slots.
      /// This corresponds to the X86::FLD32m / X86::FLD64m. It takes a chain
      /// operand, ptr to load from, and a ValueType node indicating the type
      /// to load to.
      FLD,

      /// This instruction implements a truncating store to FP stack
      /// slots. This corresponds to the X86::FST32m / X86::FST64m. It takes a
      /// chain operand, value to store, address, and a ValueType to store it
      /// as.
      FST,

      /// This instruction grabs the address of the next argument
      /// from a va_list. (reads and modifies the va_list in memory)
      VAARG_64,

      // Vector truncating store with unsigned/signed saturation
      VTRUNCSTOREUS, VTRUNCSTORES,
      // Vector truncating masked store with unsigned/signed saturation
      VMTRUNCSTOREUS, VMTRUNCSTORES

      // WARNING: Do not add anything in the end unless you want the node to
      // have memop! In fact, starting from FIRST_TARGET_MEMORY_OPCODE all
      // opcodes will be thought as target memory ops!
    };
  } // end namespace X86ISD

  /// Define some predicates that are used for node matching.
  namespace X86 {
    /// Return true if the specified
    /// EXTRACT_SUBVECTOR operand specifies a vector extract that is
    /// suitable for input to VEXTRACTF128, VEXTRACTI128 instructions.
    bool isVEXTRACT128Index(SDNode *N);

    /// Return true if the specified
    /// INSERT_SUBVECTOR operand specifies a subvector insert that is
    /// suitable for input to VINSERTF128, VINSERTI128 instructions.
    bool isVINSERT128Index(SDNode *N);

    /// Return true if the specified
    /// EXTRACT_SUBVECTOR operand specifies a vector extract that is
    /// suitable for input to VEXTRACTF64X4, VEXTRACTI64X4 instructions.
    bool isVEXTRACT256Index(SDNode *N);

    /// Return true if the specified
    /// INSERT_SUBVECTOR operand specifies a subvector insert that is
    /// suitable for input to VINSERTF64X4, VINSERTI64X4 instructions.
    bool isVINSERT256Index(SDNode *N);

    /// Return the appropriate
    /// immediate to extract the specified EXTRACT_SUBVECTOR index
    /// with VEXTRACTF128, VEXTRACTI128 instructions.
    unsigned getExtractVEXTRACT128Immediate(SDNode *N);

    /// Return the appropriate
    /// immediate to insert at the specified INSERT_SUBVECTOR index
    /// with VINSERTF128, VINSERT128 instructions.
    unsigned getInsertVINSERT128Immediate(SDNode *N);

    /// Return the appropriate
    /// immediate to extract the specified EXTRACT_SUBVECTOR index
    /// with VEXTRACTF64X4, VEXTRACTI64x4 instructions.
    unsigned getExtractVEXTRACT256Immediate(SDNode *N);

    /// Return the appropriate
    /// immediate to insert at the specified INSERT_SUBVECTOR index
    /// with VINSERTF64x4, VINSERTI64x4 instructions.
    unsigned getInsertVINSERT256Immediate(SDNode *N);

    /// Returns true if Elt is a constant zero or floating point constant +0.0.
    bool isZeroNode(SDValue Elt);

    /// Returns true of the given offset can be
    /// fit into displacement field of the instruction.
    bool isOffsetSuitableForCodeModel(int64_t Offset, CodeModel::Model M,
                                      bool hasSymbolicDisplacement = true);

    /// Determines whether the callee is required to pop its
    /// own arguments. Callee pop is necessary to support tail calls.
    bool isCalleePop(CallingConv::ID CallingConv,
                     bool is64Bit, bool IsVarArg, bool GuaranteeTCO);

  } // end namespace X86

  //===--------------------------------------------------------------------===//
  //  X86 Implementation of the TargetLowering interface
  class X86TargetLowering final : public TargetLowering {
  public:
    explicit X86TargetLowering(const X86TargetMachine &TM,
                               const X86Subtarget &STI);

    unsigned getJumpTableEncoding() const override;
    bool useSoftFloat() const override;

    MVT getScalarShiftAmountTy(const DataLayout &, EVT) const override {
      return MVT::i8;
    }

    const MCExpr *
    LowerCustomJumpTableEntry(const MachineJumpTableInfo *MJTI,
                              const MachineBasicBlock *MBB, unsigned uid,
                              MCContext &Ctx) const override;

    /// Returns relocation base for the given PIC jumptable.
    SDValue getPICJumpTableRelocBase(SDValue Table,
                                     SelectionDAG &DAG) const override;
    const MCExpr *
    getPICJumpTableRelocBaseExpr(const MachineFunction *MF,
                                 unsigned JTI, MCContext &Ctx) const override;

    /// Return the desired alignment for ByVal aggregate
    /// function arguments in the caller parameter area. For X86, aggregates
    /// that contains are placed at 16-byte boundaries while the rest are at
    /// 4-byte boundaries.
    unsigned getByValTypeAlignment(Type *Ty,
                                   const DataLayout &DL) const override;

    /// Returns the target specific optimal type for load
    /// and store operations as a result of memset, memcpy, and memmove
    /// lowering. If DstAlign is zero that means it's safe to destination
    /// alignment can satisfy any constraint. Similarly if SrcAlign is zero it
    /// means there isn't a need to check it against alignment requirement,
    /// probably because the source does not need to be loaded. If 'IsMemset' is
    /// true, that means it's expanding a memset. If 'ZeroMemset' is true, that
    /// means it's a memset of zero. 'MemcpyStrSrc' indicates whether the memcpy
    /// source is constant so it does not need to be loaded.
    /// It returns EVT::Other if the type should be determined using generic
    /// target-independent logic.
    EVT getOptimalMemOpType(uint64_t Size, unsigned DstAlign, unsigned SrcAlign,
                            bool IsMemset, bool ZeroMemset, bool MemcpyStrSrc,
                            MachineFunction &MF) const override;

    /// Returns true if it's safe to use load / store of the
    /// specified type to expand memcpy / memset inline. This is mostly true
    /// for all types except for some special cases. For example, on X86
    /// targets without SSE2 f64 load / store are done with fldl / fstpl which
    /// also does type conversion. Note the specified type doesn't have to be
    /// legal as the hook is used before type legalization.
    bool isSafeMemOpType(MVT VT) const override;

    /// Returns true if the target allows unaligned memory accesses of the
    /// specified type. Returns whether it is "fast" in the last argument.
    bool allowsMisalignedMemoryAccesses(EVT VT, unsigned AS, unsigned Align,
                                       bool *Fast) const override;

    /// Provide custom lowering hooks for some operations.
    ///
    SDValue LowerOperation(SDValue Op, SelectionDAG &DAG) const override;

    /// Places new result values for the node in Results (their number
    /// and types must exactly match those of the original return values of
    /// the node), or leaves Results empty, which indicates that the node is not
    /// to be custom lowered after all.
    void LowerOperationWrapper(SDNode *N,
                               SmallVectorImpl<SDValue> &Results,
                               SelectionDAG &DAG) const override;

    /// Replace the results of node with an illegal result
    /// type with new values built out of custom code.
    ///
    void ReplaceNodeResults(SDNode *N, SmallVectorImpl<SDValue>&Results,
                            SelectionDAG &DAG) const override;

    SDValue PerformDAGCombine(SDNode *N, DAGCombinerInfo &DCI) const override;

    /// Return true if the target has native support for
    /// the specified value type and it is 'desirable' to use the type for the
    /// given node type. e.g. On x86 i16 is legal, but undesirable since i16
    /// instruction encodings are longer and some i16 instructions are slow.
    bool isTypeDesirableForOp(unsigned Opc, EVT VT) const override;

    /// Return true if the target has native support for the
    /// specified value type and it is 'desirable' to use the type. e.g. On x86
    /// i16 is legal, but undesirable since i16 instruction encodings are longer
    /// and some i16 instructions are slow.
    bool IsDesirableToPromoteOp(SDValue Op, EVT &PVT) const override;

    /// Return true if the MachineFunction contains a COPY which would imply
    /// HasOpaqueSPAdjustment.
    bool hasCopyImplyingStackAdjustment(MachineFunction *MF) const override;

    MachineBasicBlock *
    EmitInstrWithCustomInserter(MachineInstr &MI,
                                MachineBasicBlock *MBB) const override;

    /// This method returns the name of a target specific DAG node.
    const char *getTargetNodeName(unsigned Opcode) const override;

    bool isCheapToSpeculateCttz() const override;

    bool isCheapToSpeculateCtlz() const override;

    bool isCtlzFast() const override;

    bool hasBitPreservingFPLogic(EVT VT) const override {
      return VT == MVT::f32 || VT == MVT::f64 || VT.isVector();
    }

    bool isMultiStoresCheaperThanBitsMerge(EVT LTy, EVT HTy) const override {
      // If the pair to store is a mixture of float and int values, we will
      // save two bitwise instructions and one float-to-int instruction and
      // increase one store instruction. There is potentially a more
      // significant benefit because it avoids the float->int domain switch
      // for input value. So It is more likely a win.
      if ((LTy.isFloatingPoint() && HTy.isInteger()) ||
          (LTy.isInteger() && HTy.isFloatingPoint()))
        return true;
      // If the pair only contains int values, we will save two bitwise
      // instructions and increase one store instruction (costing one more
      // store buffer). Since the benefit is more blurred so we leave
      // such pair out until we get testcase to prove it is a win.
      return false;
    }

    bool hasAndNotCompare(SDValue Y) const override;

    /// Return the value type to use for ISD::SETCC.
    EVT getSetCCResultType(const DataLayout &DL, LLVMContext &Context,
                           EVT VT) const override;

    /// Determine which of the bits specified in Mask are known to be either
    /// zero or one and return them in the KnownZero/KnownOne bitsets.
    void computeKnownBitsForTargetNode(const SDValue Op,
                                       APInt &KnownZero,
                                       APInt &KnownOne,
                                       const SelectionDAG &DAG,
                                       unsigned Depth = 0) const override;

    /// Determine the number of bits in the operation that are sign bits.
    unsigned ComputeNumSignBitsForTargetNode(SDValue Op,
                                             const SelectionDAG &DAG,
                                             unsigned Depth) const override;

    bool isGAPlusOffset(SDNode *N, const GlobalValue* &GA,
                        int64_t &Offset) const override;

    SDValue getReturnAddressFrameIndex(SelectionDAG &DAG) const;

    bool ExpandInlineAsm(CallInst *CI) const override;

    ConstraintType getConstraintType(StringRef Constraint) const override;

    /// Examine constraint string and operand type and determine a weight value.
    /// The operand object must already have been set up with the operand type.
    ConstraintWeight
      getSingleConstraintMatchWeight(AsmOperandInfo &info,
                                     const char *constraint) const override;

    const char *LowerXConstraint(EVT ConstraintVT) const override;

    /// Lower the specified operand into the Ops vector. If it is invalid, don't
    /// add anything to Ops. If hasMemory is true it means one of the asm
    /// constraint of the inline asm instruction being processed is 'm'.
    void LowerAsmOperandForConstraint(SDValue Op,
                                      std::string &Constraint,
                                      std::vector<SDValue> &Ops,
                                      SelectionDAG &DAG) const override;

    unsigned
    getInlineAsmMemConstraint(StringRef ConstraintCode) const override {
      if (ConstraintCode == "i")
        return InlineAsm::Constraint_i;
      else if (ConstraintCode == "o")
        return InlineAsm::Constraint_o;
      else if (ConstraintCode == "v")
        return InlineAsm::Constraint_v;
      else if (ConstraintCode == "X")
        return InlineAsm::Constraint_X;
      return TargetLowering::getInlineAsmMemConstraint(ConstraintCode);
    }

    /// Given a physical register constraint
    /// (e.g. {edx}), return the register number and the register class for the
    /// register.  This should only be used for C_Register constraints.  On
    /// error, this returns a register number of 0.
    std::pair<unsigned, const TargetRegisterClass *>
    getRegForInlineAsmConstraint(const TargetRegisterInfo *TRI,
                                 StringRef Constraint, MVT VT) const override;

    /// Return true if the addressing mode represented
    /// by AM is legal for this target, for a load/store of the specified type.
    bool isLegalAddressingMode(const DataLayout &DL, const AddrMode &AM,
                               Type *Ty, unsigned AS) const override;

    /// Return true if the specified immediate is legal
    /// icmp immediate, that is the target has icmp instructions which can
    /// compare a register against the immediate without having to materialize
    /// the immediate into a register.
    bool isLegalICmpImmediate(int64_t Imm) const override;

    /// Return true if the specified immediate is legal
    /// add immediate, that is the target has add instructions which can
    /// add a register and the immediate without having to materialize
    /// the immediate into a register.
    bool isLegalAddImmediate(int64_t Imm) const override;

    /// \brief Return the cost of the scaling factor used in the addressing
    /// mode represented by AM for this target, for a load/store
    /// of the specified type.
    /// If the AM is supported, the return value must be >= 0.
    /// If the AM is not supported, it returns a negative value.
    int getScalingFactorCost(const DataLayout &DL, const AddrMode &AM, Type *Ty,
                             unsigned AS) const override;

    bool isVectorShiftByScalarCheap(Type *Ty) const override;

    /// Return true if it's free to truncate a value of
    /// type Ty1 to type Ty2. e.g. On x86 it's free to truncate a i32 value in
    /// register EAX to i16 by referencing its sub-register AX.
    bool isTruncateFree(Type *Ty1, Type *Ty2) const override;
    bool isTruncateFree(EVT VT1, EVT VT2) const override;

    bool allowTruncateForTailCall(Type *Ty1, Type *Ty2) const override;

    /// Return true if any actual instruction that defines a
    /// value of type Ty1 implicit zero-extends the value to Ty2 in the result
    /// register. This does not necessarily include registers defined in
    /// unknown ways, such as incoming arguments, or copies from unknown
    /// virtual registers. Also, if isTruncateFree(Ty2, Ty1) is true, this
    /// does not necessarily apply to truncate instructions. e.g. on x86-64,
    /// all instructions that define 32-bit values implicit zero-extend the
    /// result out to 64 bits.
    bool isZExtFree(Type *Ty1, Type *Ty2) const override;
    bool isZExtFree(EVT VT1, EVT VT2) const override;
    bool isZExtFree(SDValue Val, EVT VT2) const override;

    /// Return true if folding a vector load into ExtVal (a sign, zero, or any
    /// extend node) is profitable.
    bool isVectorLoadExtDesirable(SDValue) const override;

    /// Return true if an FMA operation is faster than a pair of fmul and fadd
    /// instructions. fmuladd intrinsics will be expanded to FMAs when this
    /// method returns true, otherwise fmuladd is expanded to fmul + fadd.
    bool isFMAFasterThanFMulAndFAdd(EVT VT) const override;

    /// Return true if it's profitable to narrow
    /// operations of type VT1 to VT2. e.g. on x86, it's profitable to narrow
    /// from i32 to i8 but not from i32 to i16.
    bool isNarrowingProfitable(EVT VT1, EVT VT2) const override;

    /// Given an intrinsic, checks if on the target the intrinsic will need to map
    /// to a MemIntrinsicNode (touches memory). If this is the case, it returns
    /// true and stores the intrinsic information into the IntrinsicInfo that was
    /// passed to the function.
    bool getTgtMemIntrinsic(IntrinsicInfo &Info, const CallInst &I,
                            unsigned Intrinsic) const override;

    /// Returns true if the target can instruction select the
    /// specified FP immediate natively. If false, the legalizer will
    /// materialize the FP immediate as a load from a constant pool.
    bool isFPImmLegal(const APFloat &Imm, EVT VT) const override;

    /// Targets can use this to indicate that they only support *some*
    /// VECTOR_SHUFFLE operations, those with specific masks. By default, if a
    /// target supports the VECTOR_SHUFFLE node, all mask values are assumed to
    /// be legal.
    bool isShuffleMaskLegal(const SmallVectorImpl<int> &Mask,
                            EVT VT) const override;

    /// Similar to isShuffleMaskLegal. This is used by Targets can use this to
    /// indicate if there is a suitable VECTOR_SHUFFLE that can be used to
    /// replace a VAND with a constant pool entry.
    bool isVectorClearMaskLegal(const SmallVectorImpl<int> &Mask,
                                EVT VT) const override;

    /// If true, then instruction selection should
    /// seek to shrink the FP constant of the specified type to a smaller type
    /// in order to save space and / or reduce runtime.
    bool ShouldShrinkFPConstant(EVT VT) const override {
      // Don't shrink FP constpool if SSE2 is available since cvtss2sd is more
      // expensive than a straight movsd. On the other hand, it's important to
      // shrink long double fp constant since fldt is very slow.
      return !X86ScalarSSEf64 || VT == MVT::f80;
    }

    /// Return true if we believe it is correct and profitable to reduce the
    /// load node to a smaller type.
    bool shouldReduceLoadWidth(SDNode *Load, ISD::LoadExtType ExtTy,
                               EVT NewVT) const override;

    /// Return true if the specified scalar FP type is computed in an SSE
    /// register, not on the X87 floating point stack.
    bool isScalarFPTypeInSSEReg(EVT VT) const {
      return (VT == MVT::f64 && X86ScalarSSEf64) || // f64 is when SSE2
             (VT == MVT::f32 && X86ScalarSSEf32);   // f32 is when SSE1
    }

    /// \brief Returns true if it is beneficial to convert a load of a constant
    /// to just the constant itself.
    bool shouldConvertConstantLoadToIntImm(const APInt &Imm,
                                           Type *Ty) const override;

    /// Return true if EXTRACT_SUBVECTOR is cheap for this result type
    /// with this index.
    bool isExtractSubvectorCheap(EVT ResVT, unsigned Index) const override;

    /// Intel processors have a unified instruction and data cache
    const char * getClearCacheBuiltinName() const override {
      return nullptr; // nothing to do, move along.
    }

    unsigned getRegisterByName(const char* RegName, EVT VT,
                               SelectionDAG &DAG) const override;

    /// If a physical register, this returns the register that receives the
    /// exception address on entry to an EH pad.
    unsigned
    getExceptionPointerRegister(const Constant *PersonalityFn) const override;

    /// If a physical register, this returns the register that receives the
    /// exception typeid on entry to a landing pad.
    unsigned
    getExceptionSelectorRegister(const Constant *PersonalityFn) const override;

    virtual bool needsFixedCatchObjects() const override;

    /// This method returns a target specific FastISel object,
    /// or null if the target does not support "fast" ISel.
    FastISel *createFastISel(FunctionLoweringInfo &funcInfo,
                             const TargetLibraryInfo *libInfo) const override;

    /// If the target has a standard location for the stack protector cookie,
    /// returns the address of that location. Otherwise, returns nullptr.
    Value *getIRStackGuard(IRBuilder<> &IRB) const override;

    bool useLoadStackGuardNode() const override;
    void insertSSPDeclarations(Module &M) const override;
    Value *getSDagStackGuard(const Module &M) const override;
    Value *getSSPStackGuardCheck(const Module &M) const override;

    /// Return true if the target stores SafeStack pointer at a fixed offset in
    /// some non-standard address space, and populates the address space and
    /// offset as appropriate.
    Value *getSafeStackPointerLocation(IRBuilder<> &IRB) const override;

    SDValue BuildFILD(SDValue Op, EVT SrcVT, SDValue Chain, SDValue StackSlot,
                      SelectionDAG &DAG) const;

    bool isNoopAddrSpaceCast(unsigned SrcAS, unsigned DestAS) const override;

    /// \brief Customize the preferred legalization strategy for certain types.
    LegalizeTypeAction getPreferredVectorAction(EVT VT) const override;

    bool isIntDivCheap(EVT VT, AttributeSet Attr) const override;

    bool supportSwiftError() const override;

    unsigned getMaxSupportedInterleaveFactor() const override { return 4; }

    /// \brief Lower interleaved load(s) into target specific
    /// instructions/intrinsics.
    bool lowerInterleavedLoad(LoadInst *LI,
                              ArrayRef<ShuffleVectorInst *> Shuffles,
                              ArrayRef<unsigned> Indices,
                              unsigned Factor) const override;
  protected:
    std::pair<const TargetRegisterClass *, uint8_t>
    findRepresentativeClass(const TargetRegisterInfo *TRI,
                            MVT VT) const override;

  private:
    /// Keep a reference to the X86Subtarget around so that we can
    /// make the right decision when generating code for different targets.
    const X86Subtarget &Subtarget;

    /// Select between SSE or x87 floating point ops.
    /// When SSE is available, use it for f32 operations.
    /// When SSE2 is available, use it for f64 operations.
    bool X86ScalarSSEf32;
    bool X86ScalarSSEf64;

    /// A list of legal FP immediates.
    std::vector<APFloat> LegalFPImmediates;

    /// Indicate that this x86 target can instruction
    /// select the specified FP immediate natively.
    void addLegalFPImmediate(const APFloat& Imm) {
      LegalFPImmediates.push_back(Imm);
    }

    SDValue LowerCallResult(SDValue Chain, SDValue InFlag,
                            CallingConv::ID CallConv, bool isVarArg,
                            const SmallVectorImpl<ISD::InputArg> &Ins,
                            const SDLoc &dl, SelectionDAG &DAG,
                            SmallVectorImpl<SDValue> &InVals) const;
    SDValue LowerMemArgument(SDValue Chain, CallingConv::ID CallConv,
                             const SmallVectorImpl<ISD::InputArg> &ArgInfo,
                             const SDLoc &dl, SelectionDAG &DAG,
                             const CCValAssign &VA, MachineFrameInfo &MFI,
                             unsigned i) const;
    SDValue LowerMemOpCallTo(SDValue Chain, SDValue StackPtr, SDValue Arg,
                             const SDLoc &dl, SelectionDAG &DAG,
                             const CCValAssign &VA,
                             ISD::ArgFlagsTy Flags) const;

    // Call lowering helpers.

    /// Check whether the call is eligible for tail call optimization. Targets
    /// that want to do tail call optimization should implement this function.
    bool IsEligibleForTailCallOptimization(SDValue Callee,
                                           CallingConv::ID CalleeCC,
                                           bool isVarArg,
                                           bool isCalleeStructRet,
                                           bool isCallerStructRet,
                                           Type *RetTy,
                                    const SmallVectorImpl<ISD::OutputArg> &Outs,
                                    const SmallVectorImpl<SDValue> &OutVals,
                                    const SmallVectorImpl<ISD::InputArg> &Ins,
                                           SelectionDAG& DAG) const;
    SDValue EmitTailCallLoadRetAddr(SelectionDAG &DAG, SDValue &OutRetAddr,
                                    SDValue Chain, bool IsTailCall,
                                    bool Is64Bit, int FPDiff,
                                    const SDLoc &dl) const;

    unsigned GetAlignedArgumentStackSize(unsigned StackSize,
                                         SelectionDAG &DAG) const;

    unsigned getAddressSpace(void) const;

    std::pair<SDValue,SDValue> FP_TO_INTHelper(SDValue Op, SelectionDAG &DAG,
                                               bool isSigned,
                                               bool isReplace) const;

    SDValue LowerBUILD_VECTOR(SDValue Op, SelectionDAG &DAG) const;
    SDValue LowerBUILD_VECTORvXi1(SDValue Op, SelectionDAG &DAG) const;
    SDValue LowerVSELECT(SDValue Op, SelectionDAG &DAG) const;
    SDValue LowerEXTRACT_VECTOR_ELT(SDValue Op, SelectionDAG &DAG) const;
    SDValue ExtractBitFromMaskVector(SDValue Op, SelectionDAG &DAG) const;
    SDValue InsertBitToMaskVector(SDValue Op, SelectionDAG &DAG) const;
    SDValue LowerINSERT_VECTOR_ELT(SDValue Op, SelectionDAG &DAG) const;

    unsigned getGlobalWrapperKind(const GlobalValue *GV = nullptr) const;
    SDValue LowerConstantPool(SDValue Op, SelectionDAG &DAG) const;
    SDValue LowerBlockAddress(SDValue Op, SelectionDAG &DAG) const;
    SDValue LowerGlobalAddress(const GlobalValue *GV, const SDLoc &dl,
                               int64_t Offset, SelectionDAG &DAG) const;
    SDValue LowerGlobalAddress(SDValue Op, SelectionDAG &DAG) const;
    SDValue LowerGlobalTLSAddress(SDValue Op, SelectionDAG &DAG) const;
    SDValue LowerExternalSymbol(SDValue Op, SelectionDAG &DAG) const;

    SDValue LowerSINT_TO_FP(SDValue Op, SelectionDAG &DAG) const;
    SDValue LowerUINT_TO_FP(SDValue Op, SelectionDAG &DAG) const;
    SDValue LowerUINT_TO_FP_i64(SDValue Op, SelectionDAG &DAG) const;
    SDValue LowerUINT_TO_FP_i32(SDValue Op, SelectionDAG &DAG) const;
    SDValue lowerUINT_TO_FP_vec(SDValue Op, SelectionDAG &DAG) const;
    SDValue LowerTRUNCATE(SDValue Op, SelectionDAG &DAG) const;
    SDValue LowerFP_TO_INT(SDValue Op, const X86Subtarget &Subtarget,
                           SelectionDAG &DAG) const;
    SDValue LowerToBT(SDValue And, ISD::CondCode CC, const SDLoc &dl,
                      SelectionDAG &DAG) const;
    SDValue LowerSETCC(SDValue Op, SelectionDAG &DAG) const;
    SDValue LowerSETCCE(SDValue Op, SelectionDAG &DAG) const;
    SDValue LowerSELECT(SDValue Op, SelectionDAG &DAG) const;
    SDValue LowerBRCOND(SDValue Op, SelectionDAG &DAG) const;
    SDValue LowerJumpTable(SDValue Op, SelectionDAG &DAG) const;
    SDValue LowerDYNAMIC_STACKALLOC(SDValue Op, SelectionDAG &DAG) const;
    SDValue LowerVASTART(SDValue Op, SelectionDAG &DAG) const;
    SDValue LowerVAARG(SDValue Op, SelectionDAG &DAG) const;
    SDValue LowerRETURNADDR(SDValue Op, SelectionDAG &DAG) const;
    SDValue LowerADDROFRETURNADDR(SDValue Op, SelectionDAG &DAG) const;
    SDValue LowerFRAMEADDR(SDValue Op, SelectionDAG &DAG) const;
    SDValue LowerFRAME_TO_ARGS_OFFSET(SDValue Op, SelectionDAG &DAG) const;
    SDValue LowerEH_RETURN(SDValue Op, SelectionDAG &DAG) const;
    SDValue lowerEH_SJLJ_SETJMP(SDValue Op, SelectionDAG &DAG) const;
    SDValue lowerEH_SJLJ_LONGJMP(SDValue Op, SelectionDAG &DAG) const;
    SDValue lowerEH_SJLJ_SETUP_DISPATCH(SDValue Op, SelectionDAG &DAG) const;
    SDValue LowerINIT_TRAMPOLINE(SDValue Op, SelectionDAG &DAG) const;
    SDValue LowerFLT_ROUNDS_(SDValue Op, SelectionDAG &DAG) const;
    SDValue LowerWin64_i128OP(SDValue Op, SelectionDAG &DAG) const;
    SDValue LowerGC_TRANSITION_START(SDValue Op, SelectionDAG &DAG) const;
    SDValue LowerGC_TRANSITION_END(SDValue Op, SelectionDAG &DAG) const;

    SDValue
    LowerFormalArguments(SDValue Chain, CallingConv::ID CallConv, bool isVarArg,
                         const SmallVectorImpl<ISD::InputArg> &Ins,
                         const SDLoc &dl, SelectionDAG &DAG,
                         SmallVectorImpl<SDValue> &InVals) const override;
    SDValue LowerCall(CallLoweringInfo &CLI,
                      SmallVectorImpl<SDValue> &InVals) const override;

    SDValue LowerReturn(SDValue Chain, CallingConv::ID CallConv, bool isVarArg,
                        const SmallVectorImpl<ISD::OutputArg> &Outs,
                        const SmallVectorImpl<SDValue> &OutVals,
                        const SDLoc &dl, SelectionDAG &DAG) const override;

    bool supportSplitCSR(MachineFunction *MF) const override {
      return MF->getFunction()->getCallingConv() == CallingConv::CXX_FAST_TLS &&
          MF->getFunction()->hasFnAttribute(Attribute::NoUnwind);
    }
    void initializeSplitCSR(MachineBasicBlock *Entry) const override;
    void insertCopiesSplitCSR(
      MachineBasicBlock *Entry,
      const SmallVectorImpl<MachineBasicBlock *> &Exits) const override;

    bool isUsedByReturnOnly(SDNode *N, SDValue &Chain) const override;

    bool mayBeEmittedAsTailCall(CallInst *CI) const override;

    EVT getTypeForExtReturn(LLVMContext &Context, EVT VT,
                            ISD::NodeType ExtendKind) const override;

    bool CanLowerReturn(CallingConv::ID CallConv, MachineFunction &MF,
                        bool isVarArg,
                        const SmallVectorImpl<ISD::OutputArg> &Outs,
                        LLVMContext &Context) const override;

    const MCPhysReg *getScratchRegisters(CallingConv::ID CC) const override;

    TargetLoweringBase::AtomicExpansionKind
    shouldExpandAtomicLoadInIR(LoadInst *SI) const override;
    bool shouldExpandAtomicStoreInIR(StoreInst *SI) const override;
    TargetLoweringBase::AtomicExpansionKind
    shouldExpandAtomicRMWInIR(AtomicRMWInst *AI) const override;

    LoadInst *
    lowerIdempotentRMWIntoFencedLoad(AtomicRMWInst *AI) const override;

    bool needsCmpXchgNb(Type *MemType) const;

    void SetupEntryBlockForSjLj(MachineInstr &MI, MachineBasicBlock *MBB,
                                MachineBasicBlock *DispatchBB, int FI) const;

    // Utility function to emit the low-level va_arg code for X86-64.
    MachineBasicBlock *
    EmitVAARG64WithCustomInserter(MachineInstr &MI,
                                  MachineBasicBlock *MBB) const;

    /// Utility function to emit the xmm reg save portion of va_start.
    MachineBasicBlock *
    EmitVAStartSaveXMMRegsWithCustomInserter(MachineInstr &BInstr,
                                             MachineBasicBlock *BB) const;

    MachineBasicBlock *EmitLoweredSelect(MachineInstr &I,
                                         MachineBasicBlock *BB) const;

    MachineBasicBlock *EmitLoweredAtomicFP(MachineInstr &I,
                                           MachineBasicBlock *BB) const;

    MachineBasicBlock *EmitLoweredCatchRet(MachineInstr &MI,
                                           MachineBasicBlock *BB) const;

    MachineBasicBlock *EmitLoweredCatchPad(MachineInstr &MI,
                                           MachineBasicBlock *BB) const;

    MachineBasicBlock *EmitLoweredSegAlloca(MachineInstr &MI,
                                            MachineBasicBlock *BB) const;

    MachineBasicBlock *EmitLoweredTLSAddr(MachineInstr &MI,
                                          MachineBasicBlock *BB) const;

    MachineBasicBlock *EmitLoweredTLSCall(MachineInstr &MI,
                                          MachineBasicBlock *BB) const;

    MachineBasicBlock *emitEHSjLjSetJmp(MachineInstr &MI,
                                        MachineBasicBlock *MBB) const;

    MachineBasicBlock *emitEHSjLjLongJmp(MachineInstr &MI,
                                         MachineBasicBlock *MBB) const;

    MachineBasicBlock *emitFMA3Instr(MachineInstr &MI,
                                     MachineBasicBlock *MBB) const;

    MachineBasicBlock *EmitSjLjDispatchBlock(MachineInstr &MI,
                                             MachineBasicBlock *MBB) const;

    /// Emit nodes that will be selected as "test Op0,Op0", or something
    /// equivalent, for use with the given x86 condition code.
    SDValue EmitTest(SDValue Op0, unsigned X86CC, const SDLoc &dl,
                     SelectionDAG &DAG) const;

    /// Emit nodes that will be selected as "cmp Op0,Op1", or something
    /// equivalent, for use with the given x86 condition code.
    SDValue EmitCmp(SDValue Op0, SDValue Op1, unsigned X86CC, const SDLoc &dl,
                    SelectionDAG &DAG) const;

    /// Convert a comparison if required by the subtarget.
    SDValue ConvertCmpIfNecessary(SDValue Cmp, SelectionDAG &DAG) const;

    /// Check if replacement of SQRT with RSQRT should be disabled.
    bool isFsqrtCheap(SDValue Operand, SelectionDAG &DAG) const override;

    /// Use rsqrt* to speed up sqrt calculations.
    SDValue getSqrtEstimate(SDValue Operand, SelectionDAG &DAG, int Enabled,
                            int &RefinementSteps, bool &UseOneConstNR,
                            bool Reciprocal) const override;

    /// Use rcp* to speed up fdiv calculations.
    SDValue getRecipEstimate(SDValue Operand, SelectionDAG &DAG, int Enabled,
                             int &RefinementSteps) const override;

    /// Reassociate floating point divisions into multiply by reciprocal.
    unsigned combineRepeatedFPDivisors() const override;
  };

  namespace X86 {
    FastISel *createFastISel(FunctionLoweringInfo &funcInfo,
                             const TargetLibraryInfo *libInfo);
  } // end namespace X86

  // Base class for all X86 non-masked store operations.
  class X86StoreSDNode : public MemSDNode {
  public:
    X86StoreSDNode(unsigned Opcode, unsigned Order, const DebugLoc &dl,
                   SDVTList VTs, EVT MemVT,
                   MachineMemOperand *MMO)
      :MemSDNode(Opcode, Order, dl, VTs, MemVT, MMO) {}
    const SDValue &getValue() const { return getOperand(1); }
    const SDValue &getBasePtr() const { return getOperand(2); }

    static bool classof(const SDNode *N) {
      return N->getOpcode() == X86ISD::VTRUNCSTORES ||
        N->getOpcode() == X86ISD::VTRUNCSTOREUS;
    }
  };

  // Base class for all X86 masked store operations.
  // The class has the same order of operands as MaskedStoreSDNode for
  // convenience.
  class X86MaskedStoreSDNode : public MemSDNode {
  public:
    X86MaskedStoreSDNode(unsigned Opcode, unsigned Order,
                         const DebugLoc &dl, SDVTList VTs, EVT MemVT,
                         MachineMemOperand *MMO)
      : MemSDNode(Opcode, Order, dl, VTs, MemVT, MMO) {}

    const SDValue &getBasePtr() const { return getOperand(1); }
    const SDValue &getMask()    const { return getOperand(2); }
    const SDValue &getValue()   const { return getOperand(3); }

    static bool classof(const SDNode *N) {
      return N->getOpcode() == X86ISD::VMTRUNCSTORES ||
        N->getOpcode() == X86ISD::VMTRUNCSTOREUS;
    }
  };

  // X86 Truncating Store with Signed saturation.
  class TruncSStoreSDNode : public X86StoreSDNode {
  public:
    TruncSStoreSDNode(unsigned Order, const DebugLoc &dl,
                        SDVTList VTs, EVT MemVT, MachineMemOperand *MMO)
      : X86StoreSDNode(X86ISD::VTRUNCSTORES, Order, dl, VTs, MemVT, MMO) {}

    static bool classof(const SDNode *N) {
      return N->getOpcode() == X86ISD::VTRUNCSTORES;
    }
  };

  // X86 Truncating Store with Unsigned saturation.
  class TruncUSStoreSDNode : public X86StoreSDNode {
  public:
    TruncUSStoreSDNode(unsigned Order, const DebugLoc &dl,
                      SDVTList VTs, EVT MemVT, MachineMemOperand *MMO)
      : X86StoreSDNode(X86ISD::VTRUNCSTOREUS, Order, dl, VTs, MemVT, MMO) {}

    static bool classof(const SDNode *N) {
      return N->getOpcode() == X86ISD::VTRUNCSTOREUS;
    }
  };

  // X86 Truncating Masked Store with Signed saturation.
  class MaskedTruncSStoreSDNode : public X86MaskedStoreSDNode {
  public:
    MaskedTruncSStoreSDNode(unsigned Order,
                         const DebugLoc &dl, SDVTList VTs, EVT MemVT,
                         MachineMemOperand *MMO)
      : X86MaskedStoreSDNode(X86ISD::VMTRUNCSTORES, Order, dl, VTs, MemVT, MMO) {}

    static bool classof(const SDNode *N) {
      return N->getOpcode() == X86ISD::VMTRUNCSTORES;
    }
  };

  // X86 Truncating Masked Store with Unsigned saturation.
  class MaskedTruncUSStoreSDNode : public X86MaskedStoreSDNode {
  public:
    MaskedTruncUSStoreSDNode(unsigned Order,
                            const DebugLoc &dl, SDVTList VTs, EVT MemVT,
                            MachineMemOperand *MMO)
      : X86MaskedStoreSDNode(X86ISD::VMTRUNCSTOREUS, Order, dl, VTs, MemVT, MMO) {}

    static bool classof(const SDNode *N) {
      return N->getOpcode() == X86ISD::VMTRUNCSTOREUS;
    }
  };

} // end namespace llvm

#endif // LLVM_LIB_TARGET_X86_X86ISELLOWERING_H