llvm.org GIT mirror llvm / 7d7d996 lib / CodeGen / TargetInstrInfo.cpp
7d7d996

Tree @7d7d996 (Download .tar.gz)

TargetInstrInfo.cpp @7d7d996raw · history · blame

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
//===-- TargetInstrInfo.cpp - Target Instruction Information --------------===//
//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements the TargetInstrInfo class.
//
//===----------------------------------------------------------------------===//

#include "llvm/Target/TargetInstrInfo.h"
#include "llvm/CodeGen/MachineFrameInfo.h"
#include "llvm/CodeGen/MachineInstrBuilder.h"
#include "llvm/CodeGen/MachineMemOperand.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/CodeGen/PseudoSourceValue.h"
#include "llvm/CodeGen/ScoreboardHazardRecognizer.h"
#include "llvm/CodeGen/StackMaps.h"
#include "llvm/IR/DataLayout.h"
#include "llvm/MC/MCAsmInfo.h"
#include "llvm/MC/MCInstrItineraries.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Target/TargetLowering.h"
#include "llvm/Target/TargetMachine.h"
#include "llvm/Target/TargetRegisterInfo.h"
#include <cctype>
using namespace llvm;

static cl::opt<bool> DisableHazardRecognizer(
  "disable-sched-hazard", cl::Hidden, cl::init(false),
  cl::desc("Disable hazard detection during preRA scheduling"));

TargetInstrInfo::~TargetInstrInfo() {
}

const TargetRegisterClass*
TargetInstrInfo::getRegClass(const MCInstrDesc &MCID, unsigned OpNum,
                             const TargetRegisterInfo *TRI,
                             const MachineFunction &MF) const {
  if (OpNum >= MCID.getNumOperands())
    return 0;

  short RegClass = MCID.OpInfo[OpNum].RegClass;
  if (MCID.OpInfo[OpNum].isLookupPtrRegClass())
    return TRI->getPointerRegClass(MF, RegClass);

  // Instructions like INSERT_SUBREG do not have fixed register classes.
  if (RegClass < 0)
    return 0;

  // Otherwise just look it up normally.
  return TRI->getRegClass(RegClass);
}

/// insertNoop - Insert a noop into the instruction stream at the specified
/// point.
void TargetInstrInfo::insertNoop(MachineBasicBlock &MBB,
                                 MachineBasicBlock::iterator MI) const {
  llvm_unreachable("Target didn't implement insertNoop!");
}

/// Measure the specified inline asm to determine an approximation of its
/// length.
/// Comments (which run till the next SeparatorString or newline) do not
/// count as an instruction.
/// Any other non-whitespace text is considered an instruction, with
/// multiple instructions separated by SeparatorString or newlines.
/// Variable-length instructions are not handled here; this function
/// may be overloaded in the target code to do that.
unsigned TargetInstrInfo::getInlineAsmLength(const char *Str,
                                             const MCAsmInfo &MAI) const {


  // Count the number of instructions in the asm.
  bool atInsnStart = true;
  unsigned Length = 0;
  for (; *Str; ++Str) {
    if (*Str == '\n' || strncmp(Str, MAI.getSeparatorString(),
                                strlen(MAI.getSeparatorString())) == 0)
      atInsnStart = true;
    if (atInsnStart && !std::isspace(static_cast<unsigned char>(*Str))) {
      Length += MAI.getMaxInstLength();
      atInsnStart = false;
    }
    if (atInsnStart && strncmp(Str, MAI.getCommentString(),
                               strlen(MAI.getCommentString())) == 0)
      atInsnStart = false;
  }

  return Length;
}

/// ReplaceTailWithBranchTo - Delete the instruction OldInst and everything
/// after it, replacing it with an unconditional branch to NewDest.
void
TargetInstrInfo::ReplaceTailWithBranchTo(MachineBasicBlock::iterator Tail,
                                         MachineBasicBlock *NewDest) const {
  MachineBasicBlock *MBB = Tail->getParent();

  // Remove all the old successors of MBB from the CFG.
  while (!MBB->succ_empty())
    MBB->removeSuccessor(MBB->succ_begin());

  // Remove all the dead instructions from the end of MBB.
  MBB->erase(Tail, MBB->end());

  // If MBB isn't immediately before MBB, insert a branch to it.
  if (++MachineFunction::iterator(MBB) != MachineFunction::iterator(NewDest))
    InsertBranch(*MBB, NewDest, 0, SmallVector<MachineOperand, 0>(),
                 Tail->getDebugLoc());
  MBB->addSuccessor(NewDest);
}

// commuteInstruction - The default implementation of this method just exchanges
// the two operands returned by findCommutedOpIndices.
MachineInstr *TargetInstrInfo::commuteInstruction(MachineInstr *MI,
                                                  bool NewMI) const {
  const MCInstrDesc &MCID = MI->getDesc();
  bool HasDef = MCID.getNumDefs();
  if (HasDef && !MI->getOperand(0).isReg())
    // No idea how to commute this instruction. Target should implement its own.
    return 0;
  unsigned Idx1, Idx2;
  if (!findCommutedOpIndices(MI, Idx1, Idx2)) {
    std::string msg;
    raw_string_ostream Msg(msg);
    Msg << "Don't know how to commute: " << *MI;
    report_fatal_error(Msg.str());
  }

  assert(MI->getOperand(Idx1).isReg() && MI->getOperand(Idx2).isReg() &&
         "This only knows how to commute register operands so far");
  unsigned Reg0 = HasDef ? MI->getOperand(0).getReg() : 0;
  unsigned Reg1 = MI->getOperand(Idx1).getReg();
  unsigned Reg2 = MI->getOperand(Idx2).getReg();
  unsigned SubReg0 = HasDef ? MI->getOperand(0).getSubReg() : 0;
  unsigned SubReg1 = MI->getOperand(Idx1).getSubReg();
  unsigned SubReg2 = MI->getOperand(Idx2).getSubReg();
  bool Reg1IsKill = MI->getOperand(Idx1).isKill();
  bool Reg2IsKill = MI->getOperand(Idx2).isKill();
  // If destination is tied to either of the commuted source register, then
  // it must be updated.
  if (HasDef && Reg0 == Reg1 &&
      MI->getDesc().getOperandConstraint(Idx1, MCOI::TIED_TO) == 0) {
    Reg2IsKill = false;
    Reg0 = Reg2;
    SubReg0 = SubReg2;
  } else if (HasDef && Reg0 == Reg2 &&
             MI->getDesc().getOperandConstraint(Idx2, MCOI::TIED_TO) == 0) {
    Reg1IsKill = false;
    Reg0 = Reg1;
    SubReg0 = SubReg1;
  }

  if (NewMI) {
    // Create a new instruction.
    MachineFunction &MF = *MI->getParent()->getParent();
    MI = MF.CloneMachineInstr(MI);
  }

  if (HasDef) {
    MI->getOperand(0).setReg(Reg0);
    MI->getOperand(0).setSubReg(SubReg0);
  }
  MI->getOperand(Idx2).setReg(Reg1);
  MI->getOperand(Idx1).setReg(Reg2);
  MI->getOperand(Idx2).setSubReg(SubReg1);
  MI->getOperand(Idx1).setSubReg(SubReg2);
  MI->getOperand(Idx2).setIsKill(Reg1IsKill);
  MI->getOperand(Idx1).setIsKill(Reg2IsKill);
  return MI;
}

/// findCommutedOpIndices - If specified MI is commutable, return the two
/// operand indices that would swap value. Return true if the instruction
/// is not in a form which this routine understands.
bool TargetInstrInfo::findCommutedOpIndices(MachineInstr *MI,
                                            unsigned &SrcOpIdx1,
                                            unsigned &SrcOpIdx2) const {
  assert(!MI->isBundle() &&
         "TargetInstrInfo::findCommutedOpIndices() can't handle bundles");

  const MCInstrDesc &MCID = MI->getDesc();
  if (!MCID.isCommutable())
    return false;
  // This assumes v0 = op v1, v2 and commuting would swap v1 and v2. If this
  // is not true, then the target must implement this.
  SrcOpIdx1 = MCID.getNumDefs();
  SrcOpIdx2 = SrcOpIdx1 + 1;
  if (!MI->getOperand(SrcOpIdx1).isReg() ||
      !MI->getOperand(SrcOpIdx2).isReg())
    // No idea.
    return false;
  return true;
}


bool
TargetInstrInfo::isUnpredicatedTerminator(const MachineInstr *MI) const {
  if (!MI->isTerminator()) return false;

  // Conditional branch is a special case.
  if (MI->isBranch() && !MI->isBarrier())
    return true;
  if (!MI->isPredicable())
    return true;
  return !isPredicated(MI);
}


bool TargetInstrInfo::PredicateInstruction(MachineInstr *MI,
                            const SmallVectorImpl<MachineOperand> &Pred) const {
  bool MadeChange = false;

  assert(!MI->isBundle() &&
         "TargetInstrInfo::PredicateInstruction() can't handle bundles");

  const MCInstrDesc &MCID = MI->getDesc();
  if (!MI->isPredicable())
    return false;

  for (unsigned j = 0, i = 0, e = MI->getNumOperands(); i != e; ++i) {
    if (MCID.OpInfo[i].isPredicate()) {
      MachineOperand &MO = MI->getOperand(i);
      if (MO.isReg()) {
        MO.setReg(Pred[j].getReg());
        MadeChange = true;
      } else if (MO.isImm()) {
        MO.setImm(Pred[j].getImm());
        MadeChange = true;
      } else if (MO.isMBB()) {
        MO.setMBB(Pred[j].getMBB());
        MadeChange = true;
      }
      ++j;
    }
  }
  return MadeChange;
}

bool TargetInstrInfo::hasLoadFromStackSlot(const MachineInstr *MI,
                                           const MachineMemOperand *&MMO,
                                           int &FrameIndex) const {
  for (MachineInstr::mmo_iterator o = MI->memoperands_begin(),
         oe = MI->memoperands_end();
       o != oe;
       ++o) {
    if ((*o)->isLoad() && (*o)->getValue())
      if (const FixedStackPseudoSourceValue *Value =
          dyn_cast<const FixedStackPseudoSourceValue>((*o)->getValue())) {
        FrameIndex = Value->getFrameIndex();
        MMO = *o;
        return true;
      }
  }
  return false;
}

bool TargetInstrInfo::hasStoreToStackSlot(const MachineInstr *MI,
                                          const MachineMemOperand *&MMO,
                                          int &FrameIndex) const {
  for (MachineInstr::mmo_iterator o = MI->memoperands_begin(),
         oe = MI->memoperands_end();
       o != oe;
       ++o) {
    if ((*o)->isStore() && (*o)->getValue())
      if (const FixedStackPseudoSourceValue *Value =
          dyn_cast<const FixedStackPseudoSourceValue>((*o)->getValue())) {
        FrameIndex = Value->getFrameIndex();
        MMO = *o;
        return true;
      }
  }
  return false;
}

bool TargetInstrInfo::getStackSlotRange(const TargetRegisterClass *RC,
                                        unsigned SubIdx, unsigned &Size,
                                        unsigned &Offset,
                                        const TargetMachine *TM) const {
  if (!SubIdx) {
    Size = RC->getSize();
    Offset = 0;
    return true;
  }
  unsigned BitSize = TM->getRegisterInfo()->getSubRegIdxSize(SubIdx);
  // Convert bit size to byte size to be consistent with
  // MCRegisterClass::getSize().
  if (BitSize % 8)
    return false;

  int BitOffset = TM->getRegisterInfo()->getSubRegIdxOffset(SubIdx);
  if (BitOffset < 0 || BitOffset % 8)
    return false;

  Size = BitSize /= 8;
  Offset = (unsigned)BitOffset / 8;

  assert(RC->getSize() >= (Offset + Size) && "bad subregister range");

  if (!TM->getDataLayout()->isLittleEndian()) {
    Offset = RC->getSize() - (Offset + Size);
  }
  return true;
}

void TargetInstrInfo::reMaterialize(MachineBasicBlock &MBB,
                                    MachineBasicBlock::iterator I,
                                    unsigned DestReg,
                                    unsigned SubIdx,
                                    const MachineInstr *Orig,
                                    const TargetRegisterInfo &TRI) const {
  MachineInstr *MI = MBB.getParent()->CloneMachineInstr(Orig);
  MI->substituteRegister(MI->getOperand(0).getReg(), DestReg, SubIdx, TRI);
  MBB.insert(I, MI);
}

bool
TargetInstrInfo::produceSameValue(const MachineInstr *MI0,
                                  const MachineInstr *MI1,
                                  const MachineRegisterInfo *MRI) const {
  return MI0->isIdenticalTo(MI1, MachineInstr::IgnoreVRegDefs);
}

MachineInstr *TargetInstrInfo::duplicate(MachineInstr *Orig,
                                         MachineFunction &MF) const {
  assert(!Orig->isNotDuplicable() &&
         "Instruction cannot be duplicated");
  return MF.CloneMachineInstr(Orig);
}

// If the COPY instruction in MI can be folded to a stack operation, return
// the register class to use.
static const TargetRegisterClass *canFoldCopy(const MachineInstr *MI,
                                              unsigned FoldIdx) {
  assert(MI->isCopy() && "MI must be a COPY instruction");
  if (MI->getNumOperands() != 2)
    return 0;
  assert(FoldIdx<2 && "FoldIdx refers no nonexistent operand");

  const MachineOperand &FoldOp = MI->getOperand(FoldIdx);
  const MachineOperand &LiveOp = MI->getOperand(1-FoldIdx);

  if (FoldOp.getSubReg() || LiveOp.getSubReg())
    return 0;

  unsigned FoldReg = FoldOp.getReg();
  unsigned LiveReg = LiveOp.getReg();

  assert(TargetRegisterInfo::isVirtualRegister(FoldReg) &&
         "Cannot fold physregs");

  const MachineRegisterInfo &MRI = MI->getParent()->getParent()->getRegInfo();
  const TargetRegisterClass *RC = MRI.getRegClass(FoldReg);

  if (TargetRegisterInfo::isPhysicalRegister(LiveOp.getReg()))
    return RC->contains(LiveOp.getReg()) ? RC : 0;

  if (RC->hasSubClassEq(MRI.getRegClass(LiveReg)))
    return RC;

  // FIXME: Allow folding when register classes are memory compatible.
  return 0;
}

bool TargetInstrInfo::
canFoldMemoryOperand(const MachineInstr *MI,
                     const SmallVectorImpl<unsigned> &Ops) const {
  return MI->isCopy() && Ops.size() == 1 && canFoldCopy(MI, Ops[0]);
}

static MachineInstr* foldPatchpoint(MachineFunction &MF,
                                    MachineInstr *MI,
                                    const SmallVectorImpl<unsigned> &Ops,
                                    int FrameIndex,
                                    const TargetInstrInfo &TII) {
  unsigned StartIdx = 0;
  switch (MI->getOpcode()) {
  case TargetOpcode::STACKMAP:
    StartIdx = 2; // Skip ID, nShadowBytes.
    break;
  case TargetOpcode::PATCHPOINT: {
    // For PatchPoint, the call args are not foldable.
    PatchPointOpers opers(MI);
    StartIdx = opers.getVarIdx();
    break;
  }
  default:
    llvm_unreachable("unexpected stackmap opcode");
  }

  // Return false if any operands requested for folding are not foldable (not
  // part of the stackmap's live values).
  for (SmallVectorImpl<unsigned>::const_iterator I = Ops.begin(), E = Ops.end();
       I != E; ++I) {
    if (*I < StartIdx)
      return 0;
  }

  MachineInstr *NewMI =
    MF.CreateMachineInstr(TII.get(MI->getOpcode()), MI->getDebugLoc(), true);
  MachineInstrBuilder MIB(MF, NewMI);

  // No need to fold return, the meta data, and function arguments
  for (unsigned i = 0; i < StartIdx; ++i)
    MIB.addOperand(MI->getOperand(i));

  for (unsigned i = StartIdx; i < MI->getNumOperands(); ++i) {
    MachineOperand &MO = MI->getOperand(i);
    if (std::find(Ops.begin(), Ops.end(), i) != Ops.end()) {
      unsigned SpillSize;
      unsigned SpillOffset;
      // Compute the spill slot size and offset.
      const TargetRegisterClass *RC =
        MF.getRegInfo().getRegClass(MO.getReg());
      bool Valid = TII.getStackSlotRange(RC, MO.getSubReg(), SpillSize,
                                         SpillOffset, &MF.getTarget());
      if (!Valid)
        report_fatal_error("cannot spill patchpoint subregister operand");
      MIB.addImm(StackMaps::IndirectMemRefOp);
      MIB.addImm(SpillSize);
      MIB.addFrameIndex(FrameIndex);
      MIB.addImm(SpillOffset);
    }
    else
      MIB.addOperand(MO);
  }
  return NewMI;
}

/// foldMemoryOperand - Attempt to fold a load or store of the specified stack
/// slot into the specified machine instruction for the specified operand(s).
/// If this is possible, a new instruction is returned with the specified
/// operand folded, otherwise NULL is returned. The client is responsible for
/// removing the old instruction and adding the new one in the instruction
/// stream.
MachineInstr*
TargetInstrInfo::foldMemoryOperand(MachineBasicBlock::iterator MI,
                                   const SmallVectorImpl<unsigned> &Ops,
                                   int FI) const {
  unsigned Flags = 0;
  for (unsigned i = 0, e = Ops.size(); i != e; ++i)
    if (MI->getOperand(Ops[i]).isDef())
      Flags |= MachineMemOperand::MOStore;
    else
      Flags |= MachineMemOperand::MOLoad;

  MachineBasicBlock *MBB = MI->getParent();
  assert(MBB && "foldMemoryOperand needs an inserted instruction");
  MachineFunction &MF = *MBB->getParent();

  MachineInstr *NewMI = 0;

  if (MI->getOpcode() == TargetOpcode::STACKMAP ||
      MI->getOpcode() == TargetOpcode::PATCHPOINT) {
    // Fold stackmap/patchpoint.
    NewMI = foldPatchpoint(MF, MI, Ops, FI, *this);
  } else {
    // Ask the target to do the actual folding.
    NewMI =foldMemoryOperandImpl(MF, MI, Ops, FI);
  }
 
  if (NewMI) {
    NewMI->setMemRefs(MI->memoperands_begin(), MI->memoperands_end());
    // Add a memory operand, foldMemoryOperandImpl doesn't do that.
    assert((!(Flags & MachineMemOperand::MOStore) ||
            NewMI->mayStore()) &&
           "Folded a def to a non-store!");
    assert((!(Flags & MachineMemOperand::MOLoad) ||
            NewMI->mayLoad()) &&
           "Folded a use to a non-load!");
    const MachineFrameInfo &MFI = *MF.getFrameInfo();
    assert(MFI.getObjectOffset(FI) != -1);
    MachineMemOperand *MMO =
      MF.getMachineMemOperand(MachinePointerInfo::getFixedStack(FI),
                              Flags, MFI.getObjectSize(FI),
                              MFI.getObjectAlignment(FI));
    NewMI->addMemOperand(MF, MMO);

    // FIXME: change foldMemoryOperandImpl semantics to also insert NewMI.
    return MBB->insert(MI, NewMI);
  }

  // Straight COPY may fold as load/store.
  if (!MI->isCopy() || Ops.size() != 1)
    return 0;

  const TargetRegisterClass *RC = canFoldCopy(MI, Ops[0]);
  if (!RC)
    return 0;

  const MachineOperand &MO = MI->getOperand(1-Ops[0]);
  MachineBasicBlock::iterator Pos = MI;
  const TargetRegisterInfo *TRI = MF.getTarget().getRegisterInfo();

  if (Flags == MachineMemOperand::MOStore)
    storeRegToStackSlot(*MBB, Pos, MO.getReg(), MO.isKill(), FI, RC, TRI);
  else
    loadRegFromStackSlot(*MBB, Pos, MO.getReg(), FI, RC, TRI);
  return --Pos;
}

/// foldMemoryOperand - Same as the previous version except it allows folding
/// of any load and store from / to any address, not just from a specific
/// stack slot.
MachineInstr*
TargetInstrInfo::foldMemoryOperand(MachineBasicBlock::iterator MI,
                                   const SmallVectorImpl<unsigned> &Ops,
                                   MachineInstr* LoadMI) const {
  assert(LoadMI->canFoldAsLoad() && "LoadMI isn't foldable!");
#ifndef NDEBUG
  for (unsigned i = 0, e = Ops.size(); i != e; ++i)
    assert(MI->getOperand(Ops[i]).isUse() && "Folding load into def!");
#endif
  MachineBasicBlock &MBB = *MI->getParent();
  MachineFunction &MF = *MBB.getParent();

  // Ask the target to do the actual folding.
  MachineInstr *NewMI = 0;
  int FrameIndex = 0;

  if ((MI->getOpcode() == TargetOpcode::STACKMAP ||
       MI->getOpcode() == TargetOpcode::PATCHPOINT) &&
      isLoadFromStackSlot(LoadMI, FrameIndex)) {
    // Fold stackmap/patchpoint.
    NewMI = foldPatchpoint(MF, MI, Ops, FrameIndex, *this);
  } else {
    // Ask the target to do the actual folding.
    NewMI = foldMemoryOperandImpl(MF, MI, Ops, LoadMI);
  }

  if (!NewMI) return 0;

  NewMI = MBB.insert(MI, NewMI);

  // Copy the memoperands from the load to the folded instruction.
  if (MI->memoperands_empty()) {
    NewMI->setMemRefs(LoadMI->memoperands_begin(),
                      LoadMI->memoperands_end());
  }
  else {
    // Handle the rare case of folding multiple loads.
    NewMI->setMemRefs(MI->memoperands_begin(),
                      MI->memoperands_end());
    for (MachineInstr::mmo_iterator I = LoadMI->memoperands_begin(),
           E = LoadMI->memoperands_end(); I != E; ++I) {
      NewMI->addMemOperand(MF, *I);
    }
  }
  return NewMI;
}

bool TargetInstrInfo::
isReallyTriviallyReMaterializableGeneric(const MachineInstr *MI,
                                         AliasAnalysis *AA) const {
  const MachineFunction &MF = *MI->getParent()->getParent();
  const MachineRegisterInfo &MRI = MF.getRegInfo();
  const TargetMachine &TM = MF.getTarget();
  const TargetInstrInfo &TII = *TM.getInstrInfo();

  // Remat clients assume operand 0 is the defined register.
  if (!MI->getNumOperands() || !MI->getOperand(0).isReg())
    return false;
  unsigned DefReg = MI->getOperand(0).getReg();

  // A sub-register definition can only be rematerialized if the instruction
  // doesn't read the other parts of the register.  Otherwise it is really a
  // read-modify-write operation on the full virtual register which cannot be
  // moved safely.
  if (TargetRegisterInfo::isVirtualRegister(DefReg) &&
      MI->getOperand(0).getSubReg() && MI->readsVirtualRegister(DefReg))
    return false;

  // A load from a fixed stack slot can be rematerialized. This may be
  // redundant with subsequent checks, but it's target-independent,
  // simple, and a common case.
  int FrameIdx = 0;
  if (TII.isLoadFromStackSlot(MI, FrameIdx) &&
      MF.getFrameInfo()->isImmutableObjectIndex(FrameIdx))
    return true;

  // Avoid instructions obviously unsafe for remat.
  if (MI->isNotDuplicable() || MI->mayStore() ||
      MI->hasUnmodeledSideEffects())
    return false;

  // Don't remat inline asm. We have no idea how expensive it is
  // even if it's side effect free.
  if (MI->isInlineAsm())
    return false;

  // Avoid instructions which load from potentially varying memory.
  if (MI->mayLoad() && !MI->isInvariantLoad(AA))
    return false;

  // If any of the registers accessed are non-constant, conservatively assume
  // the instruction is not rematerializable.
  for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
    const MachineOperand &MO = MI->getOperand(i);
    if (!MO.isReg()) continue;
    unsigned Reg = MO.getReg();
    if (Reg == 0)
      continue;

    // Check for a well-behaved physical register.
    if (TargetRegisterInfo::isPhysicalRegister(Reg)) {
      if (MO.isUse()) {
        // If the physreg has no defs anywhere, it's just an ambient register
        // and we can freely move its uses. Alternatively, if it's allocatable,
        // it could get allocated to something with a def during allocation.
        if (!MRI.isConstantPhysReg(Reg, MF))
          return false;
      } else {
        // A physreg def. We can't remat it.
        return false;
      }
      continue;
    }

    // Only allow one virtual-register def.  There may be multiple defs of the
    // same virtual register, though.
    if (MO.isDef() && Reg != DefReg)
      return false;

    // Don't allow any virtual-register uses. Rematting an instruction with
    // virtual register uses would length the live ranges of the uses, which
    // is not necessarily a good idea, certainly not "trivial".
    if (MO.isUse())
      return false;
  }

  // Everything checked out.
  return true;
}

/// isSchedulingBoundary - Test if the given instruction should be
/// considered a scheduling boundary. This primarily includes labels
/// and terminators.
bool TargetInstrInfo::isSchedulingBoundary(const MachineInstr *MI,
                                           const MachineBasicBlock *MBB,
                                           const MachineFunction &MF) const {
  // Terminators and labels can't be scheduled around.
  if (MI->isTerminator() || MI->isPosition())
    return true;

  // Don't attempt to schedule around any instruction that defines
  // a stack-oriented pointer, as it's unlikely to be profitable. This
  // saves compile time, because it doesn't require every single
  // stack slot reference to depend on the instruction that does the
  // modification.
  const TargetLowering &TLI = *MF.getTarget().getTargetLowering();
  const TargetRegisterInfo *TRI = MF.getTarget().getRegisterInfo();
  if (MI->modifiesRegister(TLI.getStackPointerRegisterToSaveRestore(), TRI))
    return true;

  return false;
}

// Provide a global flag for disabling the PreRA hazard recognizer that targets
// may choose to honor.
bool TargetInstrInfo::usePreRAHazardRecognizer() const {
  return !DisableHazardRecognizer;
}

// Default implementation of CreateTargetRAHazardRecognizer.
ScheduleHazardRecognizer *TargetInstrInfo::
CreateTargetHazardRecognizer(const TargetMachine *TM,
                             const ScheduleDAG *DAG) const {
  // Dummy hazard recognizer allows all instructions to issue.
  return new ScheduleHazardRecognizer();
}

// Default implementation of CreateTargetMIHazardRecognizer.
ScheduleHazardRecognizer *TargetInstrInfo::
CreateTargetMIHazardRecognizer(const InstrItineraryData *II,
                               const ScheduleDAG *DAG) const {
  return (ScheduleHazardRecognizer *)
    new ScoreboardHazardRecognizer(II, DAG, "misched");
}

// Default implementation of CreateTargetPostRAHazardRecognizer.
ScheduleHazardRecognizer *TargetInstrInfo::
CreateTargetPostRAHazardRecognizer(const InstrItineraryData *II,
                                   const ScheduleDAG *DAG) const {
  return (ScheduleHazardRecognizer *)
    new ScoreboardHazardRecognizer(II, DAG, "post-RA-sched");
}

//===----------------------------------------------------------------------===//
//  SelectionDAG latency interface.
//===----------------------------------------------------------------------===//

int
TargetInstrInfo::getOperandLatency(const InstrItineraryData *ItinData,
                                   SDNode *DefNode, unsigned DefIdx,
                                   SDNode *UseNode, unsigned UseIdx) const {
  if (!ItinData || ItinData->isEmpty())
    return -1;

  if (!DefNode->isMachineOpcode())
    return -1;

  unsigned DefClass = get(DefNode->getMachineOpcode()).getSchedClass();
  if (!UseNode->isMachineOpcode())
    return ItinData->getOperandCycle(DefClass, DefIdx);
  unsigned UseClass = get(UseNode->getMachineOpcode()).getSchedClass();
  return ItinData->getOperandLatency(DefClass, DefIdx, UseClass, UseIdx);
}

int TargetInstrInfo::getInstrLatency(const InstrItineraryData *ItinData,
                                     SDNode *N) const {
  if (!ItinData || ItinData->isEmpty())
    return 1;

  if (!N->isMachineOpcode())
    return 1;

  return ItinData->getStageLatency(get(N->getMachineOpcode()).getSchedClass());
}

//===----------------------------------------------------------------------===//
//  MachineInstr latency interface.
//===----------------------------------------------------------------------===//

unsigned
TargetInstrInfo::getNumMicroOps(const InstrItineraryData *ItinData,
                                const MachineInstr *MI) const {
  if (!ItinData || ItinData->isEmpty())
    return 1;

  unsigned Class = MI->getDesc().getSchedClass();
  int UOps = ItinData->Itineraries[Class].NumMicroOps;
  if (UOps >= 0)
    return UOps;

  // The # of u-ops is dynamically determined. The specific target should
  // override this function to return the right number.
  return 1;
}

/// Return the default expected latency for a def based on it's opcode.
unsigned TargetInstrInfo::defaultDefLatency(const MCSchedModel *SchedModel,
                                            const MachineInstr *DefMI) const {
  if (DefMI->isTransient())
    return 0;
  if (DefMI->mayLoad())
    return SchedModel->LoadLatency;
  if (isHighLatencyDef(DefMI->getOpcode()))
    return SchedModel->HighLatency;
  return 1;
}

unsigned TargetInstrInfo::getPredicationCost(const MachineInstr *) const {
  return 0;
}

unsigned TargetInstrInfo::
getInstrLatency(const InstrItineraryData *ItinData,
                const MachineInstr *MI,
                unsigned *PredCost) const {
  // Default to one cycle for no itinerary. However, an "empty" itinerary may
  // still have a MinLatency property, which getStageLatency checks.
  if (!ItinData)
    return MI->mayLoad() ? 2 : 1;

  return ItinData->getStageLatency(MI->getDesc().getSchedClass());
}

bool TargetInstrInfo::hasLowDefLatency(const InstrItineraryData *ItinData,
                                       const MachineInstr *DefMI,
                                       unsigned DefIdx) const {
  if (!ItinData || ItinData->isEmpty())
    return false;

  unsigned DefClass = DefMI->getDesc().getSchedClass();
  int DefCycle = ItinData->getOperandCycle(DefClass, DefIdx);
  return (DefCycle != -1 && DefCycle <= 1);
}

/// Both DefMI and UseMI must be valid.  By default, call directly to the
/// itinerary. This may be overriden by the target.
int TargetInstrInfo::
getOperandLatency(const InstrItineraryData *ItinData,
                  const MachineInstr *DefMI, unsigned DefIdx,
                  const MachineInstr *UseMI, unsigned UseIdx) const {
  unsigned DefClass = DefMI->getDesc().getSchedClass();
  unsigned UseClass = UseMI->getDesc().getSchedClass();
  return ItinData->getOperandLatency(DefClass, DefIdx, UseClass, UseIdx);
}

/// If we can determine the operand latency from the def only, without itinerary
/// lookup, do so. Otherwise return -1.
int TargetInstrInfo::computeDefOperandLatency(
  const InstrItineraryData *ItinData,
  const MachineInstr *DefMI) const {

  // Let the target hook getInstrLatency handle missing itineraries.
  if (!ItinData)
    return getInstrLatency(ItinData, DefMI);

  if(ItinData->isEmpty())
    return defaultDefLatency(ItinData->SchedModel, DefMI);

  // ...operand lookup required
  return -1;
}

/// computeOperandLatency - Compute and return the latency of the given data
/// dependent def and use when the operand indices are already known. UseMI may
/// be NULL for an unknown use.
///
/// FindMin may be set to get the minimum vs. expected latency. Minimum
/// latency is used for scheduling groups, while expected latency is for
/// instruction cost and critical path.
///
/// Depending on the subtarget's itinerary properties, this may or may not need
/// to call getOperandLatency(). For most subtargets, we don't need DefIdx or
/// UseIdx to compute min latency.
unsigned TargetInstrInfo::
computeOperandLatency(const InstrItineraryData *ItinData,
                      const MachineInstr *DefMI, unsigned DefIdx,
                      const MachineInstr *UseMI, unsigned UseIdx) const {

  int DefLatency = computeDefOperandLatency(ItinData, DefMI);
  if (DefLatency >= 0)
    return DefLatency;

  assert(ItinData && !ItinData->isEmpty() && "computeDefOperandLatency fail");

  int OperLatency = 0;
  if (UseMI)
    OperLatency = getOperandLatency(ItinData, DefMI, DefIdx, UseMI, UseIdx);
  else {
    unsigned DefClass = DefMI->getDesc().getSchedClass();
    OperLatency = ItinData->getOperandCycle(DefClass, DefIdx);
  }
  if (OperLatency >= 0)
    return OperLatency;

  // No operand latency was found.
  unsigned InstrLatency = getInstrLatency(ItinData, DefMI);

  // Expected latency is the max of the stage latency and itinerary props.
  InstrLatency = std::max(InstrLatency,
                          defaultDefLatency(ItinData->SchedModel, DefMI));
  return InstrLatency;
}