llvm.org GIT mirror llvm / 7d7d996 lib / CodeGen / MachineBasicBlock.cpp
7d7d996

Tree @7d7d996 (Download .tar.gz)

MachineBasicBlock.cpp @7d7d996raw · history · blame

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
//===-- llvm/CodeGen/MachineBasicBlock.cpp ----------------------*- C++ -*-===//
//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// Collect the sequence of machine instructions for a basic block.
//
//===----------------------------------------------------------------------===//

#include "llvm/CodeGen/MachineBasicBlock.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/ADT/SmallString.h"
#include "llvm/CodeGen/LiveIntervalAnalysis.h"
#include "llvm/CodeGen/LiveVariables.h"
#include "llvm/CodeGen/MachineDominators.h"
#include "llvm/CodeGen/MachineFunction.h"
#include "llvm/CodeGen/MachineInstrBuilder.h"
#include "llvm/CodeGen/MachineLoopInfo.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/CodeGen/SlotIndexes.h"
#include "llvm/IR/BasicBlock.h"
#include "llvm/IR/DataLayout.h"
#include "llvm/IR/LeakDetector.h"
#include "llvm/MC/MCAsmInfo.h"
#include "llvm/MC/MCContext.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Target/TargetInstrInfo.h"
#include "llvm/Target/TargetMachine.h"
#include "llvm/Target/TargetRegisterInfo.h"
#include <algorithm>
using namespace llvm;

MachineBasicBlock::MachineBasicBlock(MachineFunction &mf, const BasicBlock *bb)
  : BB(bb), Number(-1), xParent(&mf), Alignment(0), IsLandingPad(false),
    AddressTaken(false), CachedMCSymbol(NULL) {
  Insts.Parent = this;
}

MachineBasicBlock::~MachineBasicBlock() {
  LeakDetector::removeGarbageObject(this);
}

/// getSymbol - Return the MCSymbol for this basic block.
///
MCSymbol *MachineBasicBlock::getSymbol() const {
  if (!CachedMCSymbol) {
    const MachineFunction *MF = getParent();
    MCContext &Ctx = MF->getContext();
    const TargetMachine &TM = MF->getTarget();
    const char *Prefix = TM.getDataLayout()->getPrivateGlobalPrefix();
    CachedMCSymbol = Ctx.GetOrCreateSymbol(Twine(Prefix) + "BB" +
                                           Twine(MF->getFunctionNumber()) +
                                           "_" + Twine(getNumber()));
  }

  return CachedMCSymbol;
}


raw_ostream &llvm::operator<<(raw_ostream &OS, const MachineBasicBlock &MBB) {
  MBB.print(OS);
  return OS;
}

/// addNodeToList (MBB) - When an MBB is added to an MF, we need to update the
/// parent pointer of the MBB, the MBB numbering, and any instructions in the
/// MBB to be on the right operand list for registers.
///
/// MBBs start out as #-1. When a MBB is added to a MachineFunction, it
/// gets the next available unique MBB number. If it is removed from a
/// MachineFunction, it goes back to being #-1.
void ilist_traits<MachineBasicBlock>::addNodeToList(MachineBasicBlock *N) {
  MachineFunction &MF = *N->getParent();
  N->Number = MF.addToMBBNumbering(N);

  // Make sure the instructions have their operands in the reginfo lists.
  MachineRegisterInfo &RegInfo = MF.getRegInfo();
  for (MachineBasicBlock::instr_iterator
         I = N->instr_begin(), E = N->instr_end(); I != E; ++I)
    I->AddRegOperandsToUseLists(RegInfo);

  LeakDetector::removeGarbageObject(N);
}

void ilist_traits<MachineBasicBlock>::removeNodeFromList(MachineBasicBlock *N) {
  N->getParent()->removeFromMBBNumbering(N->Number);
  N->Number = -1;
  LeakDetector::addGarbageObject(N);
}


/// addNodeToList (MI) - When we add an instruction to a basic block
/// list, we update its parent pointer and add its operands from reg use/def
/// lists if appropriate.
void ilist_traits<MachineInstr>::addNodeToList(MachineInstr *N) {
  assert(N->getParent() == 0 && "machine instruction already in a basic block");
  N->setParent(Parent);

  // Add the instruction's register operands to their corresponding
  // use/def lists.
  MachineFunction *MF = Parent->getParent();
  N->AddRegOperandsToUseLists(MF->getRegInfo());

  LeakDetector::removeGarbageObject(N);
}

/// removeNodeFromList (MI) - When we remove an instruction from a basic block
/// list, we update its parent pointer and remove its operands from reg use/def
/// lists if appropriate.
void ilist_traits<MachineInstr>::removeNodeFromList(MachineInstr *N) {
  assert(N->getParent() != 0 && "machine instruction not in a basic block");

  // Remove from the use/def lists.
  if (MachineFunction *MF = N->getParent()->getParent())
    N->RemoveRegOperandsFromUseLists(MF->getRegInfo());

  N->setParent(0);

  LeakDetector::addGarbageObject(N);
}

/// transferNodesFromList (MI) - When moving a range of instructions from one
/// MBB list to another, we need to update the parent pointers and the use/def
/// lists.
void ilist_traits<MachineInstr>::
transferNodesFromList(ilist_traits<MachineInstr> &fromList,
                      ilist_iterator<MachineInstr> first,
                      ilist_iterator<MachineInstr> last) {
  assert(Parent->getParent() == fromList.Parent->getParent() &&
        "MachineInstr parent mismatch!");

  // Splice within the same MBB -> no change.
  if (Parent == fromList.Parent) return;

  // If splicing between two blocks within the same function, just update the
  // parent pointers.
  for (; first != last; ++first)
    first->setParent(Parent);
}

void ilist_traits<MachineInstr>::deleteNode(MachineInstr* MI) {
  assert(!MI->getParent() && "MI is still in a block!");
  Parent->getParent()->DeleteMachineInstr(MI);
}

MachineBasicBlock::iterator MachineBasicBlock::getFirstNonPHI() {
  instr_iterator I = instr_begin(), E = instr_end();
  while (I != E && I->isPHI())
    ++I;
  assert((I == E || !I->isInsideBundle()) &&
         "First non-phi MI cannot be inside a bundle!");
  return I;
}

MachineBasicBlock::iterator
MachineBasicBlock::SkipPHIsAndLabels(MachineBasicBlock::iterator I) {
  iterator E = end();
  while (I != E && (I->isPHI() || I->isPosition() || I->isDebugValue()))
    ++I;
  // FIXME: This needs to change if we wish to bundle labels / dbg_values
  // inside the bundle.
  assert((I == E || !I->isInsideBundle()) &&
         "First non-phi / non-label instruction is inside a bundle!");
  return I;
}

MachineBasicBlock::iterator MachineBasicBlock::getFirstTerminator() {
  iterator B = begin(), E = end(), I = E;
  while (I != B && ((--I)->isTerminator() || I->isDebugValue()))
    ; /*noop */
  while (I != E && !I->isTerminator())
    ++I;
  return I;
}

MachineBasicBlock::const_iterator
MachineBasicBlock::getFirstTerminator() const {
  const_iterator B = begin(), E = end(), I = E;
  while (I != B && ((--I)->isTerminator() || I->isDebugValue()))
    ; /*noop */
  while (I != E && !I->isTerminator())
    ++I;
  return I;
}

MachineBasicBlock::instr_iterator MachineBasicBlock::getFirstInstrTerminator() {
  instr_iterator B = instr_begin(), E = instr_end(), I = E;
  while (I != B && ((--I)->isTerminator() || I->isDebugValue()))
    ; /*noop */
  while (I != E && !I->isTerminator())
    ++I;
  return I;
}

MachineBasicBlock::iterator MachineBasicBlock::getLastNonDebugInstr() {
  // Skip over end-of-block dbg_value instructions.
  instr_iterator B = instr_begin(), I = instr_end();
  while (I != B) {
    --I;
    // Return instruction that starts a bundle.
    if (I->isDebugValue() || I->isInsideBundle())
      continue;
    return I;
  }
  // The block is all debug values.
  return end();
}

MachineBasicBlock::const_iterator
MachineBasicBlock::getLastNonDebugInstr() const {
  // Skip over end-of-block dbg_value instructions.
  const_instr_iterator B = instr_begin(), I = instr_end();
  while (I != B) {
    --I;
    // Return instruction that starts a bundle.
    if (I->isDebugValue() || I->isInsideBundle())
      continue;
    return I;
  }
  // The block is all debug values.
  return end();
}

const MachineBasicBlock *MachineBasicBlock::getLandingPadSuccessor() const {
  // A block with a landing pad successor only has one other successor.
  if (succ_size() > 2)
    return 0;
  for (const_succ_iterator I = succ_begin(), E = succ_end(); I != E; ++I)
    if ((*I)->isLandingPad())
      return *I;
  return 0;
}

#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
void MachineBasicBlock::dump() const {
  print(dbgs());
}
#endif

StringRef MachineBasicBlock::getName() const {
  if (const BasicBlock *LBB = getBasicBlock())
    return LBB->getName();
  else
    return "(null)";
}

/// Return a hopefully unique identifier for this block.
std::string MachineBasicBlock::getFullName() const {
  std::string Name;
  if (getParent())
    Name = (getParent()->getName() + ":").str();
  if (getBasicBlock())
    Name += getBasicBlock()->getName();
  else
    Name += (Twine("BB") + Twine(getNumber())).str();
  return Name;
}

void MachineBasicBlock::print(raw_ostream &OS, SlotIndexes *Indexes) const {
  const MachineFunction *MF = getParent();
  if (!MF) {
    OS << "Can't print out MachineBasicBlock because parent MachineFunction"
       << " is null\n";
    return;
  }

  if (Indexes)
    OS << Indexes->getMBBStartIdx(this) << '\t';

  OS << "BB#" << getNumber() << ": ";

  const char *Comma = "";
  if (const BasicBlock *LBB = getBasicBlock()) {
    OS << Comma << "derived from LLVM BB ";
    LBB->printAsOperand(OS, /*PrintType=*/false);
    Comma = ", ";
  }
  if (isLandingPad()) { OS << Comma << "EH LANDING PAD"; Comma = ", "; }
  if (hasAddressTaken()) { OS << Comma << "ADDRESS TAKEN"; Comma = ", "; }
  if (Alignment)
    OS << Comma << "Align " << Alignment << " (" << (1u << Alignment)
       << " bytes)";

  OS << '\n';

  const TargetRegisterInfo *TRI = MF->getTarget().getRegisterInfo();
  if (!livein_empty()) {
    if (Indexes) OS << '\t';
    OS << "    Live Ins:";
    for (livein_iterator I = livein_begin(),E = livein_end(); I != E; ++I)
      OS << ' ' << PrintReg(*I, TRI);
    OS << '\n';
  }
  // Print the preds of this block according to the CFG.
  if (!pred_empty()) {
    if (Indexes) OS << '\t';
    OS << "    Predecessors according to CFG:";
    for (const_pred_iterator PI = pred_begin(), E = pred_end(); PI != E; ++PI)
      OS << " BB#" << (*PI)->getNumber();
    OS << '\n';
  }

  for (const_instr_iterator I = instr_begin(); I != instr_end(); ++I) {
    if (Indexes) {
      if (Indexes->hasIndex(I))
        OS << Indexes->getInstructionIndex(I);
      OS << '\t';
    }
    OS << '\t';
    if (I->isInsideBundle())
      OS << "  * ";
    I->print(OS, &getParent()->getTarget());
  }

  // Print the successors of this block according to the CFG.
  if (!succ_empty()) {
    if (Indexes) OS << '\t';
    OS << "    Successors according to CFG:";
    for (const_succ_iterator SI = succ_begin(), E = succ_end(); SI != E; ++SI) {
      OS << " BB#" << (*SI)->getNumber();
      if (!Weights.empty())
        OS << '(' << *getWeightIterator(SI) << ')';
    }
    OS << '\n';
  }
}

void MachineBasicBlock::printAsOperand(raw_ostream &OS, bool /*PrintType*/) {
  OS << "BB#" << getNumber();
}

void MachineBasicBlock::removeLiveIn(unsigned Reg) {
  std::vector<unsigned>::iterator I =
    std::find(LiveIns.begin(), LiveIns.end(), Reg);
  if (I != LiveIns.end())
    LiveIns.erase(I);
}

bool MachineBasicBlock::isLiveIn(unsigned Reg) const {
  livein_iterator I = std::find(livein_begin(), livein_end(), Reg);
  return I != livein_end();
}

unsigned
MachineBasicBlock::addLiveIn(unsigned PhysReg, const TargetRegisterClass *RC) {
  assert(getParent() && "MBB must be inserted in function");
  assert(TargetRegisterInfo::isPhysicalRegister(PhysReg) && "Expected physreg");
  assert(RC && "Register class is required");
  assert((isLandingPad() || this == &getParent()->front()) &&
         "Only the entry block and landing pads can have physreg live ins");

  bool LiveIn = isLiveIn(PhysReg);
  iterator I = SkipPHIsAndLabels(begin()), E = end();
  MachineRegisterInfo &MRI = getParent()->getRegInfo();
  const TargetInstrInfo &TII = *getParent()->getTarget().getInstrInfo();

  // Look for an existing copy.
  if (LiveIn)
    for (;I != E && I->isCopy(); ++I)
      if (I->getOperand(1).getReg() == PhysReg) {
        unsigned VirtReg = I->getOperand(0).getReg();
        if (!MRI.constrainRegClass(VirtReg, RC))
          llvm_unreachable("Incompatible live-in register class.");
        return VirtReg;
      }

  // No luck, create a virtual register.
  unsigned VirtReg = MRI.createVirtualRegister(RC);
  BuildMI(*this, I, DebugLoc(), TII.get(TargetOpcode::COPY), VirtReg)
    .addReg(PhysReg, RegState::Kill);
  if (!LiveIn)
    addLiveIn(PhysReg);
  return VirtReg;
}

void MachineBasicBlock::moveBefore(MachineBasicBlock *NewAfter) {
  getParent()->splice(NewAfter, this);
}

void MachineBasicBlock::moveAfter(MachineBasicBlock *NewBefore) {
  MachineFunction::iterator BBI = NewBefore;
  getParent()->splice(++BBI, this);
}

void MachineBasicBlock::updateTerminator() {
  const TargetInstrInfo *TII = getParent()->getTarget().getInstrInfo();
  // A block with no successors has no concerns with fall-through edges.
  if (this->succ_empty()) return;

  MachineBasicBlock *TBB = 0, *FBB = 0;
  SmallVector<MachineOperand, 4> Cond;
  DebugLoc dl;  // FIXME: this is nowhere
  bool B = TII->AnalyzeBranch(*this, TBB, FBB, Cond);
  (void) B;
  assert(!B && "UpdateTerminators requires analyzable predecessors!");
  if (Cond.empty()) {
    if (TBB) {
      // The block has an unconditional branch. If its successor is now
      // its layout successor, delete the branch.
      if (isLayoutSuccessor(TBB))
        TII->RemoveBranch(*this);
    } else {
      // The block has an unconditional fallthrough. If its successor is not
      // its layout successor, insert a branch. First we have to locate the
      // only non-landing-pad successor, as that is the fallthrough block.
      for (succ_iterator SI = succ_begin(), SE = succ_end(); SI != SE; ++SI) {
        if ((*SI)->isLandingPad())
          continue;
        assert(!TBB && "Found more than one non-landing-pad successor!");
        TBB = *SI;
      }

      // If there is no non-landing-pad successor, the block has no
      // fall-through edges to be concerned with.
      if (!TBB)
        return;

      // Finally update the unconditional successor to be reached via a branch
      // if it would not be reached by fallthrough.
      if (!isLayoutSuccessor(TBB))
        TII->InsertBranch(*this, TBB, 0, Cond, dl);
    }
  } else {
    if (FBB) {
      // The block has a non-fallthrough conditional branch. If one of its
      // successors is its layout successor, rewrite it to a fallthrough
      // conditional branch.
      if (isLayoutSuccessor(TBB)) {
        if (TII->ReverseBranchCondition(Cond))
          return;
        TII->RemoveBranch(*this);
        TII->InsertBranch(*this, FBB, 0, Cond, dl);
      } else if (isLayoutSuccessor(FBB)) {
        TII->RemoveBranch(*this);
        TII->InsertBranch(*this, TBB, 0, Cond, dl);
      }
    } else {
      // Walk through the successors and find the successor which is not
      // a landing pad and is not the conditional branch destination (in TBB)
      // as the fallthrough successor.
      MachineBasicBlock *FallthroughBB = 0;
      for (succ_iterator SI = succ_begin(), SE = succ_end(); SI != SE; ++SI) {
        if ((*SI)->isLandingPad() || *SI == TBB)
          continue;
        assert(!FallthroughBB && "Found more than one fallthrough successor.");
        FallthroughBB = *SI;
      }
      if (!FallthroughBB && canFallThrough()) {
        // We fallthrough to the same basic block as the conditional jump
        // targets. Remove the conditional jump, leaving unconditional
        // fallthrough.
        // FIXME: This does not seem like a reasonable pattern to support, but it
        // has been seen in the wild coming out of degenerate ARM test cases.
        TII->RemoveBranch(*this);

        // Finally update the unconditional successor to be reached via a branch
        // if it would not be reached by fallthrough.
        if (!isLayoutSuccessor(TBB))
          TII->InsertBranch(*this, TBB, 0, Cond, dl);
        return;
      }

      // The block has a fallthrough conditional branch.
      if (isLayoutSuccessor(TBB)) {
        if (TII->ReverseBranchCondition(Cond)) {
          // We can't reverse the condition, add an unconditional branch.
          Cond.clear();
          TII->InsertBranch(*this, FallthroughBB, 0, Cond, dl);
          return;
        }
        TII->RemoveBranch(*this);
        TII->InsertBranch(*this, FallthroughBB, 0, Cond, dl);
      } else if (!isLayoutSuccessor(FallthroughBB)) {
        TII->RemoveBranch(*this);
        TII->InsertBranch(*this, TBB, FallthroughBB, Cond, dl);
      }
    }
  }
}

void MachineBasicBlock::addSuccessor(MachineBasicBlock *succ, uint32_t weight) {

  // If we see non-zero value for the first time it means we actually use Weight
  // list, so we fill all Weights with 0's.
  if (weight != 0 && Weights.empty())
    Weights.resize(Successors.size());

  if (weight != 0 || !Weights.empty())
    Weights.push_back(weight);

   Successors.push_back(succ);
   succ->addPredecessor(this);
 }

void MachineBasicBlock::removeSuccessor(MachineBasicBlock *succ) {
  succ->removePredecessor(this);
  succ_iterator I = std::find(Successors.begin(), Successors.end(), succ);
  assert(I != Successors.end() && "Not a current successor!");

  // If Weight list is empty it means we don't use it (disabled optimization).
  if (!Weights.empty()) {
    weight_iterator WI = getWeightIterator(I);
    Weights.erase(WI);
  }

  Successors.erase(I);
}

MachineBasicBlock::succ_iterator
MachineBasicBlock::removeSuccessor(succ_iterator I) {
  assert(I != Successors.end() && "Not a current successor!");

  // If Weight list is empty it means we don't use it (disabled optimization).
  if (!Weights.empty()) {
    weight_iterator WI = getWeightIterator(I);
    Weights.erase(WI);
  }

  (*I)->removePredecessor(this);
  return Successors.erase(I);
}

void MachineBasicBlock::replaceSuccessor(MachineBasicBlock *Old,
                                         MachineBasicBlock *New) {
  if (Old == New)
    return;

  succ_iterator E = succ_end();
  succ_iterator NewI = E;
  succ_iterator OldI = E;
  for (succ_iterator I = succ_begin(); I != E; ++I) {
    if (*I == Old) {
      OldI = I;
      if (NewI != E)
        break;
    }
    if (*I == New) {
      NewI = I;
      if (OldI != E)
        break;
    }
  }
  assert(OldI != E && "Old is not a successor of this block");
  Old->removePredecessor(this);

  // If New isn't already a successor, let it take Old's place.
  if (NewI == E) {
    New->addPredecessor(this);
    *OldI = New;
    return;
  }

  // New is already a successor.
  // Update its weight instead of adding a duplicate edge.
  if (!Weights.empty()) {
    weight_iterator OldWI = getWeightIterator(OldI);
    *getWeightIterator(NewI) += *OldWI;
    Weights.erase(OldWI);
  }
  Successors.erase(OldI);
}

void MachineBasicBlock::addPredecessor(MachineBasicBlock *pred) {
  Predecessors.push_back(pred);
}

void MachineBasicBlock::removePredecessor(MachineBasicBlock *pred) {
  pred_iterator I = std::find(Predecessors.begin(), Predecessors.end(), pred);
  assert(I != Predecessors.end() && "Pred is not a predecessor of this block!");
  Predecessors.erase(I);
}

void MachineBasicBlock::transferSuccessors(MachineBasicBlock *fromMBB) {
  if (this == fromMBB)
    return;

  while (!fromMBB->succ_empty()) {
    MachineBasicBlock *Succ = *fromMBB->succ_begin();
    uint32_t Weight = 0;

    // If Weight list is empty it means we don't use it (disabled optimization).
    if (!fromMBB->Weights.empty())
      Weight = *fromMBB->Weights.begin();

    addSuccessor(Succ, Weight);
    fromMBB->removeSuccessor(Succ);
  }
}

void
MachineBasicBlock::transferSuccessorsAndUpdatePHIs(MachineBasicBlock *fromMBB) {
  if (this == fromMBB)
    return;

  while (!fromMBB->succ_empty()) {
    MachineBasicBlock *Succ = *fromMBB->succ_begin();
    uint32_t Weight = 0;
    if (!fromMBB->Weights.empty())
      Weight = *fromMBB->Weights.begin();
    addSuccessor(Succ, Weight);
    fromMBB->removeSuccessor(Succ);

    // Fix up any PHI nodes in the successor.
    for (MachineBasicBlock::instr_iterator MI = Succ->instr_begin(),
           ME = Succ->instr_end(); MI != ME && MI->isPHI(); ++MI)
      for (unsigned i = 2, e = MI->getNumOperands()+1; i != e; i += 2) {
        MachineOperand &MO = MI->getOperand(i);
        if (MO.getMBB() == fromMBB)
          MO.setMBB(this);
      }
  }
}

bool MachineBasicBlock::isPredecessor(const MachineBasicBlock *MBB) const {
  return std::find(pred_begin(), pred_end(), MBB) != pred_end();
}

bool MachineBasicBlock::isSuccessor(const MachineBasicBlock *MBB) const {
  return std::find(succ_begin(), succ_end(), MBB) != succ_end();
}

bool MachineBasicBlock::isLayoutSuccessor(const MachineBasicBlock *MBB) const {
  MachineFunction::const_iterator I(this);
  return std::next(I) == MachineFunction::const_iterator(MBB);
}

bool MachineBasicBlock::canFallThrough() {
  MachineFunction::iterator Fallthrough = this;
  ++Fallthrough;
  // If FallthroughBlock is off the end of the function, it can't fall through.
  if (Fallthrough == getParent()->end())
    return false;

  // If FallthroughBlock isn't a successor, no fallthrough is possible.
  if (!isSuccessor(Fallthrough))
    return false;

  // Analyze the branches, if any, at the end of the block.
  MachineBasicBlock *TBB = 0, *FBB = 0;
  SmallVector<MachineOperand, 4> Cond;
  const TargetInstrInfo *TII = getParent()->getTarget().getInstrInfo();
  if (TII->AnalyzeBranch(*this, TBB, FBB, Cond)) {
    // If we couldn't analyze the branch, examine the last instruction.
    // If the block doesn't end in a known control barrier, assume fallthrough
    // is possible. The isPredicated check is needed because this code can be
    // called during IfConversion, where an instruction which is normally a
    // Barrier is predicated and thus no longer an actual control barrier.
    return empty() || !back().isBarrier() || TII->isPredicated(&back());
  }

  // If there is no branch, control always falls through.
  if (TBB == 0) return true;

  // If there is some explicit branch to the fallthrough block, it can obviously
  // reach, even though the branch should get folded to fall through implicitly.
  if (MachineFunction::iterator(TBB) == Fallthrough ||
      MachineFunction::iterator(FBB) == Fallthrough)
    return true;

  // If it's an unconditional branch to some block not the fall through, it
  // doesn't fall through.
  if (Cond.empty()) return false;

  // Otherwise, if it is conditional and has no explicit false block, it falls
  // through.
  return FBB == 0;
}

MachineBasicBlock *
MachineBasicBlock::SplitCriticalEdge(MachineBasicBlock *Succ, Pass *P) {
  // Splitting the critical edge to a landing pad block is non-trivial. Don't do
  // it in this generic function.
  if (Succ->isLandingPad())
    return NULL;

  MachineFunction *MF = getParent();
  DebugLoc dl;  // FIXME: this is nowhere

  // Performance might be harmed on HW that implements branching using exec mask
  // where both sides of the branches are always executed.
  if (MF->getTarget().requiresStructuredCFG())
    return NULL;

  // We may need to update this's terminator, but we can't do that if
  // AnalyzeBranch fails. If this uses a jump table, we won't touch it.
  const TargetInstrInfo *TII = MF->getTarget().getInstrInfo();
  MachineBasicBlock *TBB = 0, *FBB = 0;
  SmallVector<MachineOperand, 4> Cond;
  if (TII->AnalyzeBranch(*this, TBB, FBB, Cond))
    return NULL;

  // Avoid bugpoint weirdness: A block may end with a conditional branch but
  // jumps to the same MBB is either case. We have duplicate CFG edges in that
  // case that we can't handle. Since this never happens in properly optimized
  // code, just skip those edges.
  if (TBB && TBB == FBB) {
    DEBUG(dbgs() << "Won't split critical edge after degenerate BB#"
                 << getNumber() << '\n');
    return NULL;
  }

  MachineBasicBlock *NMBB = MF->CreateMachineBasicBlock();
  MF->insert(std::next(MachineFunction::iterator(this)), NMBB);
  DEBUG(dbgs() << "Splitting critical edge:"
        " BB#" << getNumber()
        << " -- BB#" << NMBB->getNumber()
        << " -- BB#" << Succ->getNumber() << '\n');

  LiveIntervals *LIS = P->getAnalysisIfAvailable<LiveIntervals>();
  SlotIndexes *Indexes = P->getAnalysisIfAvailable<SlotIndexes>();
  if (LIS)
    LIS->insertMBBInMaps(NMBB);
  else if (Indexes)
    Indexes->insertMBBInMaps(NMBB);

  // On some targets like Mips, branches may kill virtual registers. Make sure
  // that LiveVariables is properly updated after updateTerminator replaces the
  // terminators.
  LiveVariables *LV = P->getAnalysisIfAvailable<LiveVariables>();

  // Collect a list of virtual registers killed by the terminators.
  SmallVector<unsigned, 4> KilledRegs;
  if (LV)
    for (instr_iterator I = getFirstInstrTerminator(), E = instr_end();
         I != E; ++I) {
      MachineInstr *MI = I;
      for (MachineInstr::mop_iterator OI = MI->operands_begin(),
           OE = MI->operands_end(); OI != OE; ++OI) {
        if (!OI->isReg() || OI->getReg() == 0 ||
            !OI->isUse() || !OI->isKill() || OI->isUndef())
          continue;
        unsigned Reg = OI->getReg();
        if (TargetRegisterInfo::isPhysicalRegister(Reg) ||
            LV->getVarInfo(Reg).removeKill(MI)) {
          KilledRegs.push_back(Reg);
          DEBUG(dbgs() << "Removing terminator kill: " << *MI);
          OI->setIsKill(false);
        }
      }
    }

  SmallVector<unsigned, 4> UsedRegs;
  if (LIS) {
    for (instr_iterator I = getFirstInstrTerminator(), E = instr_end();
         I != E; ++I) {
      MachineInstr *MI = I;

      for (MachineInstr::mop_iterator OI = MI->operands_begin(),
           OE = MI->operands_end(); OI != OE; ++OI) {
        if (!OI->isReg() || OI->getReg() == 0)
          continue;

        unsigned Reg = OI->getReg();
        if (std::find(UsedRegs.begin(), UsedRegs.end(), Reg) == UsedRegs.end())
          UsedRegs.push_back(Reg);
      }
    }
  }

  ReplaceUsesOfBlockWith(Succ, NMBB);

  // If updateTerminator() removes instructions, we need to remove them from
  // SlotIndexes.
  SmallVector<MachineInstr*, 4> Terminators;
  if (Indexes) {
    for (instr_iterator I = getFirstInstrTerminator(), E = instr_end();
         I != E; ++I)
      Terminators.push_back(I);
  }

  updateTerminator();

  if (Indexes) {
    SmallVector<MachineInstr*, 4> NewTerminators;
    for (instr_iterator I = getFirstInstrTerminator(), E = instr_end();
         I != E; ++I)
      NewTerminators.push_back(I);

    for (SmallVectorImpl<MachineInstr*>::iterator I = Terminators.begin(),
        E = Terminators.end(); I != E; ++I) {
      if (std::find(NewTerminators.begin(), NewTerminators.end(), *I) ==
          NewTerminators.end())
       Indexes->removeMachineInstrFromMaps(*I);
    }
  }

  // Insert unconditional "jump Succ" instruction in NMBB if necessary.
  NMBB->addSuccessor(Succ);
  if (!NMBB->isLayoutSuccessor(Succ)) {
    Cond.clear();
    MF->getTarget().getInstrInfo()->InsertBranch(*NMBB, Succ, NULL, Cond, dl);

    if (Indexes) {
      for (instr_iterator I = NMBB->instr_begin(), E = NMBB->instr_end();
           I != E; ++I) {
        // Some instructions may have been moved to NMBB by updateTerminator(),
        // so we first remove any instruction that already has an index.
        if (Indexes->hasIndex(I))
          Indexes->removeMachineInstrFromMaps(I);
        Indexes->insertMachineInstrInMaps(I);
      }
    }
  }

  // Fix PHI nodes in Succ so they refer to NMBB instead of this
  for (MachineBasicBlock::instr_iterator
         i = Succ->instr_begin(),e = Succ->instr_end();
       i != e && i->isPHI(); ++i)
    for (unsigned ni = 1, ne = i->getNumOperands(); ni != ne; ni += 2)
      if (i->getOperand(ni+1).getMBB() == this)
        i->getOperand(ni+1).setMBB(NMBB);

  // Inherit live-ins from the successor
  for (MachineBasicBlock::livein_iterator I = Succ->livein_begin(),
         E = Succ->livein_end(); I != E; ++I)
    NMBB->addLiveIn(*I);

  // Update LiveVariables.
  const TargetRegisterInfo *TRI = MF->getTarget().getRegisterInfo();
  if (LV) {
    // Restore kills of virtual registers that were killed by the terminators.
    while (!KilledRegs.empty()) {
      unsigned Reg = KilledRegs.pop_back_val();
      for (instr_iterator I = instr_end(), E = instr_begin(); I != E;) {
        if (!(--I)->addRegisterKilled(Reg, TRI, /* addIfNotFound= */ false))
          continue;
        if (TargetRegisterInfo::isVirtualRegister(Reg))
          LV->getVarInfo(Reg).Kills.push_back(I);
        DEBUG(dbgs() << "Restored terminator kill: " << *I);
        break;
      }
    }
    // Update relevant live-through information.
    LV->addNewBlock(NMBB, this, Succ);
  }

  if (LIS) {
    // After splitting the edge and updating SlotIndexes, live intervals may be
    // in one of two situations, depending on whether this block was the last in
    // the function. If the original block was the last in the function, all live
    // intervals will end prior to the beginning of the new split block. If the
    // original block was not at the end of the function, all live intervals will
    // extend to the end of the new split block.

    bool isLastMBB =
      std::next(MachineFunction::iterator(NMBB)) == getParent()->end();

    SlotIndex StartIndex = Indexes->getMBBEndIdx(this);
    SlotIndex PrevIndex = StartIndex.getPrevSlot();
    SlotIndex EndIndex = Indexes->getMBBEndIdx(NMBB);

    // Find the registers used from NMBB in PHIs in Succ.
    SmallSet<unsigned, 8> PHISrcRegs;
    for (MachineBasicBlock::instr_iterator
         I = Succ->instr_begin(), E = Succ->instr_end();
         I != E && I->isPHI(); ++I) {
      for (unsigned ni = 1, ne = I->getNumOperands(); ni != ne; ni += 2) {
        if (I->getOperand(ni+1).getMBB() == NMBB) {
          MachineOperand &MO = I->getOperand(ni);
          unsigned Reg = MO.getReg();
          PHISrcRegs.insert(Reg);
          if (MO.isUndef())
            continue;

          LiveInterval &LI = LIS->getInterval(Reg);
          VNInfo *VNI = LI.getVNInfoAt(PrevIndex);
          assert(VNI && "PHI sources should be live out of their predecessors.");
          LI.addSegment(LiveInterval::Segment(StartIndex, EndIndex, VNI));
        }
      }
    }

    MachineRegisterInfo *MRI = &getParent()->getRegInfo();
    for (unsigned i = 0, e = MRI->getNumVirtRegs(); i != e; ++i) {
      unsigned Reg = TargetRegisterInfo::index2VirtReg(i);
      if (PHISrcRegs.count(Reg) || !LIS->hasInterval(Reg))
        continue;

      LiveInterval &LI = LIS->getInterval(Reg);
      if (!LI.liveAt(PrevIndex))
        continue;

      bool isLiveOut = LI.liveAt(LIS->getMBBStartIdx(Succ));
      if (isLiveOut && isLastMBB) {
        VNInfo *VNI = LI.getVNInfoAt(PrevIndex);
        assert(VNI && "LiveInterval should have VNInfo where it is live.");
        LI.addSegment(LiveInterval::Segment(StartIndex, EndIndex, VNI));
      } else if (!isLiveOut && !isLastMBB) {
        LI.removeSegment(StartIndex, EndIndex);
      }
    }

    // Update all intervals for registers whose uses may have been modified by
    // updateTerminator().
    LIS->repairIntervalsInRange(this, getFirstTerminator(), end(), UsedRegs);
  }

  if (MachineDominatorTree *MDT =
      P->getAnalysisIfAvailable<MachineDominatorTree>()) {
    // Update dominator information.
    MachineDomTreeNode *SucccDTNode = MDT->getNode(Succ);

    bool IsNewIDom = true;
    for (const_pred_iterator PI = Succ->pred_begin(), E = Succ->pred_end();
         PI != E; ++PI) {
      MachineBasicBlock *PredBB = *PI;
      if (PredBB == NMBB)
        continue;
      if (!MDT->dominates(SucccDTNode, MDT->getNode(PredBB))) {
        IsNewIDom = false;
        break;
      }
    }

    // We know "this" dominates the newly created basic block.
    MachineDomTreeNode *NewDTNode = MDT->addNewBlock(NMBB, this);

    // If all the other predecessors of "Succ" are dominated by "Succ" itself
    // then the new block is the new immediate dominator of "Succ". Otherwise,
    // the new block doesn't dominate anything.
    if (IsNewIDom)
      MDT->changeImmediateDominator(SucccDTNode, NewDTNode);
  }

  if (MachineLoopInfo *MLI = P->getAnalysisIfAvailable<MachineLoopInfo>())
    if (MachineLoop *TIL = MLI->getLoopFor(this)) {
      // If one or the other blocks were not in a loop, the new block is not
      // either, and thus LI doesn't need to be updated.
      if (MachineLoop *DestLoop = MLI->getLoopFor(Succ)) {
        if (TIL == DestLoop) {
          // Both in the same loop, the NMBB joins loop.
          DestLoop->addBasicBlockToLoop(NMBB, MLI->getBase());
        } else if (TIL->contains(DestLoop)) {
          // Edge from an outer loop to an inner loop.  Add to the outer loop.
          TIL->addBasicBlockToLoop(NMBB, MLI->getBase());
        } else if (DestLoop->contains(TIL)) {
          // Edge from an inner loop to an outer loop.  Add to the outer loop.
          DestLoop->addBasicBlockToLoop(NMBB, MLI->getBase());
        } else {
          // Edge from two loops with no containment relation.  Because these
          // are natural loops, we know that the destination block must be the
          // header of its loop (adding a branch into a loop elsewhere would
          // create an irreducible loop).
          assert(DestLoop->getHeader() == Succ &&
                 "Should not create irreducible loops!");
          if (MachineLoop *P = DestLoop->getParentLoop())
            P->addBasicBlockToLoop(NMBB, MLI->getBase());
        }
      }
    }

  return NMBB;
}

/// Prepare MI to be removed from its bundle. This fixes bundle flags on MI's
/// neighboring instructions so the bundle won't be broken by removing MI.
static void unbundleSingleMI(MachineInstr *MI) {
  // Removing the first instruction in a bundle.
  if (MI->isBundledWithSucc() && !MI->isBundledWithPred())
    MI->unbundleFromSucc();
  // Removing the last instruction in a bundle.
  if (MI->isBundledWithPred() && !MI->isBundledWithSucc())
    MI->unbundleFromPred();
  // If MI is not bundled, or if it is internal to a bundle, the neighbor flags
  // are already fine.
}

MachineBasicBlock::instr_iterator
MachineBasicBlock::erase(MachineBasicBlock::instr_iterator I) {
  unbundleSingleMI(I);
  return Insts.erase(I);
}

MachineInstr *MachineBasicBlock::remove_instr(MachineInstr *MI) {
  unbundleSingleMI(MI);
  MI->clearFlag(MachineInstr::BundledPred);
  MI->clearFlag(MachineInstr::BundledSucc);
  return Insts.remove(MI);
}

MachineBasicBlock::instr_iterator
MachineBasicBlock::insert(instr_iterator I, MachineInstr *MI) {
  assert(!MI->isBundledWithPred() && !MI->isBundledWithSucc() &&
         "Cannot insert instruction with bundle flags");
  // Set the bundle flags when inserting inside a bundle.
  if (I != instr_end() && I->isBundledWithPred()) {
    MI->setFlag(MachineInstr::BundledPred);
    MI->setFlag(MachineInstr::BundledSucc);
  }
  return Insts.insert(I, MI);
}

/// removeFromParent - This method unlinks 'this' from the containing function,
/// and returns it, but does not delete it.
MachineBasicBlock *MachineBasicBlock::removeFromParent() {
  assert(getParent() && "Not embedded in a function!");
  getParent()->remove(this);
  return this;
}


/// eraseFromParent - This method unlinks 'this' from the containing function,
/// and deletes it.
void MachineBasicBlock::eraseFromParent() {
  assert(getParent() && "Not embedded in a function!");
  getParent()->erase(this);
}


/// ReplaceUsesOfBlockWith - Given a machine basic block that branched to
/// 'Old', change the code and CFG so that it branches to 'New' instead.
void MachineBasicBlock::ReplaceUsesOfBlockWith(MachineBasicBlock *Old,
                                               MachineBasicBlock *New) {
  assert(Old != New && "Cannot replace self with self!");

  MachineBasicBlock::instr_iterator I = instr_end();
  while (I != instr_begin()) {
    --I;
    if (!I->isTerminator()) break;

    // Scan the operands of this machine instruction, replacing any uses of Old
    // with New.
    for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i)
      if (I->getOperand(i).isMBB() &&
          I->getOperand(i).getMBB() == Old)
        I->getOperand(i).setMBB(New);
  }

  // Update the successor information.
  replaceSuccessor(Old, New);
}

/// CorrectExtraCFGEdges - Various pieces of code can cause excess edges in the
/// CFG to be inserted.  If we have proven that MBB can only branch to DestA and
/// DestB, remove any other MBB successors from the CFG.  DestA and DestB can be
/// null.
///
/// Besides DestA and DestB, retain other edges leading to LandingPads
/// (currently there can be only one; we don't check or require that here).
/// Note it is possible that DestA and/or DestB are LandingPads.
bool MachineBasicBlock::CorrectExtraCFGEdges(MachineBasicBlock *DestA,
                                             MachineBasicBlock *DestB,
                                             bool isCond) {
  // The values of DestA and DestB frequently come from a call to the
  // 'TargetInstrInfo::AnalyzeBranch' method. We take our meaning of the initial
  // values from there.
  //
  // 1. If both DestA and DestB are null, then the block ends with no branches
  //    (it falls through to its successor).
  // 2. If DestA is set, DestB is null, and isCond is false, then the block ends
  //    with only an unconditional branch.
  // 3. If DestA is set, DestB is null, and isCond is true, then the block ends
  //    with a conditional branch that falls through to a successor (DestB).
  // 4. If DestA and DestB is set and isCond is true, then the block ends with a
  //    conditional branch followed by an unconditional branch. DestA is the
  //    'true' destination and DestB is the 'false' destination.

  bool Changed = false;

  MachineFunction::iterator FallThru =
    std::next(MachineFunction::iterator(this));

  if (DestA == 0 && DestB == 0) {
    // Block falls through to successor.
    DestA = FallThru;
    DestB = FallThru;
  } else if (DestA != 0 && DestB == 0) {
    if (isCond)
      // Block ends in conditional jump that falls through to successor.
      DestB = FallThru;
  } else {
    assert(DestA && DestB && isCond &&
           "CFG in a bad state. Cannot correct CFG edges");
  }

  // Remove superfluous edges. I.e., those which aren't destinations of this
  // basic block, duplicate edges, or landing pads.
  SmallPtrSet<const MachineBasicBlock*, 8> SeenMBBs;
  MachineBasicBlock::succ_iterator SI = succ_begin();
  while (SI != succ_end()) {
    const MachineBasicBlock *MBB = *SI;
    if (!SeenMBBs.insert(MBB) ||
        (MBB != DestA && MBB != DestB && !MBB->isLandingPad())) {
      // This is a superfluous edge, remove it.
      SI = removeSuccessor(SI);
      Changed = true;
    } else {
      ++SI;
    }
  }

  return Changed;
}

/// findDebugLoc - find the next valid DebugLoc starting at MBBI, skipping
/// any DBG_VALUE instructions.  Return UnknownLoc if there is none.
DebugLoc
MachineBasicBlock::findDebugLoc(instr_iterator MBBI) {
  DebugLoc DL;
  instr_iterator E = instr_end();
  if (MBBI == E)
    return DL;

  // Skip debug declarations, we don't want a DebugLoc from them.
  while (MBBI != E && MBBI->isDebugValue())
    MBBI++;
  if (MBBI != E)
    DL = MBBI->getDebugLoc();
  return DL;
}

/// getSuccWeight - Return weight of the edge from this block to MBB.
///
uint32_t MachineBasicBlock::getSuccWeight(const_succ_iterator Succ) const {
  if (Weights.empty())
    return 0;

  return *getWeightIterator(Succ);
}

/// Set successor weight of a given iterator.
void MachineBasicBlock::setSuccWeight(succ_iterator I, uint32_t weight) {
  if (Weights.empty())
    return;
  *getWeightIterator(I) = weight;
}

/// getWeightIterator - Return wight iterator corresonding to the I successor
/// iterator
MachineBasicBlock::weight_iterator MachineBasicBlock::
getWeightIterator(MachineBasicBlock::succ_iterator I) {
  assert(Weights.size() == Successors.size() && "Async weight list!");
  size_t index = std::distance(Successors.begin(), I);
  assert(index < Weights.size() && "Not a current successor!");
  return Weights.begin() + index;
}

/// getWeightIterator - Return wight iterator corresonding to the I successor
/// iterator
MachineBasicBlock::const_weight_iterator MachineBasicBlock::
getWeightIterator(MachineBasicBlock::const_succ_iterator I) const {
  assert(Weights.size() == Successors.size() && "Async weight list!");
  const size_t index = std::distance(Successors.begin(), I);
  assert(index < Weights.size() && "Not a current successor!");
  return Weights.begin() + index;
}

/// Return whether (physical) register "Reg" has been <def>ined and not <kill>ed
/// as of just before "MI".
/// 
/// Search is localised to a neighborhood of
/// Neighborhood instructions before (searching for defs or kills) and N
/// instructions after (searching just for defs) MI.
MachineBasicBlock::LivenessQueryResult
MachineBasicBlock::computeRegisterLiveness(const TargetRegisterInfo *TRI,
                                           unsigned Reg, MachineInstr *MI,
                                           unsigned Neighborhood) {
  unsigned N = Neighborhood;
  MachineBasicBlock *MBB = MI->getParent();

  // Start by searching backwards from MI, looking for kills, reads or defs.

  MachineBasicBlock::iterator I(MI);
  // If this is the first insn in the block, don't search backwards.
  if (I != MBB->begin()) {
    do {
      --I;

      MachineOperandIteratorBase::PhysRegInfo Analysis =
        MIOperands(I).analyzePhysReg(Reg, TRI);

      if (Analysis.Defines)
        // Outputs happen after inputs so they take precedence if both are
        // present.
        return Analysis.DefinesDead ? LQR_Dead : LQR_Live;

      if (Analysis.Kills || Analysis.Clobbers)
        // Register killed, so isn't live.
        return LQR_Dead;

      else if (Analysis.ReadsOverlap)
        // Defined or read without a previous kill - live.
        return Analysis.Reads ? LQR_Live : LQR_OverlappingLive;

    } while (I != MBB->begin() && --N > 0);
  }

  // Did we get to the start of the block?
  if (I == MBB->begin()) {
    // If so, the register's state is definitely defined by the live-in state.
    for (MCRegAliasIterator RAI(Reg, TRI, /*IncludeSelf=*/true);
         RAI.isValid(); ++RAI) {
      if (MBB->isLiveIn(*RAI))
        return (*RAI == Reg) ? LQR_Live : LQR_OverlappingLive;
    }

    return LQR_Dead;
  }

  N = Neighborhood;

  // Try searching forwards from MI, looking for reads or defs.
  I = MachineBasicBlock::iterator(MI);
  // If this is the last insn in the block, don't search forwards.
  if (I != MBB->end()) {
    for (++I; I != MBB->end() && N > 0; ++I, --N) {
      MachineOperandIteratorBase::PhysRegInfo Analysis =
        MIOperands(I).analyzePhysReg(Reg, TRI);

      if (Analysis.ReadsOverlap)
        // Used, therefore must have been live.
        return (Analysis.Reads) ?
          LQR_Live : LQR_OverlappingLive;

      else if (Analysis.Clobbers || Analysis.Defines)
        // Defined (but not read) therefore cannot have been live.
        return LQR_Dead;
    }
  }

  // At this point we have no idea of the liveness of the register.
  return LQR_Unknown;
}