llvm.org GIT mirror llvm / 7716d65 lib / Transforms / Scalar / LoopUnswitch.cpp
7716d65

Tree @7716d65 (Download .tar.gz)

LoopUnswitch.cpp @7716d65raw · history · blame

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
//===- LoopUnswitch.cpp - Hoist loop-invariant conditionals in loop -------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This pass transforms loops that contain branches on loop-invariant conditions
// to multiple loops.  For example, it turns the left into the right code:
//
//  for (...)                  if (lic)
//    A                          for (...)
//    if (lic)                     A; B; C
//      B                      else
//    C                          for (...)
//                                 A; C
//
// This can increase the size of the code exponentially (doubling it every time
// a loop is unswitched) so we only unswitch if the resultant code will be
// smaller than a threshold.
//
// This pass expects LICM to be run before it to hoist invariant conditions out
// of the loop, to make the unswitching opportunity obvious.
//
//===----------------------------------------------------------------------===//

#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/Analysis/AssumptionCache.h"
#include "llvm/Analysis/CodeMetrics.h"
#include "llvm/Analysis/InstructionSimplify.h"
#include "llvm/Analysis/LegacyDivergenceAnalysis.h"
#include "llvm/Analysis/LoopInfo.h"
#include "llvm/Analysis/LoopIterator.h"
#include "llvm/Analysis/LoopPass.h"
#include "llvm/Analysis/MemorySSA.h"
#include "llvm/Analysis/MemorySSAUpdater.h"
#include "llvm/Analysis/ScalarEvolution.h"
#include "llvm/Analysis/TargetTransformInfo.h"
#include "llvm/IR/Attributes.h"
#include "llvm/IR/BasicBlock.h"
#include "llvm/IR/CallSite.h"
#include "llvm/IR/Constant.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/DerivedTypes.h"
#include "llvm/IR/Dominators.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/IRBuilder.h"
#include "llvm/IR/InstrTypes.h"
#include "llvm/IR/Instruction.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/IntrinsicInst.h"
#include "llvm/IR/Intrinsics.h"
#include "llvm/IR/Module.h"
#include "llvm/IR/Type.h"
#include "llvm/IR/User.h"
#include "llvm/IR/Value.h"
#include "llvm/IR/ValueHandle.h"
#include "llvm/Pass.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Transforms/Scalar.h"
#include "llvm/Transforms/Scalar/LoopPassManager.h"
#include "llvm/Transforms/Utils/BasicBlockUtils.h"
#include "llvm/Transforms/Utils/Cloning.h"
#include "llvm/Transforms/Utils/Local.h"
#include "llvm/Transforms/Utils/LoopUtils.h"
#include "llvm/Transforms/Utils/ValueMapper.h"
#include <algorithm>
#include <cassert>
#include <map>
#include <set>
#include <tuple>
#include <utility>
#include <vector>

using namespace llvm;

#define DEBUG_TYPE "loop-unswitch"

STATISTIC(NumBranches, "Number of branches unswitched");
STATISTIC(NumSwitches, "Number of switches unswitched");
STATISTIC(NumGuards,   "Number of guards unswitched");
STATISTIC(NumSelects , "Number of selects unswitched");
STATISTIC(NumTrivial , "Number of unswitches that are trivial");
STATISTIC(NumSimplify, "Number of simplifications of unswitched code");
STATISTIC(TotalInsts,  "Total number of instructions analyzed");

// The specific value of 100 here was chosen based only on intuition and a
// few specific examples.
static cl::opt<unsigned>
Threshold("loop-unswitch-threshold", cl::desc("Max loop size to unswitch"),
          cl::init(100), cl::Hidden);

namespace {

  class LUAnalysisCache {
    using UnswitchedValsMap =
        DenseMap<const SwitchInst *, SmallPtrSet<const Value *, 8>>;
    using UnswitchedValsIt = UnswitchedValsMap::iterator;

    struct LoopProperties {
      unsigned CanBeUnswitchedCount;
      unsigned WasUnswitchedCount;
      unsigned SizeEstimation;
      UnswitchedValsMap UnswitchedVals;
    };

    // Here we use std::map instead of DenseMap, since we need to keep valid
    // LoopProperties pointer for current loop for better performance.
    using LoopPropsMap = std::map<const Loop *, LoopProperties>;
    using LoopPropsMapIt = LoopPropsMap::iterator;

    LoopPropsMap LoopsProperties;
    UnswitchedValsMap *CurLoopInstructions = nullptr;
    LoopProperties *CurrentLoopProperties = nullptr;

    // A loop unswitching with an estimated cost above this threshold
    // is not performed. MaxSize is turned into unswitching quota for
    // the current loop, and reduced correspondingly, though note that
    // the quota is returned by releaseMemory() when the loop has been
    // processed, so that MaxSize will return to its previous
    // value. So in most cases MaxSize will equal the Threshold flag
    // when a new loop is processed. An exception to that is that
    // MaxSize will have a smaller value while processing nested loops
    // that were introduced due to loop unswitching of an outer loop.
    //
    // FIXME: The way that MaxSize works is subtle and depends on the
    // pass manager processing loops and calling releaseMemory() in a
    // specific order. It would be good to find a more straightforward
    // way of doing what MaxSize does.
    unsigned MaxSize;

  public:
    LUAnalysisCache() : MaxSize(Threshold) {}

    // Analyze loop. Check its size, calculate is it possible to unswitch
    // it. Returns true if we can unswitch this loop.
    bool countLoop(const Loop *L, const TargetTransformInfo &TTI,
                   AssumptionCache *AC);

    // Clean all data related to given loop.
    void forgetLoop(const Loop *L);

    // Mark case value as unswitched.
    // Since SI instruction can be partly unswitched, in order to avoid
    // extra unswitching in cloned loops keep track all unswitched values.
    void setUnswitched(const SwitchInst *SI, const Value *V);

    // Check was this case value unswitched before or not.
    bool isUnswitched(const SwitchInst *SI, const Value *V);

    // Returns true if another unswitching could be done within the cost
    // threshold.
    bool CostAllowsUnswitching();

    // Clone all loop-unswitch related loop properties.
    // Redistribute unswitching quotas.
    // Note, that new loop data is stored inside the VMap.
    void cloneData(const Loop *NewLoop, const Loop *OldLoop,
                   const ValueToValueMapTy &VMap);
  };

  class LoopUnswitch : public LoopPass {
    LoopInfo *LI;  // Loop information
    LPPassManager *LPM;
    AssumptionCache *AC;

    // Used to check if second loop needs processing after
    // RewriteLoopBodyWithConditionConstant rewrites first loop.
    std::vector<Loop*> LoopProcessWorklist;

    LUAnalysisCache BranchesInfo;

    bool OptimizeForSize;
    bool redoLoop = false;

    Loop *currentLoop = nullptr;
    DominatorTree *DT = nullptr;
    MemorySSA *MSSA = nullptr;
    std::unique_ptr<MemorySSAUpdater> MSSAU;
    BasicBlock *loopHeader = nullptr;
    BasicBlock *loopPreheader = nullptr;

    bool SanitizeMemory;
    SimpleLoopSafetyInfo SafetyInfo;

    // LoopBlocks contains all of the basic blocks of the loop, including the
    // preheader of the loop, the body of the loop, and the exit blocks of the
    // loop, in that order.
    std::vector<BasicBlock*> LoopBlocks;
    // NewBlocks contained cloned copy of basic blocks from LoopBlocks.
    std::vector<BasicBlock*> NewBlocks;

    bool hasBranchDivergence;

  public:
    static char ID; // Pass ID, replacement for typeid

    explicit LoopUnswitch(bool Os = false, bool hasBranchDivergence = false)
        : LoopPass(ID), OptimizeForSize(Os),
          hasBranchDivergence(hasBranchDivergence) {
        initializeLoopUnswitchPass(*PassRegistry::getPassRegistry());
    }

    bool runOnLoop(Loop *L, LPPassManager &LPM) override;
    bool processCurrentLoop();
    bool isUnreachableDueToPreviousUnswitching(BasicBlock *);

    /// This transformation requires natural loop information & requires that
    /// loop preheaders be inserted into the CFG.
    ///
    void getAnalysisUsage(AnalysisUsage &AU) const override {
      AU.addRequired<AssumptionCacheTracker>();
      AU.addRequired<TargetTransformInfoWrapperPass>();
      if (EnableMSSALoopDependency) {
        AU.addRequired<MemorySSAWrapperPass>();
        AU.addPreserved<MemorySSAWrapperPass>();
      }
      if (hasBranchDivergence)
        AU.addRequired<LegacyDivergenceAnalysis>();
      getLoopAnalysisUsage(AU);
    }

  private:
    void releaseMemory() override {
      BranchesInfo.forgetLoop(currentLoop);
    }

    void initLoopData() {
      loopHeader = currentLoop->getHeader();
      loopPreheader = currentLoop->getLoopPreheader();
    }

    /// Split all of the edges from inside the loop to their exit blocks.
    /// Update the appropriate Phi nodes as we do so.
    void SplitExitEdges(Loop *L,
                        const SmallVectorImpl<BasicBlock *> &ExitBlocks);

    bool TryTrivialLoopUnswitch(bool &Changed);

    bool UnswitchIfProfitable(Value *LoopCond, Constant *Val,
                              Instruction *TI = nullptr);
    void UnswitchTrivialCondition(Loop *L, Value *Cond, Constant *Val,
                                  BasicBlock *ExitBlock, Instruction *TI);
    void UnswitchNontrivialCondition(Value *LIC, Constant *OnVal, Loop *L,
                                     Instruction *TI);

    void RewriteLoopBodyWithConditionConstant(Loop *L, Value *LIC,
                                              Constant *Val, bool isEqual);

    void EmitPreheaderBranchOnCondition(Value *LIC, Constant *Val,
                                        BasicBlock *TrueDest,
                                        BasicBlock *FalseDest,
                                        BranchInst *OldBranch, Instruction *TI);

    void SimplifyCode(std::vector<Instruction*> &Worklist, Loop *L);

    /// Given that the Invariant is not equal to Val. Simplify instructions
    /// in the loop.
    Value *SimplifyInstructionWithNotEqual(Instruction *Inst, Value *Invariant,
                                           Constant *Val);
  };

} // end anonymous namespace

// Analyze loop. Check its size, calculate is it possible to unswitch
// it. Returns true if we can unswitch this loop.
bool LUAnalysisCache::countLoop(const Loop *L, const TargetTransformInfo &TTI,
                                AssumptionCache *AC) {
  LoopPropsMapIt PropsIt;
  bool Inserted;
  std::tie(PropsIt, Inserted) =
      LoopsProperties.insert(std::make_pair(L, LoopProperties()));

  LoopProperties &Props = PropsIt->second;

  if (Inserted) {
    // New loop.

    // Limit the number of instructions to avoid causing significant code
    // expansion, and the number of basic blocks, to avoid loops with
    // large numbers of branches which cause loop unswitching to go crazy.
    // This is a very ad-hoc heuristic.

    SmallPtrSet<const Value *, 32> EphValues;
    CodeMetrics::collectEphemeralValues(L, AC, EphValues);

    // FIXME: This is overly conservative because it does not take into
    // consideration code simplification opportunities and code that can
    // be shared by the resultant unswitched loops.
    CodeMetrics Metrics;
    for (Loop::block_iterator I = L->block_begin(), E = L->block_end(); I != E;
         ++I)
      Metrics.analyzeBasicBlock(*I, TTI, EphValues);

    Props.SizeEstimation = Metrics.NumInsts;
    Props.CanBeUnswitchedCount = MaxSize / (Props.SizeEstimation);
    Props.WasUnswitchedCount = 0;
    MaxSize -= Props.SizeEstimation * Props.CanBeUnswitchedCount;

    if (Metrics.notDuplicatable) {
      LLVM_DEBUG(dbgs() << "NOT unswitching loop %" << L->getHeader()->getName()
                        << ", contents cannot be "
                        << "duplicated!\n");
      return false;
    }
  }

  // Be careful. This links are good only before new loop addition.
  CurrentLoopProperties = &Props;
  CurLoopInstructions = &Props.UnswitchedVals;

  return true;
}

// Clean all data related to given loop.
void LUAnalysisCache::forgetLoop(const Loop *L) {
  LoopPropsMapIt LIt = LoopsProperties.find(L);

  if (LIt != LoopsProperties.end()) {
    LoopProperties &Props = LIt->second;
    MaxSize += (Props.CanBeUnswitchedCount + Props.WasUnswitchedCount) *
               Props.SizeEstimation;
    LoopsProperties.erase(LIt);
  }

  CurrentLoopProperties = nullptr;
  CurLoopInstructions = nullptr;
}

// Mark case value as unswitched.
// Since SI instruction can be partly unswitched, in order to avoid
// extra unswitching in cloned loops keep track all unswitched values.
void LUAnalysisCache::setUnswitched(const SwitchInst *SI, const Value *V) {
  (*CurLoopInstructions)[SI].insert(V);
}

// Check was this case value unswitched before or not.
bool LUAnalysisCache::isUnswitched(const SwitchInst *SI, const Value *V) {
  return (*CurLoopInstructions)[SI].count(V);
}

bool LUAnalysisCache::CostAllowsUnswitching() {
  return CurrentLoopProperties->CanBeUnswitchedCount > 0;
}

// Clone all loop-unswitch related loop properties.
// Redistribute unswitching quotas.
// Note, that new loop data is stored inside the VMap.
void LUAnalysisCache::cloneData(const Loop *NewLoop, const Loop *OldLoop,
                                const ValueToValueMapTy &VMap) {
  LoopProperties &NewLoopProps = LoopsProperties[NewLoop];
  LoopProperties &OldLoopProps = *CurrentLoopProperties;
  UnswitchedValsMap &Insts = OldLoopProps.UnswitchedVals;

  // Reallocate "can-be-unswitched quota"

  --OldLoopProps.CanBeUnswitchedCount;
  ++OldLoopProps.WasUnswitchedCount;
  NewLoopProps.WasUnswitchedCount = 0;
  unsigned Quota = OldLoopProps.CanBeUnswitchedCount;
  NewLoopProps.CanBeUnswitchedCount = Quota / 2;
  OldLoopProps.CanBeUnswitchedCount = Quota - Quota / 2;

  NewLoopProps.SizeEstimation = OldLoopProps.SizeEstimation;

  // Clone unswitched values info:
  // for new loop switches we clone info about values that was
  // already unswitched and has redundant successors.
  for (UnswitchedValsIt I = Insts.begin(); I != Insts.end(); ++I) {
    const SwitchInst *OldInst = I->first;
    Value *NewI = VMap.lookup(OldInst);
    const SwitchInst *NewInst = cast_or_null<SwitchInst>(NewI);
    assert(NewInst && "All instructions that are in SrcBB must be in VMap.");

    NewLoopProps.UnswitchedVals[NewInst] = OldLoopProps.UnswitchedVals[OldInst];
  }
}

char LoopUnswitch::ID = 0;

INITIALIZE_PASS_BEGIN(LoopUnswitch, "loop-unswitch", "Unswitch loops",
                      false, false)
INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
INITIALIZE_PASS_DEPENDENCY(LoopPass)
INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
INITIALIZE_PASS_DEPENDENCY(LegacyDivergenceAnalysis)
INITIALIZE_PASS_DEPENDENCY(MemorySSAWrapperPass)
INITIALIZE_PASS_END(LoopUnswitch, "loop-unswitch", "Unswitch loops",
                      false, false)

Pass *llvm::createLoopUnswitchPass(bool Os, bool hasBranchDivergence) {
  return new LoopUnswitch(Os, hasBranchDivergence);
}

/// Operator chain lattice.
enum OperatorChain {
  OC_OpChainNone,    ///< There is no operator.
  OC_OpChainOr,      ///< There are only ORs.
  OC_OpChainAnd,     ///< There are only ANDs.
  OC_OpChainMixed    ///< There are ANDs and ORs.
};

/// Cond is a condition that occurs in L. If it is invariant in the loop, or has
/// an invariant piece, return the invariant. Otherwise, return null.
//
/// NOTE: FindLIVLoopCondition will not return a partial LIV by walking up a
/// mixed operator chain, as we can not reliably find a value which will simplify
/// the operator chain. If the chain is AND-only or OR-only, we can use 0 or ~0
/// to simplify the chain.
///
/// NOTE: In case a partial LIV and a mixed operator chain, we may be able to
/// simplify the condition itself to a loop variant condition, but at the
/// cost of creating an entirely new loop.
static Value *FindLIVLoopCondition(Value *Cond, Loop *L, bool &Changed,
                                   OperatorChain &ParentChain,
                                   DenseMap<Value *, Value *> &Cache) {
  auto CacheIt = Cache.find(Cond);
  if (CacheIt != Cache.end())
    return CacheIt->second;

  // We started analyze new instruction, increment scanned instructions counter.
  ++TotalInsts;

  // We can never unswitch on vector conditions.
  if (Cond->getType()->isVectorTy())
    return nullptr;

  // Constants should be folded, not unswitched on!
  if (isa<Constant>(Cond)) return nullptr;

  // TODO: Handle: br (VARIANT|INVARIANT).

  // Hoist simple values out.
  if (L->makeLoopInvariant(Cond, Changed)) {
    Cache[Cond] = Cond;
    return Cond;
  }

  // Walk up the operator chain to find partial invariant conditions.
  if (BinaryOperator *BO = dyn_cast<BinaryOperator>(Cond))
    if (BO->getOpcode() == Instruction::And ||
        BO->getOpcode() == Instruction::Or) {
      // Given the previous operator, compute the current operator chain status.
      OperatorChain NewChain;
      switch (ParentChain) {
      case OC_OpChainNone:
        NewChain = BO->getOpcode() == Instruction::And ? OC_OpChainAnd :
                                      OC_OpChainOr;
        break;
      case OC_OpChainOr:
        NewChain = BO->getOpcode() == Instruction::Or ? OC_OpChainOr :
                                      OC_OpChainMixed;
        break;
      case OC_OpChainAnd:
        NewChain = BO->getOpcode() == Instruction::And ? OC_OpChainAnd :
                                      OC_OpChainMixed;
        break;
      case OC_OpChainMixed:
        NewChain = OC_OpChainMixed;
        break;
      }

      // If we reach a Mixed state, we do not want to keep walking up as we can not
      // reliably find a value that will simplify the chain. With this check, we
      // will return null on the first sight of mixed chain and the caller will
      // either backtrack to find partial LIV in other operand or return null.
      if (NewChain != OC_OpChainMixed) {
        // Update the current operator chain type before we search up the chain.
        ParentChain = NewChain;
        // If either the left or right side is invariant, we can unswitch on this,
        // which will cause the branch to go away in one loop and the condition to
        // simplify in the other one.
        if (Value *LHS = FindLIVLoopCondition(BO->getOperand(0), L, Changed,
                                              ParentChain, Cache)) {
          Cache[Cond] = LHS;
          return LHS;
        }
        // We did not manage to find a partial LIV in operand(0). Backtrack and try
        // operand(1).
        ParentChain = NewChain;
        if (Value *RHS = FindLIVLoopCondition(BO->getOperand(1), L, Changed,
                                              ParentChain, Cache)) {
          Cache[Cond] = RHS;
          return RHS;
        }
      }
    }

  Cache[Cond] = nullptr;
  return nullptr;
}

/// Cond is a condition that occurs in L. If it is invariant in the loop, or has
/// an invariant piece, return the invariant along with the operator chain type.
/// Otherwise, return null.
static std::pair<Value *, OperatorChain> FindLIVLoopCondition(Value *Cond,
                                                              Loop *L,
                                                              bool &Changed) {
  DenseMap<Value *, Value *> Cache;
  OperatorChain OpChain = OC_OpChainNone;
  Value *FCond = FindLIVLoopCondition(Cond, L, Changed, OpChain, Cache);

  // In case we do find a LIV, it can not be obtained by walking up a mixed
  // operator chain.
  assert((!FCond || OpChain != OC_OpChainMixed) &&
        "Do not expect a partial LIV with mixed operator chain");
  return {FCond, OpChain};
}

bool LoopUnswitch::runOnLoop(Loop *L, LPPassManager &LPM_Ref) {
  if (skipLoop(L))
    return false;

  AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(
      *L->getHeader()->getParent());
  LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
  LPM = &LPM_Ref;
  DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
  if (EnableMSSALoopDependency) {
    MSSA = &getAnalysis<MemorySSAWrapperPass>().getMSSA();
    MSSAU = make_unique<MemorySSAUpdater>(MSSA);
    assert(DT && "Cannot update MemorySSA without a valid DomTree.");
  }
  currentLoop = L;
  Function *F = currentLoop->getHeader()->getParent();

  SanitizeMemory = F->hasFnAttribute(Attribute::SanitizeMemory);
  if (SanitizeMemory)
    SafetyInfo.computeLoopSafetyInfo(L);

  if (MSSA && VerifyMemorySSA)
    MSSA->verifyMemorySSA();

  bool Changed = false;
  do {
    assert(currentLoop->isLCSSAForm(*DT));
    if (MSSA && VerifyMemorySSA)
      MSSA->verifyMemorySSA();
    redoLoop = false;
    Changed |= processCurrentLoop();
  } while(redoLoop);

  if (MSSA && VerifyMemorySSA)
    MSSA->verifyMemorySSA();

  return Changed;
}

// Return true if the BasicBlock BB is unreachable from the loop header.
// Return false, otherwise.
bool LoopUnswitch::isUnreachableDueToPreviousUnswitching(BasicBlock *BB) {
  auto *Node = DT->getNode(BB)->getIDom();
  BasicBlock *DomBB = Node->getBlock();
  while (currentLoop->contains(DomBB)) {
    BranchInst *BInst = dyn_cast<BranchInst>(DomBB->getTerminator());

    Node = DT->getNode(DomBB)->getIDom();
    DomBB = Node->getBlock();

    if (!BInst || !BInst->isConditional())
      continue;

    Value *Cond = BInst->getCondition();
    if (!isa<ConstantInt>(Cond))
      continue;

    BasicBlock *UnreachableSucc =
        Cond == ConstantInt::getTrue(Cond->getContext())
            ? BInst->getSuccessor(1)
            : BInst->getSuccessor(0);

    if (DT->dominates(UnreachableSucc, BB))
      return true;
  }
  return false;
}

/// FIXME: Remove this workaround when freeze related patches are done.
/// LoopUnswitch and Equality propagation in GVN have discrepancy about
/// whether branch on undef/poison has undefine behavior. Here it is to
/// rule out some common cases that we found such discrepancy already
/// causing problems. Detail could be found in PR31652. Note if the
/// func returns true, it is unsafe. But if it is false, it doesn't mean
/// it is necessarily safe.
static bool EqualityPropUnSafe(Value &LoopCond) {
  ICmpInst *CI = dyn_cast<ICmpInst>(&LoopCond);
  if (!CI || !CI->isEquality())
    return false;

  Value *LHS = CI->getOperand(0);
  Value *RHS = CI->getOperand(1);
  if (isa<UndefValue>(LHS) || isa<UndefValue>(RHS))
    return true;

  auto hasUndefInPHI = [](PHINode &PN) {
    for (Value *Opd : PN.incoming_values()) {
      if (isa<UndefValue>(Opd))
        return true;
    }
    return false;
  };
  PHINode *LPHI = dyn_cast<PHINode>(LHS);
  PHINode *RPHI = dyn_cast<PHINode>(RHS);
  if ((LPHI && hasUndefInPHI(*LPHI)) || (RPHI && hasUndefInPHI(*RPHI)))
    return true;

  auto hasUndefInSelect = [](SelectInst &SI) {
    if (isa<UndefValue>(SI.getTrueValue()) ||
        isa<UndefValue>(SI.getFalseValue()))
      return true;
    return false;
  };
  SelectInst *LSI = dyn_cast<SelectInst>(LHS);
  SelectInst *RSI = dyn_cast<SelectInst>(RHS);
  if ((LSI && hasUndefInSelect(*LSI)) || (RSI && hasUndefInSelect(*RSI)))
    return true;
  return false;
}

/// Do actual work and unswitch loop if possible and profitable.
bool LoopUnswitch::processCurrentLoop() {
  bool Changed = false;

  initLoopData();

  // If LoopSimplify was unable to form a preheader, don't do any unswitching.
  if (!loopPreheader)
    return false;

  // Loops with indirectbr cannot be cloned.
  if (!currentLoop->isSafeToClone())
    return false;

  // Without dedicated exits, splitting the exit edge may fail.
  if (!currentLoop->hasDedicatedExits())
    return false;

  LLVMContext &Context = loopHeader->getContext();

  // Analyze loop cost, and stop unswitching if loop content can not be duplicated.
  if (!BranchesInfo.countLoop(
          currentLoop, getAnalysis<TargetTransformInfoWrapperPass>().getTTI(
                           *currentLoop->getHeader()->getParent()),
          AC))
    return false;

  // Try trivial unswitch first before loop over other basic blocks in the loop.
  if (TryTrivialLoopUnswitch(Changed)) {
    return true;
  }

  // Do not do non-trivial unswitch while optimizing for size.
  // FIXME: Use Function::hasOptSize().
  if (OptimizeForSize ||
      loopHeader->getParent()->hasFnAttribute(Attribute::OptimizeForSize))
    return false;

  // Run through the instructions in the loop, keeping track of three things:
  //
  //  - That we do not unswitch loops containing convergent operations, as we
  //    might be making them control dependent on the unswitch value when they
  //    were not before.
  //    FIXME: This could be refined to only bail if the convergent operation is
  //    not already control-dependent on the unswitch value.
  //
  //  - That basic blocks in the loop contain invokes whose predecessor edges we
  //    cannot split.
  //
  //  - The set of guard intrinsics encountered (these are non terminator
  //    instructions that are also profitable to be unswitched).

  SmallVector<IntrinsicInst *, 4> Guards;

  for (const auto BB : currentLoop->blocks()) {
    for (auto &I : *BB) {
      auto CS = CallSite(&I);
      if (!CS) continue;
      if (CS.hasFnAttr(Attribute::Convergent))
        return false;
      if (auto *II = dyn_cast<InvokeInst>(&I))
        if (!II->getUnwindDest()->canSplitPredecessors())
          return false;
      if (auto *II = dyn_cast<IntrinsicInst>(&I))
        if (II->getIntrinsicID() == Intrinsic::experimental_guard)
          Guards.push_back(II);
    }
  }

  for (IntrinsicInst *Guard : Guards) {
    Value *LoopCond =
        FindLIVLoopCondition(Guard->getOperand(0), currentLoop, Changed).first;
    if (LoopCond &&
        UnswitchIfProfitable(LoopCond, ConstantInt::getTrue(Context))) {
      // NB! Unswitching (if successful) could have erased some of the
      // instructions in Guards leaving dangling pointers there.  This is fine
      // because we're returning now, and won't look at Guards again.
      ++NumGuards;
      return true;
    }
  }

  // Loop over all of the basic blocks in the loop.  If we find an interior
  // block that is branching on a loop-invariant condition, we can unswitch this
  // loop.
  for (Loop::block_iterator I = currentLoop->block_begin(),
         E = currentLoop->block_end(); I != E; ++I) {
    Instruction *TI = (*I)->getTerminator();

    // Unswitching on a potentially uninitialized predicate is not
    // MSan-friendly. Limit this to the cases when the original predicate is
    // guaranteed to execute, to avoid creating a use-of-uninitialized-value
    // in the code that did not have one.
    // This is a workaround for the discrepancy between LLVM IR and MSan
    // semantics. See PR28054 for more details.
    if (SanitizeMemory &&
        !SafetyInfo.isGuaranteedToExecute(*TI, DT, currentLoop))
      continue;

    if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
      // Some branches may be rendered unreachable because of previous
      // unswitching.
      // Unswitch only those branches that are reachable.
      if (isUnreachableDueToPreviousUnswitching(*I))
        continue;

      // If this isn't branching on an invariant condition, we can't unswitch
      // it.
      if (BI->isConditional()) {
        // See if this, or some part of it, is loop invariant.  If so, we can
        // unswitch on it if we desire.
        Value *LoopCond = FindLIVLoopCondition(BI->getCondition(),
                                               currentLoop, Changed).first;
        if (LoopCond && !EqualityPropUnSafe(*LoopCond) &&
            UnswitchIfProfitable(LoopCond, ConstantInt::getTrue(Context), TI)) {
          ++NumBranches;
          return true;
        }
      }
    } else if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
      Value *SC = SI->getCondition();
      Value *LoopCond;
      OperatorChain OpChain;
      std::tie(LoopCond, OpChain) =
        FindLIVLoopCondition(SC, currentLoop, Changed);

      unsigned NumCases = SI->getNumCases();
      if (LoopCond && NumCases) {
        // Find a value to unswitch on:
        // FIXME: this should chose the most expensive case!
        // FIXME: scan for a case with a non-critical edge?
        Constant *UnswitchVal = nullptr;
        // Find a case value such that at least one case value is unswitched
        // out.
        if (OpChain == OC_OpChainAnd) {
          // If the chain only has ANDs and the switch has a case value of 0.
          // Dropping in a 0 to the chain will unswitch out the 0-casevalue.
          auto *AllZero = cast<ConstantInt>(Constant::getNullValue(SC->getType()));
          if (BranchesInfo.isUnswitched(SI, AllZero))
            continue;
          // We are unswitching 0 out.
          UnswitchVal = AllZero;
        } else if (OpChain == OC_OpChainOr) {
          // If the chain only has ORs and the switch has a case value of ~0.
          // Dropping in a ~0 to the chain will unswitch out the ~0-casevalue.
          auto *AllOne = cast<ConstantInt>(Constant::getAllOnesValue(SC->getType()));
          if (BranchesInfo.isUnswitched(SI, AllOne))
            continue;
          // We are unswitching ~0 out.
          UnswitchVal = AllOne;
        } else {
          assert(OpChain == OC_OpChainNone &&
                 "Expect to unswitch on trivial chain");
          // Do not process same value again and again.
          // At this point we have some cases already unswitched and
          // some not yet unswitched. Let's find the first not yet unswitched one.
          for (auto Case : SI->cases()) {
            Constant *UnswitchValCandidate = Case.getCaseValue();
            if (!BranchesInfo.isUnswitched(SI, UnswitchValCandidate)) {
              UnswitchVal = UnswitchValCandidate;
              break;
            }
          }
        }

        if (!UnswitchVal)
          continue;

        if (UnswitchIfProfitable(LoopCond, UnswitchVal)) {
          ++NumSwitches;
          // In case of a full LIV, UnswitchVal is the value we unswitched out.
          // In case of a partial LIV, we only unswitch when its an AND-chain
          // or OR-chain. In both cases switch input value simplifies to
          // UnswitchVal.
          BranchesInfo.setUnswitched(SI, UnswitchVal);
          return true;
        }
      }
    }

    // Scan the instructions to check for unswitchable values.
    for (BasicBlock::iterator BBI = (*I)->begin(), E = (*I)->end();
         BBI != E; ++BBI)
      if (SelectInst *SI = dyn_cast<SelectInst>(BBI)) {
        Value *LoopCond = FindLIVLoopCondition(SI->getCondition(),
                                               currentLoop, Changed).first;
        if (LoopCond && UnswitchIfProfitable(LoopCond,
                                             ConstantInt::getTrue(Context))) {
          ++NumSelects;
          return true;
        }
      }
  }
  return Changed;
}

/// Check to see if all paths from BB exit the loop with no side effects
/// (including infinite loops).
///
/// If true, we return true and set ExitBB to the block we
/// exit through.
///
static bool isTrivialLoopExitBlockHelper(Loop *L, BasicBlock *BB,
                                         BasicBlock *&ExitBB,
                                         std::set<BasicBlock*> &Visited) {
  if (!Visited.insert(BB).second) {
    // Already visited. Without more analysis, this could indicate an infinite
    // loop.
    return false;
  }
  if (!L->contains(BB)) {
    // Otherwise, this is a loop exit, this is fine so long as this is the
    // first exit.
    if (ExitBB) return false;
    ExitBB = BB;
    return true;
  }

  // Otherwise, this is an unvisited intra-loop node.  Check all successors.
  for (succ_iterator SI = succ_begin(BB), E = succ_end(BB); SI != E; ++SI) {
    // Check to see if the successor is a trivial loop exit.
    if (!isTrivialLoopExitBlockHelper(L, *SI, ExitBB, Visited))
      return false;
  }

  // Okay, everything after this looks good, check to make sure that this block
  // doesn't include any side effects.
  for (Instruction &I : *BB)
    if (I.mayHaveSideEffects())
      return false;

  return true;
}

/// Return true if the specified block unconditionally leads to an exit from
/// the specified loop, and has no side-effects in the process. If so, return
/// the block that is exited to, otherwise return null.
static BasicBlock *isTrivialLoopExitBlock(Loop *L, BasicBlock *BB) {
  std::set<BasicBlock*> Visited;
  Visited.insert(L->getHeader());  // Branches to header make infinite loops.
  BasicBlock *ExitBB = nullptr;
  if (isTrivialLoopExitBlockHelper(L, BB, ExitBB, Visited))
    return ExitBB;
  return nullptr;
}

/// We have found that we can unswitch currentLoop when LoopCond == Val to
/// simplify the loop.  If we decide that this is profitable,
/// unswitch the loop, reprocess the pieces, then return true.
bool LoopUnswitch::UnswitchIfProfitable(Value *LoopCond, Constant *Val,
                                        Instruction *TI) {
  // Check to see if it would be profitable to unswitch current loop.
  if (!BranchesInfo.CostAllowsUnswitching()) {
    LLVM_DEBUG(dbgs() << "NOT unswitching loop %"
                      << currentLoop->getHeader()->getName()
                      << " at non-trivial condition '" << *Val
                      << "' == " << *LoopCond << "\n"
                      << ". Cost too high.\n");
    return false;
  }
  if (hasBranchDivergence &&
      getAnalysis<LegacyDivergenceAnalysis>().isDivergent(LoopCond)) {
    LLVM_DEBUG(dbgs() << "NOT unswitching loop %"
                      << currentLoop->getHeader()->getName()
                      << " at non-trivial condition '" << *Val
                      << "' == " << *LoopCond << "\n"
                      << ". Condition is divergent.\n");
    return false;
  }

  UnswitchNontrivialCondition(LoopCond, Val, currentLoop, TI);
  return true;
}

/// Recursively clone the specified loop and all of its children,
/// mapping the blocks with the specified map.
static Loop *CloneLoop(Loop *L, Loop *PL, ValueToValueMapTy &VM,
                       LoopInfo *LI, LPPassManager *LPM) {
  Loop &New = *LI->AllocateLoop();
  if (PL)
    PL->addChildLoop(&New);
  else
    LI->addTopLevelLoop(&New);
  LPM->addLoop(New);

  // Add all of the blocks in L to the new loop.
  for (Loop::block_iterator I = L->block_begin(), E = L->block_end();
       I != E; ++I)
    if (LI->getLoopFor(*I) == L)
      New.addBasicBlockToLoop(cast<BasicBlock>(VM[*I]), *LI);

  // Add all of the subloops to the new loop.
  for (Loop *I : *L)
    CloneLoop(I, &New, VM, LI, LPM);

  return &New;
}

/// Emit a conditional branch on two values if LIC == Val, branch to TrueDst,
/// otherwise branch to FalseDest. Insert the code immediately before OldBranch
/// and remove (but not erase!) it from the function.
void LoopUnswitch::EmitPreheaderBranchOnCondition(Value *LIC, Constant *Val,
                                                  BasicBlock *TrueDest,
                                                  BasicBlock *FalseDest,
                                                  BranchInst *OldBranch,
                                                  Instruction *TI) {
  assert(OldBranch->isUnconditional() && "Preheader is not split correctly");
  assert(TrueDest != FalseDest && "Branch targets should be different");
  // Insert a conditional branch on LIC to the two preheaders.  The original
  // code is the true version and the new code is the false version.
  Value *BranchVal = LIC;
  bool Swapped = false;
  if (!isa<ConstantInt>(Val) ||
      Val->getType() != Type::getInt1Ty(LIC->getContext()))
    BranchVal = new ICmpInst(OldBranch, ICmpInst::ICMP_EQ, LIC, Val);
  else if (Val != ConstantInt::getTrue(Val->getContext())) {
    // We want to enter the new loop when the condition is true.
    std::swap(TrueDest, FalseDest);
    Swapped = true;
  }

  // Old branch will be removed, so save its parent and successor to update the
  // DomTree.
  auto *OldBranchSucc = OldBranch->getSuccessor(0);
  auto *OldBranchParent = OldBranch->getParent();

  // Insert the new branch.
  BranchInst *BI =
      IRBuilder<>(OldBranch).CreateCondBr(BranchVal, TrueDest, FalseDest, TI);
  if (Swapped)
    BI->swapProfMetadata();

  // Remove the old branch so there is only one branch at the end. This is
  // needed to perform DomTree's internal DFS walk on the function's CFG.
  OldBranch->removeFromParent();

  // Inform the DT about the new branch.
  if (DT) {
    // First, add both successors.
    SmallVector<DominatorTree::UpdateType, 3> Updates;
    if (TrueDest != OldBranchSucc)
      Updates.push_back({DominatorTree::Insert, OldBranchParent, TrueDest});
    if (FalseDest != OldBranchSucc)
      Updates.push_back({DominatorTree::Insert, OldBranchParent, FalseDest});
    // If both of the new successors are different from the old one, inform the
    // DT that the edge was deleted.
    if (OldBranchSucc != TrueDest && OldBranchSucc != FalseDest) {
      Updates.push_back({DominatorTree::Delete, OldBranchParent, OldBranchSucc});
    }
    DT->applyUpdates(Updates);

    if (MSSAU)
      MSSAU->applyUpdates(Updates, *DT);
  }

  // If either edge is critical, split it. This helps preserve LoopSimplify
  // form for enclosing loops.
  auto Options =
      CriticalEdgeSplittingOptions(DT, LI, MSSAU.get()).setPreserveLCSSA();
  SplitCriticalEdge(BI, 0, Options);
  SplitCriticalEdge(BI, 1, Options);
}

/// Given a loop that has a trivial unswitchable condition in it (a cond branch
/// from its header block to its latch block, where the path through the loop
/// that doesn't execute its body has no side-effects), unswitch it. This
/// doesn't involve any code duplication, just moving the conditional branch
/// outside of the loop and updating loop info.
void LoopUnswitch::UnswitchTrivialCondition(Loop *L, Value *Cond, Constant *Val,
                                            BasicBlock *ExitBlock,
                                            Instruction *TI) {
  LLVM_DEBUG(dbgs() << "loop-unswitch: Trivial-Unswitch loop %"
                    << loopHeader->getName() << " [" << L->getBlocks().size()
                    << " blocks] in Function "
                    << L->getHeader()->getParent()->getName()
                    << " on cond: " << *Val << " == " << *Cond << "\n");
  // We are going to make essential changes to CFG. This may invalidate cached
  // information for L or one of its parent loops in SCEV.
  if (auto *SEWP = getAnalysisIfAvailable<ScalarEvolutionWrapperPass>())
    SEWP->getSE().forgetTopmostLoop(L);

  // First step, split the preheader, so that we know that there is a safe place
  // to insert the conditional branch.  We will change loopPreheader to have a
  // conditional branch on Cond.
  BasicBlock *NewPH = SplitEdge(loopPreheader, loopHeader, DT, LI, MSSAU.get());

  // Now that we have a place to insert the conditional branch, create a place
  // to branch to: this is the exit block out of the loop that we should
  // short-circuit to.

  // Split this block now, so that the loop maintains its exit block, and so
  // that the jump from the preheader can execute the contents of the exit block
  // without actually branching to it (the exit block should be dominated by the
  // loop header, not the preheader).
  assert(!L->contains(ExitBlock) && "Exit block is in the loop?");
  BasicBlock *NewExit =
      SplitBlock(ExitBlock, &ExitBlock->front(), DT, LI, MSSAU.get());

  // Okay, now we have a position to branch from and a position to branch to,
  // insert the new conditional branch.
  auto *OldBranch = dyn_cast<BranchInst>(loopPreheader->getTerminator());
  assert(OldBranch && "Failed to split the preheader");
  EmitPreheaderBranchOnCondition(Cond, Val, NewExit, NewPH, OldBranch, TI);
  LPM->deleteSimpleAnalysisValue(OldBranch, L);

  // EmitPreheaderBranchOnCondition removed the OldBranch from the function.
  // Delete it, as it is no longer needed.
  delete OldBranch;

  // We need to reprocess this loop, it could be unswitched again.
  redoLoop = true;

  // Now that we know that the loop is never entered when this condition is a
  // particular value, rewrite the loop with this info.  We know that this will
  // at least eliminate the old branch.
  RewriteLoopBodyWithConditionConstant(L, Cond, Val, false);

  ++NumTrivial;
}

/// Check if the first non-constant condition starting from the loop header is
/// a trivial unswitch condition: that is, a condition controls whether or not
/// the loop does anything at all. If it is a trivial condition, unswitching
/// produces no code duplications (equivalently, it produces a simpler loop and
/// a new empty loop, which gets deleted). Therefore always unswitch trivial
/// condition.
bool LoopUnswitch::TryTrivialLoopUnswitch(bool &Changed) {
  BasicBlock *CurrentBB = currentLoop->getHeader();
  Instruction *CurrentTerm = CurrentBB->getTerminator();
  LLVMContext &Context = CurrentBB->getContext();

  // If loop header has only one reachable successor (currently via an
  // unconditional branch or constant foldable conditional branch, but
  // should also consider adding constant foldable switch instruction in
  // future), we should keep looking for trivial condition candidates in
  // the successor as well. An alternative is to constant fold conditions
  // and merge successors into loop header (then we only need to check header's
  // terminator). The reason for not doing this in LoopUnswitch pass is that
  // it could potentially break LoopPassManager's invariants. Folding dead
  // branches could either eliminate the current loop or make other loops
  // unreachable. LCSSA form might also not be preserved after deleting
  // branches. The following code keeps traversing loop header's successors
  // until it finds the trivial condition candidate (condition that is not a
  // constant). Since unswitching generates branches with constant conditions,
  // this scenario could be very common in practice.
  SmallPtrSet<BasicBlock*, 8> Visited;

  while (true) {
    // If we exit loop or reach a previous visited block, then
    // we can not reach any trivial condition candidates (unfoldable
    // branch instructions or switch instructions) and no unswitch
    // can happen. Exit and return false.
    if (!currentLoop->contains(CurrentBB) || !Visited.insert(CurrentBB).second)
      return false;

    // Check if this loop will execute any side-effecting instructions (e.g.
    // stores, calls, volatile loads) in the part of the loop that the code
    // *would* execute. Check the header first.
    for (Instruction &I : *CurrentBB)
      if (I.mayHaveSideEffects())
        return false;

    if (BranchInst *BI = dyn_cast<BranchInst>(CurrentTerm)) {
      if (BI->isUnconditional()) {
        CurrentBB = BI->getSuccessor(0);
      } else if (BI->getCondition() == ConstantInt::getTrue(Context)) {
        CurrentBB = BI->getSuccessor(0);
      } else if (BI->getCondition() == ConstantInt::getFalse(Context)) {
        CurrentBB = BI->getSuccessor(1);
      } else {
        // Found a trivial condition candidate: non-foldable conditional branch.
        break;
      }
    } else if (SwitchInst *SI = dyn_cast<SwitchInst>(CurrentTerm)) {
      // At this point, any constant-foldable instructions should have probably
      // been folded.
      ConstantInt *Cond = dyn_cast<ConstantInt>(SI->getCondition());
      if (!Cond)
        break;
      // Find the target block we are definitely going to.
      CurrentBB = SI->findCaseValue(Cond)->getCaseSuccessor();
    } else {
      // We do not understand these terminator instructions.
      break;
    }

    CurrentTerm = CurrentBB->getTerminator();
  }

  // CondVal is the condition that controls the trivial condition.
  // LoopExitBB is the BasicBlock that loop exits when meets trivial condition.
  Constant *CondVal = nullptr;
  BasicBlock *LoopExitBB = nullptr;

  if (BranchInst *BI = dyn_cast<BranchInst>(CurrentTerm)) {
    // If this isn't branching on an invariant condition, we can't unswitch it.
    if (!BI->isConditional())
      return false;

    Value *LoopCond = FindLIVLoopCondition(BI->getCondition(),
                                           currentLoop, Changed).first;

    // Unswitch only if the trivial condition itself is an LIV (not
    // partial LIV which could occur in and/or)
    if (!LoopCond || LoopCond != BI->getCondition())
      return false;

    // Check to see if a successor of the branch is guaranteed to
    // exit through a unique exit block without having any
    // side-effects.  If so, determine the value of Cond that causes
    // it to do this.
    if ((LoopExitBB = isTrivialLoopExitBlock(currentLoop,
                                             BI->getSuccessor(0)))) {
      CondVal = ConstantInt::getTrue(Context);
    } else if ((LoopExitBB = isTrivialLoopExitBlock(currentLoop,
                                                    BI->getSuccessor(1)))) {
      CondVal = ConstantInt::getFalse(Context);
    }

    // If we didn't find a single unique LoopExit block, or if the loop exit
    // block contains phi nodes, this isn't trivial.
    if (!LoopExitBB || isa<PHINode>(LoopExitBB->begin()))
      return false;   // Can't handle this.

    if (EqualityPropUnSafe(*LoopCond))
      return false;

    UnswitchTrivialCondition(currentLoop, LoopCond, CondVal, LoopExitBB,
                             CurrentTerm);
    ++NumBranches;
    return true;
  } else if (SwitchInst *SI = dyn_cast<SwitchInst>(CurrentTerm)) {
    // If this isn't switching on an invariant condition, we can't unswitch it.
    Value *LoopCond = FindLIVLoopCondition(SI->getCondition(),
                                           currentLoop, Changed).first;

    // Unswitch only if the trivial condition itself is an LIV (not
    // partial LIV which could occur in and/or)
    if (!LoopCond || LoopCond != SI->getCondition())
      return false;

    // Check to see if a successor of the switch is guaranteed to go to the
    // latch block or exit through a one exit block without having any
    // side-effects.  If so, determine the value of Cond that causes it to do
    // this.
    // Note that we can't trivially unswitch on the default case or
    // on already unswitched cases.
    for (auto Case : SI->cases()) {
      BasicBlock *LoopExitCandidate;
      if ((LoopExitCandidate =
               isTrivialLoopExitBlock(currentLoop, Case.getCaseSuccessor()))) {
        // Okay, we found a trivial case, remember the value that is trivial.
        ConstantInt *CaseVal = Case.getCaseValue();

        // Check that it was not unswitched before, since already unswitched
        // trivial vals are looks trivial too.
        if (BranchesInfo.isUnswitched(SI, CaseVal))
          continue;
        LoopExitBB = LoopExitCandidate;
        CondVal = CaseVal;
        break;
      }
    }

    // If we didn't find a single unique LoopExit block, or if the loop exit
    // block contains phi nodes, this isn't trivial.
    if (!LoopExitBB || isa<PHINode>(LoopExitBB->begin()))
      return false;   // Can't handle this.

    UnswitchTrivialCondition(currentLoop, LoopCond, CondVal, LoopExitBB,
                             nullptr);

    // We are only unswitching full LIV.
    BranchesInfo.setUnswitched(SI, CondVal);
    ++NumSwitches;
    return true;
  }
  return false;
}

/// Split all of the edges from inside the loop to their exit blocks.
/// Update the appropriate Phi nodes as we do so.
void LoopUnswitch::SplitExitEdges(Loop *L,
                               const SmallVectorImpl<BasicBlock *> &ExitBlocks){

  for (unsigned i = 0, e = ExitBlocks.size(); i != e; ++i) {
    BasicBlock *ExitBlock = ExitBlocks[i];
    SmallVector<BasicBlock *, 4> Preds(pred_begin(ExitBlock),
                                       pred_end(ExitBlock));

    // Although SplitBlockPredecessors doesn't preserve loop-simplify in
    // general, if we call it on all predecessors of all exits then it does.
    SplitBlockPredecessors(ExitBlock, Preds, ".us-lcssa", DT, LI, MSSAU.get(),
                           /*PreserveLCSSA*/ true);
  }
}

/// We determined that the loop is profitable to unswitch when LIC equal Val.
/// Split it into loop versions and test the condition outside of either loop.
/// Return the loops created as Out1/Out2.
void LoopUnswitch::UnswitchNontrivialCondition(Value *LIC, Constant *Val,
                                               Loop *L, Instruction *TI) {
  Function *F = loopHeader->getParent();
  LLVM_DEBUG(dbgs() << "loop-unswitch: Unswitching loop %"
                    << loopHeader->getName() << " [" << L->getBlocks().size()
                    << " blocks] in Function " << F->getName() << " when '"
                    << *Val << "' == " << *LIC << "\n");

  // We are going to make essential changes to CFG. This may invalidate cached
  // information for L or one of its parent loops in SCEV.
  if (auto *SEWP = getAnalysisIfAvailable<ScalarEvolutionWrapperPass>())
    SEWP->getSE().forgetTopmostLoop(L);

  LoopBlocks.clear();
  NewBlocks.clear();

  // First step, split the preheader and exit blocks, and add these blocks to
  // the LoopBlocks list.
  BasicBlock *NewPreheader =
      SplitEdge(loopPreheader, loopHeader, DT, LI, MSSAU.get());
  LoopBlocks.push_back(NewPreheader);

  // We want the loop to come after the preheader, but before the exit blocks.
  LoopBlocks.insert(LoopBlocks.end(), L->block_begin(), L->block_end());

  SmallVector<BasicBlock*, 8> ExitBlocks;
  L->getUniqueExitBlocks(ExitBlocks);

  // Split all of the edges from inside the loop to their exit blocks.  Update
  // the appropriate Phi nodes as we do so.
  SplitExitEdges(L, ExitBlocks);

  // The exit blocks may have been changed due to edge splitting, recompute.
  ExitBlocks.clear();
  L->getUniqueExitBlocks(ExitBlocks);

  // Add exit blocks to the loop blocks.
  LoopBlocks.insert(LoopBlocks.end(), ExitBlocks.begin(), ExitBlocks.end());

  // Next step, clone all of the basic blocks that make up the loop (including
  // the loop preheader and exit blocks), keeping track of the mapping between
  // the instructions and blocks.
  NewBlocks.reserve(LoopBlocks.size());
  ValueToValueMapTy VMap;
  for (unsigned i = 0, e = LoopBlocks.size(); i != e; ++i) {
    BasicBlock *NewBB = CloneBasicBlock(LoopBlocks[i], VMap, ".us", F);

    NewBlocks.push_back(NewBB);
    VMap[LoopBlocks[i]] = NewBB;  // Keep the BB mapping.
    LPM->cloneBasicBlockSimpleAnalysis(LoopBlocks[i], NewBB, L);
  }

  // Splice the newly inserted blocks into the function right before the
  // original preheader.
  F->getBasicBlockList().splice(NewPreheader->getIterator(),
                                F->getBasicBlockList(),
                                NewBlocks[0]->getIterator(), F->end());

  // Now we create the new Loop object for the versioned loop.
  Loop *NewLoop = CloneLoop(L, L->getParentLoop(), VMap, LI, LPM);

  // Recalculate unswitching quota, inherit simplified switches info for NewBB,
  // Probably clone more loop-unswitch related loop properties.
  BranchesInfo.cloneData(NewLoop, L, VMap);

  Loop *ParentLoop = L->getParentLoop();
  if (ParentLoop) {
    // Make sure to add the cloned preheader and exit blocks to the parent loop
    // as well.
    ParentLoop->addBasicBlockToLoop(NewBlocks[0], *LI);
  }

  for (unsigned i = 0, e = ExitBlocks.size(); i != e; ++i) {
    BasicBlock *NewExit = cast<BasicBlock>(VMap[ExitBlocks[i]]);
    // The new exit block should be in the same loop as the old one.
    if (Loop *ExitBBLoop = LI->getLoopFor(ExitBlocks[i]))
      ExitBBLoop->addBasicBlockToLoop(NewExit, *LI);

    assert(NewExit->getTerminator()->getNumSuccessors() == 1 &&
           "Exit block should have been split to have one successor!");
    BasicBlock *ExitSucc = NewExit->getTerminator()->getSuccessor(0);

    // If the successor of the exit block had PHI nodes, add an entry for
    // NewExit.
    for (PHINode &PN : ExitSucc->phis()) {
      Value *V = PN.getIncomingValueForBlock(ExitBlocks[i]);
      ValueToValueMapTy::iterator It = VMap.find(V);
      if (It != VMap.end()) V = It->second;
      PN.addIncoming(V, NewExit);
    }

    if (LandingPadInst *LPad = NewExit->getLandingPadInst()) {
      PHINode *PN = PHINode::Create(LPad->getType(), 0, "",
                                    &*ExitSucc->getFirstInsertionPt());

      for (pred_iterator I = pred_begin(ExitSucc), E = pred_end(ExitSucc);
           I != E; ++I) {
        BasicBlock *BB = *I;
        LandingPadInst *LPI = BB->getLandingPadInst();
        LPI->replaceAllUsesWith(PN);
        PN->addIncoming(LPI, BB);
      }
    }
  }

  // Rewrite the code to refer to itself.
  for (unsigned i = 0, e = NewBlocks.size(); i != e; ++i) {
    for (Instruction &I : *NewBlocks[i]) {
      RemapInstruction(&I, VMap,
                       RF_NoModuleLevelChanges | RF_IgnoreMissingLocals);
      if (auto *II = dyn_cast<IntrinsicInst>(&I))
        if (II->getIntrinsicID() == Intrinsic::assume)
          AC->registerAssumption(II);
    }
  }

  // Rewrite the original preheader to select between versions of the loop.
  BranchInst *OldBR = cast<BranchInst>(loopPreheader->getTerminator());
  assert(OldBR->isUnconditional() && OldBR->getSuccessor(0) == LoopBlocks[0] &&
         "Preheader splitting did not work correctly!");

  if (MSSAU) {
    // Update MemorySSA after cloning, and before splitting to unreachables,
    // since that invalidates the 1:1 mapping of clones in VMap.
    LoopBlocksRPO LBRPO(L);
    LBRPO.perform(LI);
    MSSAU->updateForClonedLoop(LBRPO, ExitBlocks, VMap);
  }

  // Emit the new branch that selects between the two versions of this loop.
  EmitPreheaderBranchOnCondition(LIC, Val, NewBlocks[0], LoopBlocks[0], OldBR,
                                 TI);
  LPM->deleteSimpleAnalysisValue(OldBR, L);
  if (MSSAU) {
    // Update MemoryPhis in Exit blocks.
    MSSAU->updateExitBlocksForClonedLoop(ExitBlocks, VMap, *DT);
    if (VerifyMemorySSA)
      MSSA->verifyMemorySSA();
  }

  // The OldBr was replaced by a new one and removed (but not erased) by
  // EmitPreheaderBranchOnCondition. It is no longer needed, so delete it.
  delete OldBR;

  LoopProcessWorklist.push_back(NewLoop);
  redoLoop = true;

  // Keep a WeakTrackingVH holding onto LIC.  If the first call to
  // RewriteLoopBody
  // deletes the instruction (for example by simplifying a PHI that feeds into
  // the condition that we're unswitching on), we don't rewrite the second
  // iteration.
  WeakTrackingVH LICHandle(LIC);

  // Now we rewrite the original code to know that the condition is true and the
  // new code to know that the condition is false.
  RewriteLoopBodyWithConditionConstant(L, LIC, Val, false);

  // It's possible that simplifying one loop could cause the other to be
  // changed to another value or a constant.  If its a constant, don't simplify
  // it.
  if (!LoopProcessWorklist.empty() && LoopProcessWorklist.back() == NewLoop &&
      LICHandle && !isa<Constant>(LICHandle))
    RewriteLoopBodyWithConditionConstant(NewLoop, LICHandle, Val, true);

  if (MSSA && VerifyMemorySSA)
    MSSA->verifyMemorySSA();
}

/// Remove all instances of I from the worklist vector specified.
static void RemoveFromWorklist(Instruction *I,
                               std::vector<Instruction*> &Worklist) {

  Worklist.erase(std::remove(Worklist.begin(), Worklist.end(), I),
                 Worklist.end());
}

/// When we find that I really equals V, remove I from the
/// program, replacing all uses with V and update the worklist.
static void ReplaceUsesOfWith(Instruction *I, Value *V,
                              std::vector<Instruction *> &Worklist, Loop *L,
                              LPPassManager *LPM, MemorySSAUpdater *MSSAU) {
  LLVM_DEBUG(dbgs() << "Replace with '" << *V << "': " << *I << "\n");

  // Add uses to the worklist, which may be dead now.
  for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i)
    if (Instruction *Use = dyn_cast<Instruction>(I->getOperand(i)))
      Worklist.push_back(Use);

  // Add users to the worklist which may be simplified now.
  for (User *U : I->users())
    Worklist.push_back(cast<Instruction>(U));
  LPM->deleteSimpleAnalysisValue(I, L);
  RemoveFromWorklist(I, Worklist);
  I->replaceAllUsesWith(V);
  if (!I->mayHaveSideEffects()) {
    if (MSSAU)
      MSSAU->removeMemoryAccess(I);
    I->eraseFromParent();
  }
  ++NumSimplify;
}

/// We know either that the value LIC has the value specified by Val in the
/// specified loop, or we know it does NOT have that value.
/// Rewrite any uses of LIC or of properties correlated to it.
void LoopUnswitch::RewriteLoopBodyWithConditionConstant(Loop *L, Value *LIC,
                                                        Constant *Val,
                                                        bool IsEqual) {
  assert(!isa<Constant>(LIC) && "Why are we unswitching on a constant?");

  // FIXME: Support correlated properties, like:
  //  for (...)
  //    if (li1 < li2)
  //      ...
  //    if (li1 > li2)
  //      ...

  // FOLD boolean conditions (X|LIC), (X&LIC).  Fold conditional branches,
  // selects, switches.
  std::vector<Instruction*> Worklist;
  LLVMContext &Context = Val->getContext();

  // If we know that LIC == Val, or that LIC == NotVal, just replace uses of LIC
  // in the loop with the appropriate one directly.
  if (IsEqual || (isa<ConstantInt>(Val) &&
      Val->getType()->isIntegerTy(1))) {
    Value *Replacement;
    if (IsEqual)
      Replacement = Val;
    else
      Replacement = ConstantInt::get(Type::getInt1Ty(Val->getContext()),
                                     !cast<ConstantInt>(Val)->getZExtValue());

    for (User *U : LIC->users()) {
      Instruction *UI = dyn_cast<Instruction>(U);
      if (!UI || !L->contains(UI))
        continue;
      Worklist.push_back(UI);
    }

    for (Instruction *UI : Worklist)
      UI->replaceUsesOfWith(LIC, Replacement);

    SimplifyCode(Worklist, L);
    return;
  }

  // Otherwise, we don't know the precise value of LIC, but we do know that it
  // is certainly NOT "Val".  As such, simplify any uses in the loop that we
  // can.  This case occurs when we unswitch switch statements.
  for (User *U : LIC->users()) {
    Instruction *UI = dyn_cast<Instruction>(U);
    if (!UI || !L->contains(UI))
      continue;

    // At this point, we know LIC is definitely not Val. Try to use some simple
    // logic to simplify the user w.r.t. to the context.
    if (Value *Replacement = SimplifyInstructionWithNotEqual(UI, LIC, Val)) {
      if (LI->replacementPreservesLCSSAForm(UI, Replacement)) {
        // This in-loop instruction has been simplified w.r.t. its context,
        // i.e. LIC != Val, make sure we propagate its replacement value to
        // all its users.
        //
        // We can not yet delete UI, the LIC user, yet, because that would invalidate
        // the LIC->users() iterator !. However, we can make this instruction
        // dead by replacing all its users and push it onto the worklist so that
        // it can be properly deleted and its operands simplified.
        UI->replaceAllUsesWith(Replacement);
      }
    }

    // This is a LIC user, push it into the worklist so that SimplifyCode can
    // attempt to simplify it.
    Worklist.push_back(UI);

    // If we know that LIC is not Val, use this info to simplify code.
    SwitchInst *SI = dyn_cast<SwitchInst>(UI);
    if (!SI || !isa<ConstantInt>(Val)) continue;

    // NOTE: if a case value for the switch is unswitched out, we record it
    // after the unswitch finishes. We can not record it here as the switch
    // is not a direct user of the partial LIV.
    SwitchInst::CaseHandle DeadCase =
        *SI->findCaseValue(cast<ConstantInt>(Val));
    // Default case is live for multiple values.
    if (DeadCase == *SI->case_default())
      continue;

    // Found a dead case value.  Don't remove PHI nodes in the
    // successor if they become single-entry, those PHI nodes may
    // be in the Users list.

    BasicBlock *Switch = SI->getParent();
    BasicBlock *SISucc = DeadCase.getCaseSuccessor();
    BasicBlock *Latch = L->getLoopLatch();

    if (!SI->findCaseDest(SISucc)) continue;  // Edge is critical.
    // If the DeadCase successor dominates the loop latch, then the
    // transformation isn't safe since it will delete the sole predecessor edge
    // to the latch.
    if (Latch && DT->dominates(SISucc, Latch))
      continue;

    // FIXME: This is a hack.  We need to keep the successor around
    // and hooked up so as to preserve the loop structure, because
    // trying to update it is complicated.  So instead we preserve the
    // loop structure and put the block on a dead code path.
    SplitEdge(Switch, SISucc, DT, LI, MSSAU.get());
    // Compute the successors instead of relying on the return value
    // of SplitEdge, since it may have split the switch successor
    // after PHI nodes.
    BasicBlock *NewSISucc = DeadCase.getCaseSuccessor();
    BasicBlock *OldSISucc = *succ_begin(NewSISucc);
    // Create an "unreachable" destination.
    BasicBlock *Abort = BasicBlock::Create(Context, "us-unreachable",
                                           Switch->getParent(),
                                           OldSISucc);
    new UnreachableInst(Context, Abort);
    // Force the new case destination to branch to the "unreachable"
    // block while maintaining a (dead) CFG edge to the old block.
    NewSISucc->getTerminator()->eraseFromParent();
    BranchInst::Create(Abort, OldSISucc,
                       ConstantInt::getTrue(Context), NewSISucc);
    // Release the PHI operands for this edge.
    for (PHINode &PN : NewSISucc->phis())
      PN.setIncomingValue(PN.getBasicBlockIndex(Switch),
                          UndefValue::get(PN.getType()));
    // Tell the domtree about the new block. We don't fully update the
    // domtree here -- instead we force it to do a full recomputation
    // after the pass is complete -- but we do need to inform it of
    // new blocks.
    DT->addNewBlock(Abort, NewSISucc);
  }

  SimplifyCode(Worklist, L);
}

/// Now that we have simplified some instructions in the loop, walk over it and
/// constant prop, dce, and fold control flow where possible. Note that this is
/// effectively a very simple loop-structure-aware optimizer. During processing
/// of this loop, L could very well be deleted, so it must not be used.
///
/// FIXME: When the loop optimizer is more mature, separate this out to a new
/// pass.
///
void LoopUnswitch::SimplifyCode(std::vector<Instruction*> &Worklist, Loop *L) {
  const DataLayout &DL = L->getHeader()->getModule()->getDataLayout();
  while (!Worklist.empty()) {
    Instruction *I = Worklist.back();
    Worklist.pop_back();

    // Simple DCE.
    if (isInstructionTriviallyDead(I)) {
      LLVM_DEBUG(dbgs() << "Remove dead instruction '" << *I << "\n");

      // Add uses to the worklist, which may be dead now.
      for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i)
        if (Instruction *Use = dyn_cast<Instruction>(I->getOperand(i)))
          Worklist.push_back(Use);
      LPM->deleteSimpleAnalysisValue(I, L);
      RemoveFromWorklist(I, Worklist);
      if (MSSAU)
        MSSAU->removeMemoryAccess(I);
      I->eraseFromParent();
      ++NumSimplify;
      continue;
    }

    // See if instruction simplification can hack this up.  This is common for
    // things like "select false, X, Y" after unswitching made the condition be
    // 'false'.  TODO: update the domtree properly so we can pass it here.
    if (Value *V = SimplifyInstruction(I, DL))
      if (LI->replacementPreservesLCSSAForm(I, V)) {
        ReplaceUsesOfWith(I, V, Worklist, L, LPM, MSSAU.get());
        continue;
      }

    // Special case hacks that appear commonly in unswitched code.
    if (BranchInst *BI = dyn_cast<BranchInst>(I)) {
      if (BI->isUnconditional()) {
        // If BI's parent is the only pred of the successor, fold the two blocks
        // together.
        BasicBlock *Pred = BI->getParent();
        BasicBlock *Succ = BI->getSuccessor(0);
        BasicBlock *SinglePred = Succ->getSinglePredecessor();
        if (!SinglePred) continue;  // Nothing to do.
        assert(SinglePred == Pred && "CFG broken");

        LLVM_DEBUG(dbgs() << "Merging blocks: " << Pred->getName() << " <- "
                          << Succ->getName() << "\n");

        // Resolve any single entry PHI nodes in Succ.
        while (PHINode *PN = dyn_cast<PHINode>(Succ->begin()))
          ReplaceUsesOfWith(PN, PN->getIncomingValue(0), Worklist, L, LPM,
                            MSSAU.get());

        // If Succ has any successors with PHI nodes, update them to have
        // entries coming from Pred instead of Succ.
        Succ->replaceAllUsesWith(Pred);

        // Move all of the successor contents from Succ to Pred.
        Pred->getInstList().splice(BI->getIterator(), Succ->getInstList(),
                                   Succ->begin(), Succ->end());
        if (MSSAU)
          MSSAU->moveAllAfterMergeBlocks(Succ, Pred, BI);
        LPM->deleteSimpleAnalysisValue(BI, L);
        RemoveFromWorklist(BI, Worklist);
        BI->eraseFromParent();

        // Remove Succ from the loop tree.
        LI->removeBlock(Succ);
        LPM->deleteSimpleAnalysisValue(Succ, L);
        Succ->eraseFromParent();
        ++NumSimplify;
        continue;
      }

      continue;
    }
  }
}

/// Simple simplifications we can do given the information that Cond is
/// definitely not equal to Val.
Value *LoopUnswitch::SimplifyInstructionWithNotEqual(Instruction *Inst,
                                                     Value *Invariant,
                                                     Constant *Val) {
  // icmp eq cond, val -> false
  ICmpInst *CI = dyn_cast<ICmpInst>(Inst);
  if (CI && CI->isEquality()) {
    Value *Op0 = CI->getOperand(0);
    Value *Op1 = CI->getOperand(1);
    if ((Op0 == Invariant && Op1 == Val) || (Op0 == Val && Op1 == Invariant)) {
      LLVMContext &Ctx = Inst->getContext();
      if (CI->getPredicate() == CmpInst::ICMP_EQ)
        return ConstantInt::getFalse(Ctx);
      else
        return ConstantInt::getTrue(Ctx);
     }
  }

  // FIXME: there may be other opportunities, e.g. comparison with floating
  // point, or Invariant - Val != 0, etc.
  return nullptr;
}