llvm.org GIT mirror llvm / 7716d65 lib / Transforms / Scalar / Float2Int.cpp
7716d65

Tree @7716d65 (Download .tar.gz)

Float2Int.cpp @7716d65raw · history · blame

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
//===- Float2Int.cpp - Demote floating point ops to work on integers ------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements the Float2Int pass, which aims to demote floating
// point operations to work on integers, where that is losslessly possible.
//
//===----------------------------------------------------------------------===//

#define DEBUG_TYPE "float2int"

#include "llvm/Transforms/Scalar/Float2Int.h"
#include "llvm/ADT/APInt.h"
#include "llvm/ADT/APSInt.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/Analysis/AliasAnalysis.h"
#include "llvm/Analysis/GlobalsModRef.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/IRBuilder.h"
#include "llvm/IR/InstIterator.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/Module.h"
#include "llvm/Pass.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Transforms/Scalar.h"
#include <deque>
#include <functional> // For std::function
using namespace llvm;

// The algorithm is simple. Start at instructions that convert from the
// float to the int domain: fptoui, fptosi and fcmp. Walk up the def-use
// graph, using an equivalence datastructure to unify graphs that interfere.
//
// Mappable instructions are those with an integer corrollary that, given
// integer domain inputs, produce an integer output; fadd, for example.
//
// If a non-mappable instruction is seen, this entire def-use graph is marked
// as non-transformable. If we see an instruction that converts from the
// integer domain to FP domain (uitofp,sitofp), we terminate our walk.

/// The largest integer type worth dealing with.
static cl::opt<unsigned>
MaxIntegerBW("float2int-max-integer-bw", cl::init(64), cl::Hidden,
             cl::desc("Max integer bitwidth to consider in float2int"
                      "(default=64)"));

namespace {
  struct Float2IntLegacyPass : public FunctionPass {
    static char ID; // Pass identification, replacement for typeid
    Float2IntLegacyPass() : FunctionPass(ID) {
      initializeFloat2IntLegacyPassPass(*PassRegistry::getPassRegistry());
    }

    bool runOnFunction(Function &F) override {
      if (skipFunction(F))
        return false;

      return Impl.runImpl(F);
    }

    void getAnalysisUsage(AnalysisUsage &AU) const override {
      AU.setPreservesCFG();
      AU.addPreserved<GlobalsAAWrapperPass>();
    }

  private:
    Float2IntPass Impl;
  };
}

char Float2IntLegacyPass::ID = 0;
INITIALIZE_PASS(Float2IntLegacyPass, "float2int", "Float to int", false, false)

// Given a FCmp predicate, return a matching ICmp predicate if one
// exists, otherwise return BAD_ICMP_PREDICATE.
static CmpInst::Predicate mapFCmpPred(CmpInst::Predicate P) {
  switch (P) {
  case CmpInst::FCMP_OEQ:
  case CmpInst::FCMP_UEQ:
    return CmpInst::ICMP_EQ;
  case CmpInst::FCMP_OGT:
  case CmpInst::FCMP_UGT:
    return CmpInst::ICMP_SGT;
  case CmpInst::FCMP_OGE:
  case CmpInst::FCMP_UGE:
    return CmpInst::ICMP_SGE;
  case CmpInst::FCMP_OLT:
  case CmpInst::FCMP_ULT:
    return CmpInst::ICMP_SLT;
  case CmpInst::FCMP_OLE:
  case CmpInst::FCMP_ULE:
    return CmpInst::ICMP_SLE;
  case CmpInst::FCMP_ONE:
  case CmpInst::FCMP_UNE:
    return CmpInst::ICMP_NE;
  default:
    return CmpInst::BAD_ICMP_PREDICATE;
  }
}

// Given a floating point binary operator, return the matching
// integer version.
static Instruction::BinaryOps mapBinOpcode(unsigned Opcode) {
  switch (Opcode) {
  default: llvm_unreachable("Unhandled opcode!");
  case Instruction::FAdd: return Instruction::Add;
  case Instruction::FSub: return Instruction::Sub;
  case Instruction::FMul: return Instruction::Mul;
  }
}

// Find the roots - instructions that convert from the FP domain to
// integer domain.
void Float2IntPass::findRoots(Function &F, SmallPtrSet<Instruction*,8> &Roots) {
  for (auto &I : instructions(F)) {
    if (isa<VectorType>(I.getType()))
      continue;
    switch (I.getOpcode()) {
    default: break;
    case Instruction::FPToUI:
    case Instruction::FPToSI:
      Roots.insert(&I);
      break;
    case Instruction::FCmp:
      if (mapFCmpPred(cast<CmpInst>(&I)->getPredicate()) !=
          CmpInst::BAD_ICMP_PREDICATE)
        Roots.insert(&I);
      break;
    }
  }
}

// Helper - mark I as having been traversed, having range R.
void Float2IntPass::seen(Instruction *I, ConstantRange R) {
  LLVM_DEBUG(dbgs() << "F2I: " << *I << ":" << R << "\n");
  auto IT = SeenInsts.find(I);
  if (IT != SeenInsts.end())
    IT->second = std::move(R);
  else
    SeenInsts.insert(std::make_pair(I, std::move(R)));
}

// Helper - get a range representing a poison value.
ConstantRange Float2IntPass::badRange() {
  return ConstantRange::getFull(MaxIntegerBW + 1);
}
ConstantRange Float2IntPass::unknownRange() {
  return ConstantRange::getEmpty(MaxIntegerBW + 1);
}
ConstantRange Float2IntPass::validateRange(ConstantRange R) {
  if (R.getBitWidth() > MaxIntegerBW + 1)
    return badRange();
  return R;
}

// The most obvious way to structure the search is a depth-first, eager
// search from each root. However, that require direct recursion and so
// can only handle small instruction sequences. Instead, we split the search
// up into two phases:
//   - walkBackwards:  A breadth-first walk of the use-def graph starting from
//                     the roots. Populate "SeenInsts" with interesting
//                     instructions and poison values if they're obvious and
//                     cheap to compute. Calculate the equivalance set structure
//                     while we're here too.
//   - walkForwards:  Iterate over SeenInsts in reverse order, so we visit
//                     defs before their uses. Calculate the real range info.

// Breadth-first walk of the use-def graph; determine the set of nodes
// we care about and eagerly determine if some of them are poisonous.
void Float2IntPass::walkBackwards(const SmallPtrSetImpl<Instruction*> &Roots) {
  std::deque<Instruction*> Worklist(Roots.begin(), Roots.end());
  while (!Worklist.empty()) {
    Instruction *I = Worklist.back();
    Worklist.pop_back();

    if (SeenInsts.find(I) != SeenInsts.end())
      // Seen already.
      continue;

    switch (I->getOpcode()) {
      // FIXME: Handle select and phi nodes.
    default:
      // Path terminated uncleanly.
      seen(I, badRange());
      break;

    case Instruction::UIToFP:
    case Instruction::SIToFP: {
      // Path terminated cleanly - use the type of the integer input to seed
      // the analysis.
      unsigned BW = I->getOperand(0)->getType()->getPrimitiveSizeInBits();
      auto Input = ConstantRange::getFull(BW);
      auto CastOp = (Instruction::CastOps)I->getOpcode();
      seen(I, validateRange(Input.castOp(CastOp, MaxIntegerBW+1)));
      continue;
    }

    case Instruction::FAdd:
    case Instruction::FSub:
    case Instruction::FMul:
    case Instruction::FPToUI:
    case Instruction::FPToSI:
    case Instruction::FCmp:
      seen(I, unknownRange());
      break;
    }

    for (Value *O : I->operands()) {
      if (Instruction *OI = dyn_cast<Instruction>(O)) {
        // Unify def-use chains if they interfere.
        ECs.unionSets(I, OI);
        if (SeenInsts.find(I)->second != badRange())
          Worklist.push_back(OI);
      } else if (!isa<ConstantFP>(O)) {
        // Not an instruction or ConstantFP? we can't do anything.
        seen(I, badRange());
      }
    }
  }
}

// Walk forwards down the list of seen instructions, so we visit defs before
// uses.
void Float2IntPass::walkForwards() {
  for (auto &It : reverse(SeenInsts)) {
    if (It.second != unknownRange())
      continue;

    Instruction *I = It.first;
    std::function<ConstantRange(ArrayRef<ConstantRange>)> Op;
    switch (I->getOpcode()) {
      // FIXME: Handle select and phi nodes.
    default:
    case Instruction::UIToFP:
    case Instruction::SIToFP:
      llvm_unreachable("Should have been handled in walkForwards!");

    case Instruction::FAdd:
    case Instruction::FSub:
    case Instruction::FMul:
      Op = [I](ArrayRef<ConstantRange> Ops) {
        assert(Ops.size() == 2 && "its a binary operator!");
        auto BinOp = (Instruction::BinaryOps) I->getOpcode();
        return Ops[0].binaryOp(BinOp, Ops[1]);
      };
      break;

    //
    // Root-only instructions - we'll only see these if they're the
    //                          first node in a walk.
    //
    case Instruction::FPToUI:
    case Instruction::FPToSI:
      Op = [I](ArrayRef<ConstantRange> Ops) {
        assert(Ops.size() == 1 && "FPTo[US]I is a unary operator!");
        // Note: We're ignoring the casts output size here as that's what the
        // caller expects.
        auto CastOp = (Instruction::CastOps)I->getOpcode();
        return Ops[0].castOp(CastOp, MaxIntegerBW+1);
      };
      break;

    case Instruction::FCmp:
      Op = [](ArrayRef<ConstantRange> Ops) {
        assert(Ops.size() == 2 && "FCmp is a binary operator!");
        return Ops[0].unionWith(Ops[1]);
      };
      break;
    }

    bool Abort = false;
    SmallVector<ConstantRange,4> OpRanges;
    for (Value *O : I->operands()) {
      if (Instruction *OI = dyn_cast<Instruction>(O)) {
        assert(SeenInsts.find(OI) != SeenInsts.end() &&
               "def not seen before use!");
        OpRanges.push_back(SeenInsts.find(OI)->second);
      } else if (ConstantFP *CF = dyn_cast<ConstantFP>(O)) {
        // Work out if the floating point number can be losslessly represented
        // as an integer.
        // APFloat::convertToInteger(&Exact) purports to do what we want, but
        // the exactness can be too precise. For example, negative zero can
        // never be exactly converted to an integer.
        //
        // Instead, we ask APFloat to round itself to an integral value - this
        // preserves sign-of-zero - then compare the result with the original.
        //
        const APFloat &F = CF->getValueAPF();

        // First, weed out obviously incorrect values. Non-finite numbers
        // can't be represented and neither can negative zero, unless
        // we're in fast math mode.
        if (!F.isFinite() ||
            (F.isZero() && F.isNegative() && isa<FPMathOperator>(I) &&
             !I->hasNoSignedZeros())) {
          seen(I, badRange());
          Abort = true;
          break;
        }

        APFloat NewF = F;
        auto Res = NewF.roundToIntegral(APFloat::rmNearestTiesToEven);
        if (Res != APFloat::opOK || NewF.compare(F) != APFloat::cmpEqual) {
          seen(I, badRange());
          Abort = true;
          break;
        }
        // OK, it's representable. Now get it.
        APSInt Int(MaxIntegerBW+1, false);
        bool Exact;
        CF->getValueAPF().convertToInteger(Int,
                                           APFloat::rmNearestTiesToEven,
                                           &Exact);
        OpRanges.push_back(ConstantRange(Int));
      } else {
        llvm_unreachable("Should have already marked this as badRange!");
      }
    }

    // Reduce the operands' ranges to a single range and return.
    if (!Abort)
      seen(I, Op(OpRanges));
  }
}

// If there is a valid transform to be done, do it.
bool Float2IntPass::validateAndTransform() {
  bool MadeChange = false;

  // Iterate over every disjoint partition of the def-use graph.
  for (auto It = ECs.begin(), E = ECs.end(); It != E; ++It) {
    ConstantRange R(MaxIntegerBW + 1, false);
    bool Fail = false;
    Type *ConvertedToTy = nullptr;

    // For every member of the partition, union all the ranges together.
    for (auto MI = ECs.member_begin(It), ME = ECs.member_end();
         MI != ME; ++MI) {
      Instruction *I = *MI;
      auto SeenI = SeenInsts.find(I);
      if (SeenI == SeenInsts.end())
        continue;

      R = R.unionWith(SeenI->second);
      // We need to ensure I has no users that have not been seen.
      // If it does, transformation would be illegal.
      //
      // Don't count the roots, as they terminate the graphs.
      if (Roots.count(I) == 0) {
        // Set the type of the conversion while we're here.
        if (!ConvertedToTy)
          ConvertedToTy = I->getType();
        for (User *U : I->users()) {
          Instruction *UI = dyn_cast<Instruction>(U);
          if (!UI || SeenInsts.find(UI) == SeenInsts.end()) {
            LLVM_DEBUG(dbgs() << "F2I: Failing because of " << *U << "\n");
            Fail = true;
            break;
          }
        }
      }
      if (Fail)
        break;
    }

    // If the set was empty, or we failed, or the range is poisonous,
    // bail out.
    if (ECs.member_begin(It) == ECs.member_end() || Fail ||
        R.isFullSet() || R.isSignWrappedSet())
      continue;
    assert(ConvertedToTy && "Must have set the convertedtoty by this point!");

    // The number of bits required is the maximum of the upper and
    // lower limits, plus one so it can be signed.
    unsigned MinBW = std::max(R.getLower().getMinSignedBits(),
                              R.getUpper().getMinSignedBits()) + 1;
    LLVM_DEBUG(dbgs() << "F2I: MinBitwidth=" << MinBW << ", R: " << R << "\n");

    // If we've run off the realms of the exactly representable integers,
    // the floating point result will differ from an integer approximation.

    // Do we need more bits than are in the mantissa of the type we converted
    // to? semanticsPrecision returns the number of mantissa bits plus one
    // for the sign bit.
    unsigned MaxRepresentableBits
      = APFloat::semanticsPrecision(ConvertedToTy->getFltSemantics()) - 1;
    if (MinBW > MaxRepresentableBits) {
      LLVM_DEBUG(dbgs() << "F2I: Value not guaranteed to be representable!\n");
      continue;
    }
    if (MinBW > 64) {
      LLVM_DEBUG(
          dbgs() << "F2I: Value requires more than 64 bits to represent!\n");
      continue;
    }

    // OK, R is known to be representable. Now pick a type for it.
    // FIXME: Pick the smallest legal type that will fit.
    Type *Ty = (MinBW > 32) ? Type::getInt64Ty(*Ctx) : Type::getInt32Ty(*Ctx);

    for (auto MI = ECs.member_begin(It), ME = ECs.member_end();
         MI != ME; ++MI)
      convert(*MI, Ty);
    MadeChange = true;
  }

  return MadeChange;
}

Value *Float2IntPass::convert(Instruction *I, Type *ToTy) {
  if (ConvertedInsts.find(I) != ConvertedInsts.end())
    // Already converted this instruction.
    return ConvertedInsts[I];

  SmallVector<Value*,4> NewOperands;
  for (Value *V : I->operands()) {
    // Don't recurse if we're an instruction that terminates the path.
    if (I->getOpcode() == Instruction::UIToFP ||
        I->getOpcode() == Instruction::SIToFP) {
      NewOperands.push_back(V);
    } else if (Instruction *VI = dyn_cast<Instruction>(V)) {
      NewOperands.push_back(convert(VI, ToTy));
    } else if (ConstantFP *CF = dyn_cast<ConstantFP>(V)) {
      APSInt Val(ToTy->getPrimitiveSizeInBits(), /*IsUnsigned=*/false);
      bool Exact;
      CF->getValueAPF().convertToInteger(Val,
                                         APFloat::rmNearestTiesToEven,
                                         &Exact);
      NewOperands.push_back(ConstantInt::get(ToTy, Val));
    } else {
      llvm_unreachable("Unhandled operand type?");
    }
  }

  // Now create a new instruction.
  IRBuilder<> IRB(I);
  Value *NewV = nullptr;
  switch (I->getOpcode()) {
  default: llvm_unreachable("Unhandled instruction!");

  case Instruction::FPToUI:
    NewV = IRB.CreateZExtOrTrunc(NewOperands[0], I->getType());
    break;

  case Instruction::FPToSI:
    NewV = IRB.CreateSExtOrTrunc(NewOperands[0], I->getType());
    break;

  case Instruction::FCmp: {
    CmpInst::Predicate P = mapFCmpPred(cast<CmpInst>(I)->getPredicate());
    assert(P != CmpInst::BAD_ICMP_PREDICATE && "Unhandled predicate!");
    NewV = IRB.CreateICmp(P, NewOperands[0], NewOperands[1], I->getName());
    break;
  }

  case Instruction::UIToFP:
    NewV = IRB.CreateZExtOrTrunc(NewOperands[0], ToTy);
    break;

  case Instruction::SIToFP:
    NewV = IRB.CreateSExtOrTrunc(NewOperands[0], ToTy);
    break;

  case Instruction::FAdd:
  case Instruction::FSub:
  case Instruction::FMul:
    NewV = IRB.CreateBinOp(mapBinOpcode(I->getOpcode()),
                           NewOperands[0], NewOperands[1],
                           I->getName());
    break;
  }

  // If we're a root instruction, RAUW.
  if (Roots.count(I))
    I->replaceAllUsesWith(NewV);

  ConvertedInsts[I] = NewV;
  return NewV;
}

// Perform dead code elimination on the instructions we just modified.
void Float2IntPass::cleanup() {
  for (auto &I : reverse(ConvertedInsts))
    I.first->eraseFromParent();
}

bool Float2IntPass::runImpl(Function &F) {
  LLVM_DEBUG(dbgs() << "F2I: Looking at function " << F.getName() << "\n");
  // Clear out all state.
  ECs = EquivalenceClasses<Instruction*>();
  SeenInsts.clear();
  ConvertedInsts.clear();
  Roots.clear();

  Ctx = &F.getParent()->getContext();

  findRoots(F, Roots);

  walkBackwards(Roots);
  walkForwards();

  bool Modified = validateAndTransform();
  if (Modified)
    cleanup();
  return Modified;
}

namespace llvm {
FunctionPass *createFloat2IntPass() { return new Float2IntLegacyPass(); }

PreservedAnalyses Float2IntPass::run(Function &F, FunctionAnalysisManager &) {
  if (!runImpl(F))
    return PreservedAnalyses::all();

  PreservedAnalyses PA;
  PA.preserveSet<CFGAnalyses>();
  PA.preserve<GlobalsAA>();
  return PA;
}
} // End namespace llvm