llvm.org GIT mirror llvm / 7350033 lib / IR / ConstantRange.cpp
7350033

Tree @7350033 (Download .tar.gz)

ConstantRange.cpp @7350033raw · history · blame

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
//===- ConstantRange.cpp - ConstantRange implementation -------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// Represent a range of possible values that may occur when the program is run
// for an integral value.  This keeps track of a lower and upper bound for the
// constant, which MAY wrap around the end of the numeric range.  To do this, it
// keeps track of a [lower, upper) bound, which specifies an interval just like
// STL iterators.  When used with boolean values, the following are important
// ranges (other integral ranges use min/max values for special range values):
//
//  [F, F) = {}     = Empty set
//  [T, F) = {T}
//  [F, T) = {F}
//  [T, T) = {F, T} = Full set
//
//===----------------------------------------------------------------------===//

#include "llvm/ADT/APInt.h"
#include "llvm/Config/llvm-config.h"
#include "llvm/IR/ConstantRange.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/InstrTypes.h"
#include "llvm/IR/Instruction.h"
#include "llvm/IR/Metadata.h"
#include "llvm/IR/Operator.h"
#include "llvm/Support/Compiler.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/KnownBits.h"
#include "llvm/Support/raw_ostream.h"
#include <algorithm>
#include <cassert>
#include <cstdint>

using namespace llvm;

ConstantRange::ConstantRange(uint32_t BitWidth, bool Full)
    : Lower(Full ? APInt::getMaxValue(BitWidth) : APInt::getMinValue(BitWidth)),
      Upper(Lower) {}

ConstantRange::ConstantRange(APInt V)
    : Lower(std::move(V)), Upper(Lower + 1) {}

ConstantRange::ConstantRange(APInt L, APInt U)
    : Lower(std::move(L)), Upper(std::move(U)) {
  assert(Lower.getBitWidth() == Upper.getBitWidth() &&
         "ConstantRange with unequal bit widths");
  assert((Lower != Upper || (Lower.isMaxValue() || Lower.isMinValue())) &&
         "Lower == Upper, but they aren't min or max value!");
}

ConstantRange ConstantRange::fromKnownBits(const KnownBits &Known,
                                           bool IsSigned) {
  assert(!Known.hasConflict() && "Expected valid KnownBits");

  if (Known.isUnknown())
    return getFull(Known.getBitWidth());

  // For unsigned ranges, or signed ranges with known sign bit, create a simple
  // range between the smallest and largest possible value.
  if (!IsSigned || Known.isNegative() || Known.isNonNegative())
    return ConstantRange(Known.One, ~Known.Zero + 1);

  // If we don't know the sign bit, pick the lower bound as a negative number
  // and the upper bound as a non-negative one.
  APInt Lower = Known.One, Upper = ~Known.Zero;
  Lower.setSignBit();
  Upper.clearSignBit();
  return ConstantRange(Lower, Upper + 1);
}

ConstantRange ConstantRange::makeAllowedICmpRegion(CmpInst::Predicate Pred,
                                                   const ConstantRange &CR) {
  if (CR.isEmptySet())
    return CR;

  uint32_t W = CR.getBitWidth();
  switch (Pred) {
  default:
    llvm_unreachable("Invalid ICmp predicate to makeAllowedICmpRegion()");
  case CmpInst::ICMP_EQ:
    return CR;
  case CmpInst::ICMP_NE:
    if (CR.isSingleElement())
      return ConstantRange(CR.getUpper(), CR.getLower());
    return getFull(W);
  case CmpInst::ICMP_ULT: {
    APInt UMax(CR.getUnsignedMax());
    if (UMax.isMinValue())
      return getEmpty(W);
    return ConstantRange(APInt::getMinValue(W), std::move(UMax));
  }
  case CmpInst::ICMP_SLT: {
    APInt SMax(CR.getSignedMax());
    if (SMax.isMinSignedValue())
      return getEmpty(W);
    return ConstantRange(APInt::getSignedMinValue(W), std::move(SMax));
  }
  case CmpInst::ICMP_ULE:
    return getNonEmpty(APInt::getMinValue(W), CR.getUnsignedMax() + 1);
  case CmpInst::ICMP_SLE:
    return getNonEmpty(APInt::getSignedMinValue(W), CR.getSignedMax() + 1);
  case CmpInst::ICMP_UGT: {
    APInt UMin(CR.getUnsignedMin());
    if (UMin.isMaxValue())
      return getEmpty(W);
    return ConstantRange(std::move(UMin) + 1, APInt::getNullValue(W));
  }
  case CmpInst::ICMP_SGT: {
    APInt SMin(CR.getSignedMin());
    if (SMin.isMaxSignedValue())
      return getEmpty(W);
    return ConstantRange(std::move(SMin) + 1, APInt::getSignedMinValue(W));
  }
  case CmpInst::ICMP_UGE:
    return getNonEmpty(CR.getUnsignedMin(), APInt::getNullValue(W));
  case CmpInst::ICMP_SGE:
    return getNonEmpty(CR.getSignedMin(), APInt::getSignedMinValue(W));
  }
}

ConstantRange ConstantRange::makeSatisfyingICmpRegion(CmpInst::Predicate Pred,
                                                      const ConstantRange &CR) {
  // Follows from De-Morgan's laws:
  //
  // ~(~A union ~B) == A intersect B.
  //
  return makeAllowedICmpRegion(CmpInst::getInversePredicate(Pred), CR)
      .inverse();
}

ConstantRange ConstantRange::makeExactICmpRegion(CmpInst::Predicate Pred,
                                                 const APInt &C) {
  // Computes the exact range that is equal to both the constant ranges returned
  // by makeAllowedICmpRegion and makeSatisfyingICmpRegion. This is always true
  // when RHS is a singleton such as an APInt and so the assert is valid.
  // However for non-singleton RHS, for example ult [2,5) makeAllowedICmpRegion
  // returns [0,4) but makeSatisfyICmpRegion returns [0,2).
  //
  assert(makeAllowedICmpRegion(Pred, C) == makeSatisfyingICmpRegion(Pred, C));
  return makeAllowedICmpRegion(Pred, C);
}

bool ConstantRange::getEquivalentICmp(CmpInst::Predicate &Pred,
                                      APInt &RHS) const {
  bool Success = false;

  if (isFullSet() || isEmptySet()) {
    Pred = isEmptySet() ? CmpInst::ICMP_ULT : CmpInst::ICMP_UGE;
    RHS = APInt(getBitWidth(), 0);
    Success = true;
  } else if (auto *OnlyElt = getSingleElement()) {
    Pred = CmpInst::ICMP_EQ;
    RHS = *OnlyElt;
    Success = true;
  } else if (auto *OnlyMissingElt = getSingleMissingElement()) {
    Pred = CmpInst::ICMP_NE;
    RHS = *OnlyMissingElt;
    Success = true;
  } else if (getLower().isMinSignedValue() || getLower().isMinValue()) {
    Pred =
        getLower().isMinSignedValue() ? CmpInst::ICMP_SLT : CmpInst::ICMP_ULT;
    RHS = getUpper();
    Success = true;
  } else if (getUpper().isMinSignedValue() || getUpper().isMinValue()) {
    Pred =
        getUpper().isMinSignedValue() ? CmpInst::ICMP_SGE : CmpInst::ICMP_UGE;
    RHS = getLower();
    Success = true;
  }

  assert((!Success || ConstantRange::makeExactICmpRegion(Pred, RHS) == *this) &&
         "Bad result!");

  return Success;
}

/// Exact mul nuw region for single element RHS.
static ConstantRange makeExactMulNUWRegion(const APInt &V) {
  unsigned BitWidth = V.getBitWidth();
  if (V == 0)
    return ConstantRange::getFull(V.getBitWidth());

  return ConstantRange::getNonEmpty(
      APIntOps::RoundingUDiv(APInt::getMinValue(BitWidth), V,
                             APInt::Rounding::UP),
      APIntOps::RoundingUDiv(APInt::getMaxValue(BitWidth), V,
                             APInt::Rounding::DOWN) + 1);
}

/// Exact mul nsw region for single element RHS.
static ConstantRange makeExactMulNSWRegion(const APInt &V) {
  // Handle special case for 0, -1 and 1. See the last for reason why we
  // specialize -1 and 1.
  unsigned BitWidth = V.getBitWidth();
  if (V == 0 || V.isOneValue())
    return ConstantRange::getFull(BitWidth);

  APInt MinValue = APInt::getSignedMinValue(BitWidth);
  APInt MaxValue = APInt::getSignedMaxValue(BitWidth);
  // e.g. Returning [-127, 127], represented as [-127, -128).
  if (V.isAllOnesValue())
    return ConstantRange(-MaxValue, MinValue);

  APInt Lower, Upper;
  if (V.isNegative()) {
    Lower = APIntOps::RoundingSDiv(MaxValue, V, APInt::Rounding::UP);
    Upper = APIntOps::RoundingSDiv(MinValue, V, APInt::Rounding::DOWN);
  } else {
    Lower = APIntOps::RoundingSDiv(MinValue, V, APInt::Rounding::UP);
    Upper = APIntOps::RoundingSDiv(MaxValue, V, APInt::Rounding::DOWN);
  }
  // ConstantRange ctor take a half inclusive interval [Lower, Upper + 1).
  // Upper + 1 is guaranteed not to overflow, because |divisor| > 1. 0, -1,
  // and 1 are already handled as special cases.
  return ConstantRange(Lower, Upper + 1);
}

ConstantRange
ConstantRange::makeGuaranteedNoWrapRegion(Instruction::BinaryOps BinOp,
                                          const ConstantRange &Other,
                                          unsigned NoWrapKind) {
  using OBO = OverflowingBinaryOperator;

  assert(Instruction::isBinaryOp(BinOp) && "Binary operators only!");

  assert((NoWrapKind == OBO::NoSignedWrap ||
          NoWrapKind == OBO::NoUnsignedWrap) &&
         "NoWrapKind invalid!");

  bool Unsigned = NoWrapKind == OBO::NoUnsignedWrap;
  unsigned BitWidth = Other.getBitWidth();

  switch (BinOp) {
  default:
    llvm_unreachable("Unsupported binary op");

  case Instruction::Add: {
    if (Unsigned)
      return getNonEmpty(APInt::getNullValue(BitWidth),
                         -Other.getUnsignedMax());

    APInt SignedMinVal = APInt::getSignedMinValue(BitWidth);
    APInt SMin = Other.getSignedMin(), SMax = Other.getSignedMax();
    return getNonEmpty(
        SMin.isNegative() ? SignedMinVal - SMin : SignedMinVal,
        SMax.isStrictlyPositive() ? SignedMinVal - SMax : SignedMinVal);
  }

  case Instruction::Sub: {
    if (Unsigned)
      return getNonEmpty(Other.getUnsignedMax(), APInt::getMinValue(BitWidth));

    APInt SignedMinVal = APInt::getSignedMinValue(BitWidth);
    APInt SMin = Other.getSignedMin(), SMax = Other.getSignedMax();
    return getNonEmpty(
        SMax.isStrictlyPositive() ? SignedMinVal + SMax : SignedMinVal,
        SMin.isNegative() ? SignedMinVal + SMin : SignedMinVal);
  }

  case Instruction::Mul:
    if (Unsigned)
      return makeExactMulNUWRegion(Other.getUnsignedMax());

    return makeExactMulNSWRegion(Other.getSignedMin())
        .intersectWith(makeExactMulNSWRegion(Other.getSignedMax()));
  }
}

ConstantRange ConstantRange::makeExactNoWrapRegion(Instruction::BinaryOps BinOp,
                                                   const APInt &Other,
                                                   unsigned NoWrapKind) {
  // makeGuaranteedNoWrapRegion() is exact for single-element ranges, as
  // "for all" and "for any" coincide in this case.
  return makeGuaranteedNoWrapRegion(BinOp, ConstantRange(Other), NoWrapKind);
}

bool ConstantRange::isFullSet() const {
  return Lower == Upper && Lower.isMaxValue();
}

bool ConstantRange::isEmptySet() const {
  return Lower == Upper && Lower.isMinValue();
}

bool ConstantRange::isWrappedSet() const {
  return Lower.ugt(Upper) && !Upper.isNullValue();
}

bool ConstantRange::isUpperWrapped() const {
  return Lower.ugt(Upper);
}

bool ConstantRange::isSignWrappedSet() const {
  return Lower.sgt(Upper) && !Upper.isMinSignedValue();
}

bool ConstantRange::isUpperSignWrapped() const {
  return Lower.sgt(Upper);
}

bool
ConstantRange::isSizeStrictlySmallerThan(const ConstantRange &Other) const {
  assert(getBitWidth() == Other.getBitWidth());
  if (isFullSet())
    return false;
  if (Other.isFullSet())
    return true;
  return (Upper - Lower).ult(Other.Upper - Other.Lower);
}

bool
ConstantRange::isSizeLargerThan(uint64_t MaxSize) const {
  assert(MaxSize && "MaxSize can't be 0.");
  // If this a full set, we need special handling to avoid needing an extra bit
  // to represent the size.
  if (isFullSet())
    return APInt::getMaxValue(getBitWidth()).ugt(MaxSize - 1);

  return (Upper - Lower).ugt(MaxSize);
}

bool ConstantRange::isAllNegative() const {
  // Empty set is all negative, full set is not.
  if (isEmptySet())
    return true;
  if (isFullSet())
    return false;

  return !isUpperSignWrapped() && !Upper.isStrictlyPositive();
}

bool ConstantRange::isAllNonNegative() const {
  // Empty and full set are automatically treated correctly.
  return !isSignWrappedSet() && Lower.isNonNegative();
}

APInt ConstantRange::getUnsignedMax() const {
  if (isFullSet() || isUpperWrapped())
    return APInt::getMaxValue(getBitWidth());
  return getUpper() - 1;
}

APInt ConstantRange::getUnsignedMin() const {
  if (isFullSet() || isWrappedSet())
    return APInt::getMinValue(getBitWidth());
  return getLower();
}

APInt ConstantRange::getSignedMax() const {
  if (isFullSet() || isUpperSignWrapped())
    return APInt::getSignedMaxValue(getBitWidth());
  return getUpper() - 1;
}

APInt ConstantRange::getSignedMin() const {
  if (isFullSet() || isSignWrappedSet())
    return APInt::getSignedMinValue(getBitWidth());
  return getLower();
}

bool ConstantRange::contains(const APInt &V) const {
  if (Lower == Upper)
    return isFullSet();

  if (!isUpperWrapped())
    return Lower.ule(V) && V.ult(Upper);
  return Lower.ule(V) || V.ult(Upper);
}

bool ConstantRange::contains(const ConstantRange &Other) const {
  if (isFullSet() || Other.isEmptySet()) return true;
  if (isEmptySet() || Other.isFullSet()) return false;

  if (!isUpperWrapped()) {
    if (Other.isUpperWrapped())
      return false;

    return Lower.ule(Other.getLower()) && Other.getUpper().ule(Upper);
  }

  if (!Other.isUpperWrapped())
    return Other.getUpper().ule(Upper) ||
           Lower.ule(Other.getLower());

  return Other.getUpper().ule(Upper) && Lower.ule(Other.getLower());
}

ConstantRange ConstantRange::subtract(const APInt &Val) const {
  assert(Val.getBitWidth() == getBitWidth() && "Wrong bit width");
  // If the set is empty or full, don't modify the endpoints.
  if (Lower == Upper)
    return *this;
  return ConstantRange(Lower - Val, Upper - Val);
}

ConstantRange ConstantRange::difference(const ConstantRange &CR) const {
  return intersectWith(CR.inverse());
}

static ConstantRange getPreferredRange(
    const ConstantRange &CR1, const ConstantRange &CR2,
    ConstantRange::PreferredRangeType Type) {
  if (Type == ConstantRange::Unsigned) {
    if (!CR1.isWrappedSet() && CR2.isWrappedSet())
      return CR1;
    if (CR1.isWrappedSet() && !CR2.isWrappedSet())
      return CR2;
  } else if (Type == ConstantRange::Signed) {
    if (!CR1.isSignWrappedSet() && CR2.isSignWrappedSet())
      return CR1;
    if (CR1.isSignWrappedSet() && !CR2.isSignWrappedSet())
      return CR2;
  }

  if (CR1.isSizeStrictlySmallerThan(CR2))
    return CR1;
  return CR2;
}

ConstantRange ConstantRange::intersectWith(const ConstantRange &CR,
                                           PreferredRangeType Type) const {
  assert(getBitWidth() == CR.getBitWidth() &&
         "ConstantRange types don't agree!");

  // Handle common cases.
  if (   isEmptySet() || CR.isFullSet()) return *this;
  if (CR.isEmptySet() ||    isFullSet()) return CR;

  if (!isUpperWrapped() && CR.isUpperWrapped())
    return CR.intersectWith(*this, Type);

  if (!isUpperWrapped() && !CR.isUpperWrapped()) {
    if (Lower.ult(CR.Lower)) {
      // L---U       : this
      //       L---U : CR
      if (Upper.ule(CR.Lower))
        return getEmpty();

      // L---U       : this
      //   L---U     : CR
      if (Upper.ult(CR.Upper))
        return ConstantRange(CR.Lower, Upper);

      // L-------U   : this
      //   L---U     : CR
      return CR;
    }
    //   L---U     : this
    // L-------U   : CR
    if (Upper.ult(CR.Upper))
      return *this;

    //   L-----U   : this
    // L-----U     : CR
    if (Lower.ult(CR.Upper))
      return ConstantRange(Lower, CR.Upper);

    //       L---U : this
    // L---U       : CR
    return getEmpty();
  }

  if (isUpperWrapped() && !CR.isUpperWrapped()) {
    if (CR.Lower.ult(Upper)) {
      // ------U   L--- : this
      //  L--U          : CR
      if (CR.Upper.ult(Upper))
        return CR;

      // ------U   L--- : this
      //  L------U      : CR
      if (CR.Upper.ule(Lower))
        return ConstantRange(CR.Lower, Upper);

      // ------U   L--- : this
      //  L----------U  : CR
      return getPreferredRange(*this, CR, Type);
    }
    if (CR.Lower.ult(Lower)) {
      // --U      L---- : this
      //     L--U       : CR
      if (CR.Upper.ule(Lower))
        return getEmpty();

      // --U      L---- : this
      //     L------U   : CR
      return ConstantRange(Lower, CR.Upper);
    }

    // --U  L------ : this
    //        L--U  : CR
    return CR;
  }

  if (CR.Upper.ult(Upper)) {
    // ------U L-- : this
    // --U L------ : CR
    if (CR.Lower.ult(Upper))
      return getPreferredRange(*this, CR, Type);

    // ----U   L-- : this
    // --U   L---- : CR
    if (CR.Lower.ult(Lower))
      return ConstantRange(Lower, CR.Upper);

    // ----U L---- : this
    // --U     L-- : CR
    return CR;
  }
  if (CR.Upper.ule(Lower)) {
    // --U     L-- : this
    // ----U L---- : CR
    if (CR.Lower.ult(Lower))
      return *this;

    // --U   L---- : this
    // ----U   L-- : CR
    return ConstantRange(CR.Lower, Upper);
  }

  // --U L------ : this
  // ------U L-- : CR
  return getPreferredRange(*this, CR, Type);
}

ConstantRange ConstantRange::unionWith(const ConstantRange &CR,
                                       PreferredRangeType Type) const {
  assert(getBitWidth() == CR.getBitWidth() &&
         "ConstantRange types don't agree!");

  if (   isFullSet() || CR.isEmptySet()) return *this;
  if (CR.isFullSet() ||    isEmptySet()) return CR;

  if (!isUpperWrapped() && CR.isUpperWrapped())
    return CR.unionWith(*this, Type);

  if (!isUpperWrapped() && !CR.isUpperWrapped()) {
    //        L---U  and  L---U        : this
    //  L---U                   L---U  : CR
    // result in one of
    //  L---------U
    // -----U L-----
    if (CR.Upper.ult(Lower) || Upper.ult(CR.Lower))
      return getPreferredRange(
          ConstantRange(Lower, CR.Upper), ConstantRange(CR.Lower, Upper), Type);

    APInt L = CR.Lower.ult(Lower) ? CR.Lower : Lower;
    APInt U = (CR.Upper - 1).ugt(Upper - 1) ? CR.Upper : Upper;

    if (L.isNullValue() && U.isNullValue())
      return getFull();

    return ConstantRange(std::move(L), std::move(U));
  }

  if (!CR.isUpperWrapped()) {
    // ------U   L-----  and  ------U   L----- : this
    //   L--U                            L--U  : CR
    if (CR.Upper.ule(Upper) || CR.Lower.uge(Lower))
      return *this;

    // ------U   L----- : this
    //    L---------U   : CR
    if (CR.Lower.ule(Upper) && Lower.ule(CR.Upper))
      return getFull();

    // ----U       L---- : this
    //       L---U       : CR
    // results in one of
    // ----------U L----
    // ----U L----------
    if (Upper.ult(CR.Lower) && CR.Upper.ult(Lower))
      return getPreferredRange(
          ConstantRange(Lower, CR.Upper), ConstantRange(CR.Lower, Upper), Type);

    // ----U     L----- : this
    //        L----U    : CR
    if (Upper.ult(CR.Lower) && Lower.ule(CR.Upper))
      return ConstantRange(CR.Lower, Upper);

    // ------U    L---- : this
    //    L-----U       : CR
    assert(CR.Lower.ule(Upper) && CR.Upper.ult(Lower) &&
           "ConstantRange::unionWith missed a case with one range wrapped");
    return ConstantRange(Lower, CR.Upper);
  }

  // ------U    L----  and  ------U    L---- : this
  // -U  L-----------  and  ------------U  L : CR
  if (CR.Lower.ule(Upper) || Lower.ule(CR.Upper))
    return getFull();

  APInt L = CR.Lower.ult(Lower) ? CR.Lower : Lower;
  APInt U = CR.Upper.ugt(Upper) ? CR.Upper : Upper;

  return ConstantRange(std::move(L), std::move(U));
}

ConstantRange ConstantRange::castOp(Instruction::CastOps CastOp,
                                    uint32_t ResultBitWidth) const {
  switch (CastOp) {
  default:
    llvm_unreachable("unsupported cast type");
  case Instruction::Trunc:
    return truncate(ResultBitWidth);
  case Instruction::SExt:
    return signExtend(ResultBitWidth);
  case Instruction::ZExt:
    return zeroExtend(ResultBitWidth);
  case Instruction::BitCast:
    return *this;
  case Instruction::FPToUI:
  case Instruction::FPToSI:
    if (getBitWidth() == ResultBitWidth)
      return *this;
    else
      return getFull();
  case Instruction::UIToFP: {
    // TODO: use input range if available
    auto BW = getBitWidth();
    APInt Min = APInt::getMinValue(BW).zextOrSelf(ResultBitWidth);
    APInt Max = APInt::getMaxValue(BW).zextOrSelf(ResultBitWidth);
    return ConstantRange(std::move(Min), std::move(Max));
  }
  case Instruction::SIToFP: {
    // TODO: use input range if available
    auto BW = getBitWidth();
    APInt SMin = APInt::getSignedMinValue(BW).sextOrSelf(ResultBitWidth);
    APInt SMax = APInt::getSignedMaxValue(BW).sextOrSelf(ResultBitWidth);
    return ConstantRange(std::move(SMin), std::move(SMax));
  }
  case Instruction::FPTrunc:
  case Instruction::FPExt:
  case Instruction::IntToPtr:
  case Instruction::PtrToInt:
  case Instruction::AddrSpaceCast:
    // Conservatively return getFull set.
    return getFull();
  };
}

ConstantRange ConstantRange::zeroExtend(uint32_t DstTySize) const {
  if (isEmptySet()) return getEmpty(DstTySize);

  unsigned SrcTySize = getBitWidth();
  assert(SrcTySize < DstTySize && "Not a value extension");
  if (isFullSet() || isUpperWrapped()) {
    // Change into [0, 1 << src bit width)
    APInt LowerExt(DstTySize, 0);
    if (!Upper) // special case: [X, 0) -- not really wrapping around
      LowerExt = Lower.zext(DstTySize);
    return ConstantRange(std::move(LowerExt),
                         APInt::getOneBitSet(DstTySize, SrcTySize));
  }

  return ConstantRange(Lower.zext(DstTySize), Upper.zext(DstTySize));
}

ConstantRange ConstantRange::signExtend(uint32_t DstTySize) const {
  if (isEmptySet()) return getEmpty(DstTySize);

  unsigned SrcTySize = getBitWidth();
  assert(SrcTySize < DstTySize && "Not a value extension");

  // special case: [X, INT_MIN) -- not really wrapping around
  if (Upper.isMinSignedValue())
    return ConstantRange(Lower.sext(DstTySize), Upper.zext(DstTySize));

  if (isFullSet() || isSignWrappedSet()) {
    return ConstantRange(APInt::getHighBitsSet(DstTySize,DstTySize-SrcTySize+1),
                         APInt::getLowBitsSet(DstTySize, SrcTySize-1) + 1);
  }

  return ConstantRange(Lower.sext(DstTySize), Upper.sext(DstTySize));
}

ConstantRange ConstantRange::truncate(uint32_t DstTySize) const {
  assert(getBitWidth() > DstTySize && "Not a value truncation");
  if (isEmptySet())
    return getEmpty(DstTySize);
  if (isFullSet())
    return getFull(DstTySize);

  APInt LowerDiv(Lower), UpperDiv(Upper);
  ConstantRange Union(DstTySize, /*isFullSet=*/false);

  // Analyze wrapped sets in their two parts: [0, Upper) \/ [Lower, MaxValue]
  // We use the non-wrapped set code to analyze the [Lower, MaxValue) part, and
  // then we do the union with [MaxValue, Upper)
  if (isUpperWrapped()) {
    // If Upper is greater than or equal to MaxValue(DstTy), it covers the whole
    // truncated range.
    if (Upper.getActiveBits() > DstTySize ||
        Upper.countTrailingOnes() == DstTySize)
      return getFull(DstTySize);

    Union = ConstantRange(APInt::getMaxValue(DstTySize),Upper.trunc(DstTySize));
    UpperDiv.setAllBits();

    // Union covers the MaxValue case, so return if the remaining range is just
    // MaxValue(DstTy).
    if (LowerDiv == UpperDiv)
      return Union;
  }

  // Chop off the most significant bits that are past the destination bitwidth.
  if (LowerDiv.getActiveBits() > DstTySize) {
    // Mask to just the signficant bits and subtract from LowerDiv/UpperDiv.
    APInt Adjust = LowerDiv & APInt::getBitsSetFrom(getBitWidth(), DstTySize);
    LowerDiv -= Adjust;
    UpperDiv -= Adjust;
  }

  unsigned UpperDivWidth = UpperDiv.getActiveBits();
  if (UpperDivWidth <= DstTySize)
    return ConstantRange(LowerDiv.trunc(DstTySize),
                         UpperDiv.trunc(DstTySize)).unionWith(Union);

  // The truncated value wraps around. Check if we can do better than fullset.
  if (UpperDivWidth == DstTySize + 1) {
    // Clear the MSB so that UpperDiv wraps around.
    UpperDiv.clearBit(DstTySize);
    if (UpperDiv.ult(LowerDiv))
      return ConstantRange(LowerDiv.trunc(DstTySize),
                           UpperDiv.trunc(DstTySize)).unionWith(Union);
  }

  return getFull(DstTySize);
}

ConstantRange ConstantRange::zextOrTrunc(uint32_t DstTySize) const {
  unsigned SrcTySize = getBitWidth();
  if (SrcTySize > DstTySize)
    return truncate(DstTySize);
  if (SrcTySize < DstTySize)
    return zeroExtend(DstTySize);
  return *this;
}

ConstantRange ConstantRange::sextOrTrunc(uint32_t DstTySize) const {
  unsigned SrcTySize = getBitWidth();
  if (SrcTySize > DstTySize)
    return truncate(DstTySize);
  if (SrcTySize < DstTySize)
    return signExtend(DstTySize);
  return *this;
}

ConstantRange ConstantRange::binaryOp(Instruction::BinaryOps BinOp,
                                      const ConstantRange &Other) const {
  assert(Instruction::isBinaryOp(BinOp) && "Binary operators only!");

  switch (BinOp) {
  case Instruction::Add:
    return add(Other);
  case Instruction::Sub:
    return sub(Other);
  case Instruction::Mul:
    return multiply(Other);
  case Instruction::UDiv:
    return udiv(Other);
  case Instruction::SDiv:
    return sdiv(Other);
  case Instruction::URem:
    return urem(Other);
  case Instruction::SRem:
    return srem(Other);
  case Instruction::Shl:
    return shl(Other);
  case Instruction::LShr:
    return lshr(Other);
  case Instruction::AShr:
    return ashr(Other);
  case Instruction::And:
    return binaryAnd(Other);
  case Instruction::Or:
    return binaryOr(Other);
  // Note: floating point operations applied to abstract ranges are just
  // ideal integer operations with a lossy representation
  case Instruction::FAdd:
    return add(Other);
  case Instruction::FSub:
    return sub(Other);
  case Instruction::FMul:
    return multiply(Other);
  default:
    // Conservatively return getFull set.
    return getFull();
  }
}

ConstantRange
ConstantRange::add(const ConstantRange &Other) const {
  if (isEmptySet() || Other.isEmptySet())
    return getEmpty();
  if (isFullSet() || Other.isFullSet())
    return getFull();

  APInt NewLower = getLower() + Other.getLower();
  APInt NewUpper = getUpper() + Other.getUpper() - 1;
  if (NewLower == NewUpper)
    return getFull();

  ConstantRange X = ConstantRange(std::move(NewLower), std::move(NewUpper));
  if (X.isSizeStrictlySmallerThan(*this) ||
      X.isSizeStrictlySmallerThan(Other))
    // We've wrapped, therefore, full set.
    return getFull();
  return X;
}

ConstantRange ConstantRange::addWithNoSignedWrap(const APInt &Other) const {
  // Calculate the subset of this range such that "X + Other" is
  // guaranteed not to wrap (overflow) for all X in this subset.
  auto NSWRange = ConstantRange::makeExactNoWrapRegion(
      BinaryOperator::Add, Other, OverflowingBinaryOperator::NoSignedWrap);
  auto NSWConstrainedRange = intersectWith(NSWRange);

  return NSWConstrainedRange.add(ConstantRange(Other));
}

ConstantRange
ConstantRange::sub(const ConstantRange &Other) const {
  if (isEmptySet() || Other.isEmptySet())
    return getEmpty();
  if (isFullSet() || Other.isFullSet())
    return getFull();

  APInt NewLower = getLower() - Other.getUpper() + 1;
  APInt NewUpper = getUpper() - Other.getLower();
  if (NewLower == NewUpper)
    return getFull();

  ConstantRange X = ConstantRange(std::move(NewLower), std::move(NewUpper));
  if (X.isSizeStrictlySmallerThan(*this) ||
      X.isSizeStrictlySmallerThan(Other))
    // We've wrapped, therefore, full set.
    return getFull();
  return X;
}

ConstantRange
ConstantRange::multiply(const ConstantRange &Other) const {
  // TODO: If either operand is a single element and the multiply is known to
  // be non-wrapping, round the result min and max value to the appropriate
  // multiple of that element. If wrapping is possible, at least adjust the
  // range according to the greatest power-of-two factor of the single element.

  if (isEmptySet() || Other.isEmptySet())
    return getEmpty();

  // Multiplication is signedness-independent. However different ranges can be
  // obtained depending on how the input ranges are treated. These different
  // ranges are all conservatively correct, but one might be better than the
  // other. We calculate two ranges; one treating the inputs as unsigned
  // and the other signed, then return the smallest of these ranges.

  // Unsigned range first.
  APInt this_min = getUnsignedMin().zext(getBitWidth() * 2);
  APInt this_max = getUnsignedMax().zext(getBitWidth() * 2);
  APInt Other_min = Other.getUnsignedMin().zext(getBitWidth() * 2);
  APInt Other_max = Other.getUnsignedMax().zext(getBitWidth() * 2);

  ConstantRange Result_zext = ConstantRange(this_min * Other_min,
                                            this_max * Other_max + 1);
  ConstantRange UR = Result_zext.truncate(getBitWidth());

  // If the unsigned range doesn't wrap, and isn't negative then it's a range
  // from one positive number to another which is as good as we can generate.
  // In this case, skip the extra work of generating signed ranges which aren't
  // going to be better than this range.
  if (!UR.isUpperWrapped() &&
      (UR.getUpper().isNonNegative() || UR.getUpper().isMinSignedValue()))
    return UR;

  // Now the signed range. Because we could be dealing with negative numbers
  // here, the lower bound is the smallest of the cartesian product of the
  // lower and upper ranges; for example:
  //   [-1,4) * [-2,3) = min(-1*-2, -1*2, 3*-2, 3*2) = -6.
  // Similarly for the upper bound, swapping min for max.

  this_min = getSignedMin().sext(getBitWidth() * 2);
  this_max = getSignedMax().sext(getBitWidth() * 2);
  Other_min = Other.getSignedMin().sext(getBitWidth() * 2);
  Other_max = Other.getSignedMax().sext(getBitWidth() * 2);

  auto L = {this_min * Other_min, this_min * Other_max,
            this_max * Other_min, this_max * Other_max};
  auto Compare = [](const APInt &A, const APInt &B) { return A.slt(B); };
  ConstantRange Result_sext(std::min(L, Compare), std::max(L, Compare) + 1);
  ConstantRange SR = Result_sext.truncate(getBitWidth());

  return UR.isSizeStrictlySmallerThan(SR) ? UR : SR;
}

ConstantRange
ConstantRange::smax(const ConstantRange &Other) const {
  // X smax Y is: range(smax(X_smin, Y_smin),
  //                    smax(X_smax, Y_smax))
  if (isEmptySet() || Other.isEmptySet())
    return getEmpty();
  APInt NewL = APIntOps::smax(getSignedMin(), Other.getSignedMin());
  APInt NewU = APIntOps::smax(getSignedMax(), Other.getSignedMax()) + 1;
  return getNonEmpty(std::move(NewL), std::move(NewU));
}

ConstantRange
ConstantRange::umax(const ConstantRange &Other) const {
  // X umax Y is: range(umax(X_umin, Y_umin),
  //                    umax(X_umax, Y_umax))
  if (isEmptySet() || Other.isEmptySet())
    return getEmpty();
  APInt NewL = APIntOps::umax(getUnsignedMin(), Other.getUnsignedMin());
  APInt NewU = APIntOps::umax(getUnsignedMax(), Other.getUnsignedMax()) + 1;
  return getNonEmpty(std::move(NewL), std::move(NewU));
}

ConstantRange
ConstantRange::smin(const ConstantRange &Other) const {
  // X smin Y is: range(smin(X_smin, Y_smin),
  //                    smin(X_smax, Y_smax))
  if (isEmptySet() || Other.isEmptySet())
    return getEmpty();
  APInt NewL = APIntOps::smin(getSignedMin(), Other.getSignedMin());
  APInt NewU = APIntOps::smin(getSignedMax(), Other.getSignedMax()) + 1;
  return getNonEmpty(std::move(NewL), std::move(NewU));
}

ConstantRange
ConstantRange::umin(const ConstantRange &Other) const {
  // X umin Y is: range(umin(X_umin, Y_umin),
  //                    umin(X_umax, Y_umax))
  if (isEmptySet() || Other.isEmptySet())
    return getEmpty();
  APInt NewL = APIntOps::umin(getUnsignedMin(), Other.getUnsignedMin());
  APInt NewU = APIntOps::umin(getUnsignedMax(), Other.getUnsignedMax()) + 1;
  return getNonEmpty(std::move(NewL), std::move(NewU));
}

ConstantRange
ConstantRange::udiv(const ConstantRange &RHS) const {
  if (isEmptySet() || RHS.isEmptySet() || RHS.getUnsignedMax().isNullValue())
    return getEmpty();

  APInt Lower = getUnsignedMin().udiv(RHS.getUnsignedMax());

  APInt RHS_umin = RHS.getUnsignedMin();
  if (RHS_umin.isNullValue()) {
    // We want the lowest value in RHS excluding zero. Usually that would be 1
    // except for a range in the form of [X, 1) in which case it would be X.
    if (RHS.getUpper() == 1)
      RHS_umin = RHS.getLower();
    else
      RHS_umin = 1;
  }

  APInt Upper = getUnsignedMax().udiv(RHS_umin) + 1;
  return getNonEmpty(std::move(Lower), std::move(Upper));
}

ConstantRange ConstantRange::sdiv(const ConstantRange &RHS) const {
  // We split up the LHS and RHS into positive and negative components
  // and then also compute the positive and negative components of the result
  // separately by combining division results with the appropriate signs.
  APInt Zero = APInt::getNullValue(getBitWidth());
  APInt SignedMin = APInt::getSignedMinValue(getBitWidth());
  ConstantRange PosFilter(APInt(getBitWidth(), 1), SignedMin);
  ConstantRange NegFilter(SignedMin, Zero);
  ConstantRange PosL = intersectWith(PosFilter);
  ConstantRange NegL = intersectWith(NegFilter);
  ConstantRange PosR = RHS.intersectWith(PosFilter);
  ConstantRange NegR = RHS.intersectWith(NegFilter);

  ConstantRange PosRes = getEmpty();
  if (!PosL.isEmptySet() && !PosR.isEmptySet())
    // pos / pos = pos.
    PosRes = ConstantRange(PosL.Lower.sdiv(PosR.Upper - 1),
                           (PosL.Upper - 1).sdiv(PosR.Lower) + 1);

  if (!NegL.isEmptySet() && !NegR.isEmptySet()) {
    // neg / neg = pos.
    //
    // We need to deal with one tricky case here: SignedMin / -1 is UB on the
    // IR level, so we'll want to exclude this case when calculating bounds.
    // (For APInts the operation is well-defined and yields SignedMin.) We
    // handle this by dropping either SignedMin from the LHS or -1 from the RHS.
    APInt Lo = (NegL.Upper - 1).sdiv(NegR.Lower);
    if (NegL.Lower.isMinSignedValue() && NegR.Upper.isNullValue()) {
      // Remove -1 from the LHS. Skip if it's the only element, as this would
      // leave us with an empty set.
      if (!NegR.Lower.isAllOnesValue()) {
        APInt AdjNegRUpper;
        if (RHS.Lower.isAllOnesValue())
          // Negative part of [-1, X] without -1 is [SignedMin, X].
          AdjNegRUpper = RHS.Upper;
        else
          // [X, -1] without -1 is [X, -2].
          AdjNegRUpper = NegR.Upper - 1;

        PosRes = PosRes.unionWith(
            ConstantRange(Lo, NegL.Lower.sdiv(AdjNegRUpper - 1) + 1));
      }

      // Remove SignedMin from the RHS. Skip if it's the only element, as this
      // would leave us with an empty set.
      if (NegL.Upper != SignedMin + 1) {
        APInt AdjNegLLower;
        if (Upper == SignedMin + 1)
          // Negative part of [X, SignedMin] without SignedMin is [X, -1].
          AdjNegLLower = Lower;
        else
          // [SignedMin, X] without SignedMin is [SignedMin + 1, X].
          AdjNegLLower = NegL.Lower + 1;

        PosRes = PosRes.unionWith(
            ConstantRange(std::move(Lo),
                          AdjNegLLower.sdiv(NegR.Upper - 1) + 1));
      }
    } else {
      PosRes = PosRes.unionWith(
          ConstantRange(std::move(Lo), NegL.Lower.sdiv(NegR.Upper - 1) + 1));
    }
  }

  ConstantRange NegRes = getEmpty();
  if (!PosL.isEmptySet() && !NegR.isEmptySet())
    // pos / neg = neg.
    NegRes = ConstantRange((PosL.Upper - 1).sdiv(NegR.Upper - 1),
                           PosL.Lower.sdiv(NegR.Lower) + 1);

  if (!NegL.isEmptySet() && !PosR.isEmptySet())
    // neg / pos = neg.
    NegRes = NegRes.unionWith(
        ConstantRange(NegL.Lower.sdiv(PosR.Lower),
                      (NegL.Upper - 1).sdiv(PosR.Upper - 1) + 1));

  // Prefer a non-wrapping signed range here.
  ConstantRange Res = NegRes.unionWith(PosRes, PreferredRangeType::Signed);

  // Preserve the zero that we dropped when splitting the LHS by sign.
  if (contains(Zero) && (!PosR.isEmptySet() || !NegR.isEmptySet()))
    Res = Res.unionWith(ConstantRange(Zero));
  return Res;
}

ConstantRange ConstantRange::urem(const ConstantRange &RHS) const {
  if (isEmptySet() || RHS.isEmptySet() || RHS.getUnsignedMax().isNullValue())
    return getEmpty();

  // L % R for L < R is L.
  if (getUnsignedMax().ult(RHS.getUnsignedMin()))
    return *this;

  // L % R is <= L and < R.
  APInt Upper = APIntOps::umin(getUnsignedMax(), RHS.getUnsignedMax() - 1) + 1;
  return getNonEmpty(APInt::getNullValue(getBitWidth()), std::move(Upper));
}

ConstantRange ConstantRange::srem(const ConstantRange &RHS) const {
  if (isEmptySet() || RHS.isEmptySet())
    return getEmpty();

  ConstantRange AbsRHS = RHS.abs();
  APInt MinAbsRHS = AbsRHS.getUnsignedMin();
  APInt MaxAbsRHS = AbsRHS.getUnsignedMax();

  // Modulus by zero is UB.
  if (MaxAbsRHS.isNullValue())
    return getEmpty();

  if (MinAbsRHS.isNullValue())
    ++MinAbsRHS;

  APInt MinLHS = getSignedMin(), MaxLHS = getSignedMax();

  if (MinLHS.isNonNegative()) {
    // L % R for L < R is L.
    if (MaxLHS.ult(MinAbsRHS))
      return *this;

    // L % R is <= L and < R.
    APInt Upper = APIntOps::umin(MaxLHS, MaxAbsRHS - 1) + 1;
    return ConstantRange(APInt::getNullValue(getBitWidth()), std::move(Upper));
  }

  // Same basic logic as above, but the result is negative.
  if (MaxLHS.isNegative()) {
    if (MinLHS.ugt(-MinAbsRHS))
      return *this;

    APInt Lower = APIntOps::umax(MinLHS, -MaxAbsRHS + 1);
    return ConstantRange(std::move(Lower), APInt(getBitWidth(), 1));
  }

  // LHS range crosses zero.
  APInt Lower = APIntOps::umax(MinLHS, -MaxAbsRHS + 1);
  APInt Upper = APIntOps::umin(MaxLHS, MaxAbsRHS - 1) + 1;
  return ConstantRange(std::move(Lower), std::move(Upper));
}

ConstantRange
ConstantRange::binaryAnd(const ConstantRange &Other) const {
  if (isEmptySet() || Other.isEmptySet())
    return getEmpty();

  // TODO: replace this with something less conservative

  APInt umin = APIntOps::umin(Other.getUnsignedMax(), getUnsignedMax());
  return getNonEmpty(APInt::getNullValue(getBitWidth()), std::move(umin) + 1);
}

ConstantRange
ConstantRange::binaryOr(const ConstantRange &Other) const {
  if (isEmptySet() || Other.isEmptySet())
    return getEmpty();

  // TODO: replace this with something less conservative

  APInt umax = APIntOps::umax(getUnsignedMin(), Other.getUnsignedMin());
  return getNonEmpty(std::move(umax), APInt::getNullValue(getBitWidth()));
}

ConstantRange
ConstantRange::shl(const ConstantRange &Other) const {
  if (isEmptySet() || Other.isEmptySet())
    return getEmpty();

  APInt max = getUnsignedMax();
  APInt Other_umax = Other.getUnsignedMax();

  // If we are shifting by maximum amount of
  // zero return return the original range.
  if (Other_umax.isNullValue())
    return *this;
  // there's overflow!
  if (Other_umax.ugt(max.countLeadingZeros()))
    return getFull();

  // FIXME: implement the other tricky cases

  APInt min = getUnsignedMin();
  min <<= Other.getUnsignedMin();
  max <<= Other_umax;

  return ConstantRange(std::move(min), std::move(max) + 1);
}

ConstantRange
ConstantRange::lshr(const ConstantRange &Other) const {
  if (isEmptySet() || Other.isEmptySet())
    return getEmpty();

  APInt max = getUnsignedMax().lshr(Other.getUnsignedMin()) + 1;
  APInt min = getUnsignedMin().lshr(Other.getUnsignedMax());
  return getNonEmpty(std::move(min), std::move(max));
}

ConstantRange
ConstantRange::ashr(const ConstantRange &Other) const {
  if (isEmptySet() || Other.isEmptySet())
    return getEmpty();

  // May straddle zero, so handle both positive and negative cases.
  // 'PosMax' is the upper bound of the result of the ashr
  // operation, when Upper of the LHS of ashr is a non-negative.
  // number. Since ashr of a non-negative number will result in a
  // smaller number, the Upper value of LHS is shifted right with
  // the minimum value of 'Other' instead of the maximum value.
  APInt PosMax = getSignedMax().ashr(Other.getUnsignedMin()) + 1;

  // 'PosMin' is the lower bound of the result of the ashr
  // operation, when Lower of the LHS is a non-negative number.
  // Since ashr of a non-negative number will result in a smaller
  // number, the Lower value of LHS is shifted right with the
  // maximum value of 'Other'.
  APInt PosMin = getSignedMin().ashr(Other.getUnsignedMax());

  // 'NegMax' is the upper bound of the result of the ashr
  // operation, when Upper of the LHS of ashr is a negative number.
  // Since 'ashr' of a negative number will result in a bigger
  // number, the Upper value of LHS is shifted right with the
  // maximum value of 'Other'.
  APInt NegMax = getSignedMax().ashr(Other.getUnsignedMax()) + 1;

  // 'NegMin' is the lower bound of the result of the ashr
  // operation, when Lower of the LHS of ashr is a negative number.
  // Since 'ashr' of a negative number will result in a bigger
  // number, the Lower value of LHS is shifted right with the
  // minimum value of 'Other'.
  APInt NegMin = getSignedMin().ashr(Other.getUnsignedMin());

  APInt max, min;
  if (getSignedMin().isNonNegative()) {
    // Upper and Lower of LHS are non-negative.
    min = PosMin;
    max = PosMax;
  } else if (getSignedMax().isNegative()) {
    // Upper and Lower of LHS are negative.
    min = NegMin;
    max = NegMax;
  } else {
    // Upper is non-negative and Lower is negative.
    min = NegMin;
    max = PosMax;
  }
  return getNonEmpty(std::move(min), std::move(max));
}

ConstantRange ConstantRange::uadd_sat(const ConstantRange &Other) const {
  if (isEmptySet() || Other.isEmptySet())
    return getEmpty();

  APInt NewL = getUnsignedMin().uadd_sat(Other.getUnsignedMin());
  APInt NewU = getUnsignedMax().uadd_sat(Other.getUnsignedMax()) + 1;
  return getNonEmpty(std::move(NewL), std::move(NewU));
}

ConstantRange ConstantRange::sadd_sat(const ConstantRange &Other) const {
  if (isEmptySet() || Other.isEmptySet())
    return getEmpty();

  APInt NewL = getSignedMin().sadd_sat(Other.getSignedMin());
  APInt NewU = getSignedMax().sadd_sat(Other.getSignedMax()) + 1;
  return getNonEmpty(std::move(NewL), std::move(NewU));
}

ConstantRange ConstantRange::usub_sat(const ConstantRange &Other) const {
  if (isEmptySet() || Other.isEmptySet())
    return getEmpty();

  APInt NewL = getUnsignedMin().usub_sat(Other.getUnsignedMax());
  APInt NewU = getUnsignedMax().usub_sat(Other.getUnsignedMin()) + 1;
  return getNonEmpty(std::move(NewL), std::move(NewU));
}

ConstantRange ConstantRange::ssub_sat(const ConstantRange &Other) const {
  if (isEmptySet() || Other.isEmptySet())
    return getEmpty();

  APInt NewL = getSignedMin().ssub_sat(Other.getSignedMax());
  APInt NewU = getSignedMax().ssub_sat(Other.getSignedMin()) + 1;
  return getNonEmpty(std::move(NewL), std::move(NewU));
}

ConstantRange ConstantRange::inverse() const {
  if (isFullSet())
    return getEmpty();
  if (isEmptySet())
    return getFull();
  return ConstantRange(Upper, Lower);
}

ConstantRange ConstantRange::abs() const {
  if (isEmptySet())
    return getEmpty();

  if (isSignWrappedSet()) {
    APInt Lo;
    // Check whether the range crosses zero.
    if (Upper.isStrictlyPositive() || !Lower.isStrictlyPositive())
      Lo = APInt::getNullValue(getBitWidth());
    else
      Lo = APIntOps::umin(Lower, -Upper + 1);

    // SignedMin is included in the result range.
    return ConstantRange(Lo, APInt::getSignedMinValue(getBitWidth()) + 1);
  }

  APInt SMin = getSignedMin(), SMax = getSignedMax();

  // All non-negative.
  if (SMin.isNonNegative())
    return *this;

  // All negative.
  if (SMax.isNegative())
    return ConstantRange(-SMax, -SMin + 1);

  // Range crosses zero.
  return ConstantRange(APInt::getNullValue(getBitWidth()),
                       APIntOps::umax(-SMin, SMax) + 1);
}

ConstantRange::OverflowResult ConstantRange::unsignedAddMayOverflow(
    const ConstantRange &Other) const {
  if (isEmptySet() || Other.isEmptySet())
    return OverflowResult::MayOverflow;

  APInt Min = getUnsignedMin(), Max = getUnsignedMax();
  APInt OtherMin = Other.getUnsignedMin(), OtherMax = Other.getUnsignedMax();

  // a u+ b overflows high iff a u> ~b.
  if (Min.ugt(~OtherMin))
    return OverflowResult::AlwaysOverflowsHigh;
  if (Max.ugt(~OtherMax))
    return OverflowResult::MayOverflow;
  return OverflowResult::NeverOverflows;
}

ConstantRange::OverflowResult ConstantRange::signedAddMayOverflow(
    const ConstantRange &Other) const {
  if (isEmptySet() || Other.isEmptySet())
    return OverflowResult::MayOverflow;

  APInt Min = getSignedMin(), Max = getSignedMax();
  APInt OtherMin = Other.getSignedMin(), OtherMax = Other.getSignedMax();

  APInt SignedMin = APInt::getSignedMinValue(getBitWidth());
  APInt SignedMax = APInt::getSignedMaxValue(getBitWidth());

  // a s+ b overflows high iff a s>=0 && b s>= 0 && a s> smax - b.
  // a s+ b overflows low iff a s< 0 && b s< 0 && a s< smin - b.
  if (Min.isNonNegative() && OtherMin.isNonNegative() &&
      Min.sgt(SignedMax - OtherMin))
    return OverflowResult::AlwaysOverflowsHigh;
  if (Max.isNegative() && OtherMax.isNegative() &&
      Max.slt(SignedMin - OtherMax))
    return OverflowResult::AlwaysOverflowsLow;

  if (Max.isNonNegative() && OtherMax.isNonNegative() &&
      Max.sgt(SignedMax - OtherMax))
    return OverflowResult::MayOverflow;
  if (Min.isNegative() && OtherMin.isNegative() &&
      Min.slt(SignedMin - OtherMin))
    return OverflowResult::MayOverflow;

  return OverflowResult::NeverOverflows;
}

ConstantRange::OverflowResult ConstantRange::unsignedSubMayOverflow(
    const ConstantRange &Other) const {
  if (isEmptySet() || Other.isEmptySet())
    return OverflowResult::MayOverflow;

  APInt Min = getUnsignedMin(), Max = getUnsignedMax();
  APInt OtherMin = Other.getUnsignedMin(), OtherMax = Other.getUnsignedMax();

  // a u- b overflows low iff a u< b.
  if (Max.ult(OtherMin))
    return OverflowResult::AlwaysOverflowsLow;
  if (Min.ult(OtherMax))
    return OverflowResult::MayOverflow;
  return OverflowResult::NeverOverflows;
}

ConstantRange::OverflowResult ConstantRange::signedSubMayOverflow(
    const ConstantRange &Other) const {
  if (isEmptySet() || Other.isEmptySet())
    return OverflowResult::MayOverflow;

  APInt Min = getSignedMin(), Max = getSignedMax();
  APInt OtherMin = Other.getSignedMin(), OtherMax = Other.getSignedMax();

  APInt SignedMin = APInt::getSignedMinValue(getBitWidth());
  APInt SignedMax = APInt::getSignedMaxValue(getBitWidth());

  // a s- b overflows high iff a s>=0 && b s< 0 && a s> smax + b.
  // a s- b overflows low iff a s< 0 && b s>= 0 && a s< smin + b.
  if (Min.isNonNegative() && OtherMax.isNegative() &&
      Min.sgt(SignedMax + OtherMax))
    return OverflowResult::AlwaysOverflowsHigh;
  if (Max.isNegative() && OtherMin.isNonNegative() &&
      Max.slt(SignedMin + OtherMin))
    return OverflowResult::AlwaysOverflowsLow;

  if (Max.isNonNegative() && OtherMin.isNegative() &&
      Max.sgt(SignedMax + OtherMin))
    return OverflowResult::MayOverflow;
  if (Min.isNegative() && OtherMax.isNonNegative() &&
      Min.slt(SignedMin + OtherMax))
    return OverflowResult::MayOverflow;

  return OverflowResult::NeverOverflows;
}

ConstantRange::OverflowResult ConstantRange::unsignedMulMayOverflow(
    const ConstantRange &Other) const {
  if (isEmptySet() || Other.isEmptySet())
    return OverflowResult::MayOverflow;

  APInt Min = getUnsignedMin(), Max = getUnsignedMax();
  APInt OtherMin = Other.getUnsignedMin(), OtherMax = Other.getUnsignedMax();
  bool Overflow;

  (void) Min.umul_ov(OtherMin, Overflow);
  if (Overflow)
    return OverflowResult::AlwaysOverflowsHigh;

  (void) Max.umul_ov(OtherMax, Overflow);
  if (Overflow)
    return OverflowResult::MayOverflow;

  return OverflowResult::NeverOverflows;
}

void ConstantRange::print(raw_ostream &OS) const {
  if (isFullSet())
    OS << "full-set";
  else if (isEmptySet())
    OS << "empty-set";
  else
    OS << "[" << Lower << "," << Upper << ")";
}

#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
LLVM_DUMP_METHOD void ConstantRange::dump() const {
  print(dbgs());
}
#endif

ConstantRange llvm::getConstantRangeFromMetadata(const MDNode &Ranges) {
  const unsigned NumRanges = Ranges.getNumOperands() / 2;
  assert(NumRanges >= 1 && "Must have at least one range!");
  assert(Ranges.getNumOperands() % 2 == 0 && "Must be a sequence of pairs");

  auto *FirstLow = mdconst::extract<ConstantInt>(Ranges.getOperand(0));
  auto *FirstHigh = mdconst::extract<ConstantInt>(Ranges.getOperand(1));

  ConstantRange CR(FirstLow->getValue(), FirstHigh->getValue());

  for (unsigned i = 1; i < NumRanges; ++i) {
    auto *Low = mdconst::extract<ConstantInt>(Ranges.getOperand(2 * i + 0));
    auto *High = mdconst::extract<ConstantInt>(Ranges.getOperand(2 * i + 1));

    // Note: unionWith will potentially create a range that contains values not
    // contained in any of the original N ranges.
    CR = CR.unionWith(ConstantRange(Low->getValue(), High->getValue()));
  }

  return CR;
}