llvm.org GIT mirror llvm / 734c778 lib / Analysis / BasicAliasAnalysis.cpp
734c778

Tree @734c778 (Download .tar.gz)

BasicAliasAnalysis.cpp @734c778raw · history · blame

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
//===- BasicAliasAnalysis.cpp - Stateless Alias Analysis Impl -------------===//
//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file defines the primary stateless implementation of the
// Alias Analysis interface that implements identities (two different
// globals cannot alias, etc), but does no stateful analysis.
//
//===----------------------------------------------------------------------===//

#include "llvm/Analysis/BasicAliasAnalysis.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/Analysis/AliasAnalysis.h"
#include "llvm/Analysis/CFG.h"
#include "llvm/Analysis/CaptureTracking.h"
#include "llvm/Analysis/InstructionSimplify.h"
#include "llvm/Analysis/LoopInfo.h"
#include "llvm/Analysis/MemoryBuiltins.h"
#include "llvm/Analysis/ValueTracking.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/DataLayout.h"
#include "llvm/IR/DerivedTypes.h"
#include "llvm/IR/Dominators.h"
#include "llvm/IR/GlobalAlias.h"
#include "llvm/IR/GlobalVariable.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/IntrinsicInst.h"
#include "llvm/IR/LLVMContext.h"
#include "llvm/IR/Operator.h"
#include "llvm/Pass.h"
#include "llvm/Support/ErrorHandling.h"
#include <algorithm>
using namespace llvm;

/// Enable analysis of recursive PHI nodes.
static cl::opt<bool> EnableRecPhiAnalysis("basicaa-recphi",
                                          cl::Hidden, cl::init(false));

/// SearchLimitReached / SearchTimes shows how often the limit of
/// to decompose GEPs is reached. It will affect the precision
/// of basic alias analysis.
#define DEBUG_TYPE "basicaa"
STATISTIC(SearchLimitReached, "Number of times the limit to "
                              "decompose GEPs is reached");
STATISTIC(SearchTimes, "Number of times a GEP is decomposed");

/// Cutoff after which to stop analysing a set of phi nodes potentially involved
/// in a cycle. Because we are analysing 'through' phi nodes we need to be
/// careful with value equivalence. We use reachability to make sure a value
/// cannot be involved in a cycle.
const unsigned MaxNumPhiBBsValueReachabilityCheck = 20;

// The max limit of the search depth in DecomposeGEPExpression() and
// GetUnderlyingObject(), both functions need to use the same search
// depth otherwise the algorithm in aliasGEP will assert.
static const unsigned MaxLookupSearchDepth = 6;

//===----------------------------------------------------------------------===//
// Useful predicates
//===----------------------------------------------------------------------===//

/// isNonEscapingLocalObject - Return true if the pointer is to a function-local
/// object that never escapes from the function.
static bool isNonEscapingLocalObject(const Value *V) {
  // If this is a local allocation, check to see if it escapes.
  if (isa<AllocaInst>(V) || isNoAliasCall(V))
    // Set StoreCaptures to True so that we can assume in our callers that the
    // pointer is not the result of a load instruction. Currently
    // PointerMayBeCaptured doesn't have any special analysis for the
    // StoreCaptures=false case; if it did, our callers could be refined to be
    // more precise.
    return !PointerMayBeCaptured(V, false, /*StoreCaptures=*/true);

  // If this is an argument that corresponds to a byval or noalias argument,
  // then it has not escaped before entering the function.  Check if it escapes
  // inside the function.
  if (const Argument *A = dyn_cast<Argument>(V))
    if (A->hasByValAttr() || A->hasNoAliasAttr())
      // Note even if the argument is marked nocapture we still need to check
      // for copies made inside the function. The nocapture attribute only
      // specifies that there are no copies made that outlive the function.
      return !PointerMayBeCaptured(V, false, /*StoreCaptures=*/true);

  return false;
}

/// isEscapeSource - Return true if the pointer is one which would have
/// been considered an escape by isNonEscapingLocalObject.
static bool isEscapeSource(const Value *V) {
  if (isa<CallInst>(V) || isa<InvokeInst>(V) || isa<Argument>(V))
    return true;

  // The load case works because isNonEscapingLocalObject considers all
  // stores to be escapes (it passes true for the StoreCaptures argument
  // to PointerMayBeCaptured).
  if (isa<LoadInst>(V))
    return true;

  return false;
}

/// getObjectSize - Return the size of the object specified by V, or
/// UnknownSize if unknown.
static uint64_t getObjectSize(const Value *V, const DataLayout &DL,
                              const TargetLibraryInfo &TLI,
                              bool RoundToAlign = false) {
  uint64_t Size;
  if (getObjectSize(V, Size, DL, &TLI, RoundToAlign))
    return Size;
  return MemoryLocation::UnknownSize;
}

/// isObjectSmallerThan - Return true if we can prove that the object specified
/// by V is smaller than Size.
static bool isObjectSmallerThan(const Value *V, uint64_t Size,
                                const DataLayout &DL,
                                const TargetLibraryInfo &TLI) {
  // Note that the meanings of the "object" are slightly different in the
  // following contexts:
  //    c1: llvm::getObjectSize()
  //    c2: llvm.objectsize() intrinsic
  //    c3: isObjectSmallerThan()
  // c1 and c2 share the same meaning; however, the meaning of "object" in c3
  // refers to the "entire object".
  //
  //  Consider this example:
  //     char *p = (char*)malloc(100)
  //     char *q = p+80;
  //
  //  In the context of c1 and c2, the "object" pointed by q refers to the
  // stretch of memory of q[0:19]. So, getObjectSize(q) should return 20.
  //
  //  However, in the context of c3, the "object" refers to the chunk of memory
  // being allocated. So, the "object" has 100 bytes, and q points to the middle
  // the "object". In case q is passed to isObjectSmallerThan() as the 1st
  // parameter, before the llvm::getObjectSize() is called to get the size of
  // entire object, we should:
  //    - either rewind the pointer q to the base-address of the object in
  //      question (in this case rewind to p), or
  //    - just give up. It is up to caller to make sure the pointer is pointing
  //      to the base address the object.
  //
  // We go for 2nd option for simplicity.
  if (!isIdentifiedObject(V))
    return false;

  // This function needs to use the aligned object size because we allow
  // reads a bit past the end given sufficient alignment.
  uint64_t ObjectSize = getObjectSize(V, DL, TLI, /*RoundToAlign*/true);

  return ObjectSize != MemoryLocation::UnknownSize && ObjectSize < Size;
}

/// isObjectSize - Return true if we can prove that the object specified
/// by V has size Size.
static bool isObjectSize(const Value *V, uint64_t Size,
                         const DataLayout &DL, const TargetLibraryInfo &TLI) {
  uint64_t ObjectSize = getObjectSize(V, DL, TLI);
  return ObjectSize != MemoryLocation::UnknownSize && ObjectSize == Size;
}

//===----------------------------------------------------------------------===//
// GetElementPtr Instruction Decomposition and Analysis
//===----------------------------------------------------------------------===//

/// GetLinearExpression - Analyze the specified value as a linear expression:
/// "A*V + B", where A and B are constant integers.  Return the scale and offset
/// values as APInts and return V as a Value*, and return whether we looked
/// through any sign or zero extends.  The incoming Value is known to have
/// IntegerType and it may already be sign or zero extended.
///
/// Note that this looks through extends, so the high bits may not be
/// represented in the result.
/*static*/ Value *BasicAliasAnalysis::GetLinearExpression(
    Value *V, APInt &Scale, APInt &Offset, ExtensionKind &Extension,
    const DataLayout &DL, unsigned Depth, AssumptionCache *AC,
    DominatorTree *DT) {
  assert(V->getType()->isIntegerTy() && "Not an integer value");

  // Limit our recursion depth.
  if (Depth == 6) {
    Scale = 1;
    Offset = 0;
    return V;
  }

  if (ConstantInt *Const = dyn_cast<ConstantInt>(V)) {
    // if it's a constant, just convert it to an offset
    // and remove the variable.
    Offset += Const->getValue();
    assert(Scale == 0 && "Constant values don't have a scale");
    return V;
  }

  if (BinaryOperator *BOp = dyn_cast<BinaryOperator>(V)) {
    if (ConstantInt *RHSC = dyn_cast<ConstantInt>(BOp->getOperand(1))) {
      switch (BOp->getOpcode()) {
      default: break;
      case Instruction::Or:
        // X|C == X+C if all the bits in C are unset in X.  Otherwise we can't
        // analyze it.
        if (!MaskedValueIsZero(BOp->getOperand(0), RHSC->getValue(), DL, 0, AC,
                               BOp, DT))
          break;
        // FALL THROUGH.
      case Instruction::Add:
        V = GetLinearExpression(BOp->getOperand(0), Scale, Offset, Extension,
                                DL, Depth + 1, AC, DT);
        Offset += RHSC->getValue();
        return V;
      case Instruction::Mul:
        V = GetLinearExpression(BOp->getOperand(0), Scale, Offset, Extension,
                                DL, Depth + 1, AC, DT);
        Offset *= RHSC->getValue();
        Scale *= RHSC->getValue();
        return V;
      case Instruction::Shl:
        V = GetLinearExpression(BOp->getOperand(0), Scale, Offset, Extension,
                                DL, Depth + 1, AC, DT);
        Offset <<= RHSC->getValue().getLimitedValue();
        Scale <<= RHSC->getValue().getLimitedValue();
        return V;
      }
    }
  }

  // Since GEP indices are sign extended anyway, we don't care about the high
  // bits of a sign or zero extended value - just scales and offsets.  The
  // extensions have to be consistent though.
  if ((isa<SExtInst>(V) && Extension != EK_ZeroExt) ||
      (isa<ZExtInst>(V) && Extension != EK_SignExt)) {
    Value *CastOp = cast<CastInst>(V)->getOperand(0);
    unsigned OldWidth = Scale.getBitWidth();
    unsigned SmallWidth = CastOp->getType()->getPrimitiveSizeInBits();
    Scale = Scale.trunc(SmallWidth);
    Offset = Offset.trunc(SmallWidth);
    Extension = isa<SExtInst>(V) ? EK_SignExt : EK_ZeroExt;

    Value *Result = GetLinearExpression(CastOp, Scale, Offset, Extension, DL,
                                        Depth + 1, AC, DT);
    Scale = Scale.zext(OldWidth);

    // We have to sign-extend even if Extension == EK_ZeroExt as we can't
    // decompose a sign extension (i.e. zext(x - 1) != zext(x) - zext(-1)).
    Offset = Offset.sext(OldWidth);

    return Result;
  }

  Scale = 1;
  Offset = 0;
  return V;
}

/// DecomposeGEPExpression - If V is a symbolic pointer expression, decompose it
/// into a base pointer with a constant offset and a number of scaled symbolic
/// offsets.
///
/// The scaled symbolic offsets (represented by pairs of a Value* and a scale in
/// the VarIndices vector) are Value*'s that are known to be scaled by the
/// specified amount, but which may have other unrepresented high bits. As such,
/// the gep cannot necessarily be reconstructed from its decomposed form.
///
/// When DataLayout is around, this function is capable of analyzing everything
/// that GetUnderlyingObject can look through. To be able to do that
/// GetUnderlyingObject and DecomposeGEPExpression must use the same search
/// depth (MaxLookupSearchDepth).
/// When DataLayout not is around, it just looks through pointer casts.
///
/*static*/ const Value *BasicAliasAnalysis::DecomposeGEPExpression(
    const Value *V, int64_t &BaseOffs,
    SmallVectorImpl<VariableGEPIndex> &VarIndices, bool &MaxLookupReached,
    const DataLayout &DL, AssumptionCache *AC, DominatorTree *DT) {
  // Limit recursion depth to limit compile time in crazy cases.
  unsigned MaxLookup = MaxLookupSearchDepth;
  MaxLookupReached = false;
  SearchTimes++;

  BaseOffs = 0;
  do {
    // See if this is a bitcast or GEP.
    const Operator *Op = dyn_cast<Operator>(V);
    if (!Op) {
      // The only non-operator case we can handle are GlobalAliases.
      if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) {
        if (!GA->mayBeOverridden()) {
          V = GA->getAliasee();
          continue;
        }
      }
      return V;
    }

    if (Op->getOpcode() == Instruction::BitCast ||
        Op->getOpcode() == Instruction::AddrSpaceCast) {
      V = Op->getOperand(0);
      continue;
    }

    const GEPOperator *GEPOp = dyn_cast<GEPOperator>(Op);
    if (!GEPOp) {
      // If it's not a GEP, hand it off to SimplifyInstruction to see if it
      // can come up with something. This matches what GetUnderlyingObject does.
      if (const Instruction *I = dyn_cast<Instruction>(V))
        // TODO: Get a DominatorTree and AssumptionCache and use them here
        // (these are both now available in this function, but this should be
        // updated when GetUnderlyingObject is updated). TLI should be
        // provided also.
        if (const Value *Simplified =
              SimplifyInstruction(const_cast<Instruction *>(I), DL)) {
          V = Simplified;
          continue;
        }

      return V;
    }

    // Don't attempt to analyze GEPs over unsized objects.
    if (!GEPOp->getOperand(0)->getType()->getPointerElementType()->isSized())
      return V;

    unsigned AS = GEPOp->getPointerAddressSpace();
    // Walk the indices of the GEP, accumulating them into BaseOff/VarIndices.
    gep_type_iterator GTI = gep_type_begin(GEPOp);
    for (User::const_op_iterator I = GEPOp->op_begin()+1,
         E = GEPOp->op_end(); I != E; ++I) {
      Value *Index = *I;
      // Compute the (potentially symbolic) offset in bytes for this index.
      if (StructType *STy = dyn_cast<StructType>(*GTI++)) {
        // For a struct, add the member offset.
        unsigned FieldNo = cast<ConstantInt>(Index)->getZExtValue();
        if (FieldNo == 0) continue;

        BaseOffs += DL.getStructLayout(STy)->getElementOffset(FieldNo);
        continue;
      }

      // For an array/pointer, add the element offset, explicitly scaled.
      if (ConstantInt *CIdx = dyn_cast<ConstantInt>(Index)) {
        if (CIdx->isZero()) continue;
        BaseOffs += DL.getTypeAllocSize(*GTI) * CIdx->getSExtValue();
        continue;
      }

      uint64_t Scale = DL.getTypeAllocSize(*GTI);
      ExtensionKind Extension = EK_NotExtended;

      // If the integer type is smaller than the pointer size, it is implicitly
      // sign extended to pointer size.
      unsigned Width = Index->getType()->getIntegerBitWidth();
      if (DL.getPointerSizeInBits(AS) > Width)
        Extension = EK_SignExt;

      // Use GetLinearExpression to decompose the index into a C1*V+C2 form.
      APInt IndexScale(Width, 0), IndexOffset(Width, 0);
      Index = GetLinearExpression(Index, IndexScale, IndexOffset, Extension, DL,
                                  0, AC, DT);

      // The GEP index scale ("Scale") scales C1*V+C2, yielding (C1*V+C2)*Scale.
      // This gives us an aggregate computation of (C1*Scale)*V + C2*Scale.
      BaseOffs += IndexOffset.getSExtValue()*Scale;
      Scale *= IndexScale.getSExtValue();

      // If we already had an occurrence of this index variable, merge this
      // scale into it.  For example, we want to handle:
      //   A[x][x] -> x*16 + x*4 -> x*20
      // This also ensures that 'x' only appears in the index list once.
      for (unsigned i = 0, e = VarIndices.size(); i != e; ++i) {
        if (VarIndices[i].V == Index &&
            VarIndices[i].Extension == Extension) {
          Scale += VarIndices[i].Scale;
          VarIndices.erase(VarIndices.begin()+i);
          break;
        }
      }

      // Make sure that we have a scale that makes sense for this target's
      // pointer size.
      if (unsigned ShiftBits = 64 - DL.getPointerSizeInBits(AS)) {
        Scale <<= ShiftBits;
        Scale = (int64_t)Scale >> ShiftBits;
      }

      if (Scale) {
        VariableGEPIndex Entry = {Index, Extension,
                                  static_cast<int64_t>(Scale)};
        VarIndices.push_back(Entry);
      }
    }

    // Analyze the base pointer next.
    V = GEPOp->getOperand(0);
  } while (--MaxLookup);

  // If the chain of expressions is too deep, just return early.
  MaxLookupReached = true;
  SearchLimitReached++;
  return V;
}

//===----------------------------------------------------------------------===//
// BasicAliasAnalysis Pass
//===----------------------------------------------------------------------===//

// Register the pass...
char BasicAliasAnalysis::ID = 0;
INITIALIZE_AG_PASS_BEGIN(BasicAliasAnalysis, AliasAnalysis, "basicaa",
                   "Basic Alias Analysis (stateless AA impl)",
                   false, true, false)
INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
INITIALIZE_AG_PASS_END(BasicAliasAnalysis, AliasAnalysis, "basicaa",
                   "Basic Alias Analysis (stateless AA impl)",
                   false, true, false)

ImmutablePass *llvm::createBasicAliasAnalysisPass() {
  return new BasicAliasAnalysis();
}

/// pointsToConstantMemory - Returns whether the given pointer value
/// points to memory that is local to the function, with global constants being
/// considered local to all functions.
bool BasicAliasAnalysis::pointsToConstantMemory(const MemoryLocation &Loc,
                                                bool OrLocal) {
  assert(Visited.empty() && "Visited must be cleared after use!");

  unsigned MaxLookup = 8;
  SmallVector<const Value *, 16> Worklist;
  Worklist.push_back(Loc.Ptr);
  do {
    const Value *V = GetUnderlyingObject(Worklist.pop_back_val(), *DL);
    if (!Visited.insert(V).second) {
      Visited.clear();
      return AliasAnalysis::pointsToConstantMemory(Loc, OrLocal);
    }

    // An alloca instruction defines local memory.
    if (OrLocal && isa<AllocaInst>(V))
      continue;

    // A global constant counts as local memory for our purposes.
    if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(V)) {
      // Note: this doesn't require GV to be "ODR" because it isn't legal for a
      // global to be marked constant in some modules and non-constant in
      // others.  GV may even be a declaration, not a definition.
      if (!GV->isConstant()) {
        Visited.clear();
        return AliasAnalysis::pointsToConstantMemory(Loc, OrLocal);
      }
      continue;
    }

    // If both select values point to local memory, then so does the select.
    if (const SelectInst *SI = dyn_cast<SelectInst>(V)) {
      Worklist.push_back(SI->getTrueValue());
      Worklist.push_back(SI->getFalseValue());
      continue;
    }

    // If all values incoming to a phi node point to local memory, then so does
    // the phi.
    if (const PHINode *PN = dyn_cast<PHINode>(V)) {
      // Don't bother inspecting phi nodes with many operands.
      if (PN->getNumIncomingValues() > MaxLookup) {
        Visited.clear();
        return AliasAnalysis::pointsToConstantMemory(Loc, OrLocal);
      }
      for (Value *IncValue : PN->incoming_values())
        Worklist.push_back(IncValue);
      continue;
    }

    // Otherwise be conservative.
    Visited.clear();
    return AliasAnalysis::pointsToConstantMemory(Loc, OrLocal);

  } while (!Worklist.empty() && --MaxLookup);

  Visited.clear();
  return Worklist.empty();
}

// FIXME: This code is duplicated with MemoryLocation and should be hoisted to
// some common utility location.
static bool isMemsetPattern16(const Function *MS,
                              const TargetLibraryInfo &TLI) {
  if (TLI.has(LibFunc::memset_pattern16) &&
      MS->getName() == "memset_pattern16") {
    FunctionType *MemsetType = MS->getFunctionType();
    if (!MemsetType->isVarArg() && MemsetType->getNumParams() == 3 &&
        isa<PointerType>(MemsetType->getParamType(0)) &&
        isa<PointerType>(MemsetType->getParamType(1)) &&
        isa<IntegerType>(MemsetType->getParamType(2)))
      return true;
  }

  return false;
}

/// getModRefBehavior - Return the behavior when calling the given call site.
FunctionModRefBehavior
BasicAliasAnalysis::getModRefBehavior(ImmutableCallSite CS) {
  if (CS.doesNotAccessMemory())
    // Can't do better than this.
    return FMRB_DoesNotAccessMemory;

  FunctionModRefBehavior Min = FMRB_UnknownModRefBehavior;

  // If the callsite knows it only reads memory, don't return worse
  // than that.
  if (CS.onlyReadsMemory())
    Min = FMRB_OnlyReadsMemory;

  if (CS.onlyAccessesArgMemory())
    Min = FunctionModRefBehavior(Min & FMRB_OnlyAccessesArgumentPointees);

  // The AliasAnalysis base class has some smarts, lets use them.
  return FunctionModRefBehavior(AliasAnalysis::getModRefBehavior(CS) & Min);
}

/// getModRefBehavior - Return the behavior when calling the given function.
/// For use when the call site is not known.
FunctionModRefBehavior
BasicAliasAnalysis::getModRefBehavior(const Function *F) {
  // If the function declares it doesn't access memory, we can't do better.
  if (F->doesNotAccessMemory())
    return FMRB_DoesNotAccessMemory;

  // For intrinsics, we can check the table.
  if (Intrinsic::ID iid = F->getIntrinsicID()) {
#define GET_INTRINSIC_MODREF_BEHAVIOR
#include "llvm/IR/Intrinsics.gen"
#undef GET_INTRINSIC_MODREF_BEHAVIOR
  }

  FunctionModRefBehavior Min = FMRB_UnknownModRefBehavior;

  // If the function declares it only reads memory, go with that.
  if (F->onlyReadsMemory())
    Min = FMRB_OnlyReadsMemory;

  if (F->onlyAccessesArgMemory())
    Min = FunctionModRefBehavior(Min & FMRB_OnlyAccessesArgumentPointees);

  const TargetLibraryInfo &TLI =
      getAnalysis<TargetLibraryInfoWrapperPass>().getTLI();
  if (isMemsetPattern16(F, TLI))
    Min = FMRB_OnlyAccessesArgumentPointees;

  // Otherwise be conservative.
  return FunctionModRefBehavior(AliasAnalysis::getModRefBehavior(F) & Min);
}

ModRefInfo BasicAliasAnalysis::getArgModRefInfo(ImmutableCallSite CS,
                                                unsigned ArgIdx) {
  if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(CS.getInstruction()))
    switch (II->getIntrinsicID()) {
    default:
      break;
    case Intrinsic::memset:
    case Intrinsic::memcpy:
    case Intrinsic::memmove:
      assert((ArgIdx == 0 || ArgIdx == 1) &&
             "Invalid argument index for memory intrinsic");
      return ArgIdx ? MRI_Ref : MRI_Mod;
    }

  // We can bound the aliasing properties of memset_pattern16 just as we can
  // for memcpy/memset.  This is particularly important because the
  // LoopIdiomRecognizer likes to turn loops into calls to memset_pattern16
  // whenever possible.
  if (CS.getCalledFunction() &&
      isMemsetPattern16(CS.getCalledFunction(), *TLI)) {
    assert((ArgIdx == 0 || ArgIdx == 1) &&
           "Invalid argument index for memset_pattern16");
    return ArgIdx ? MRI_Ref : MRI_Mod;
  }
  // FIXME: Handle memset_pattern4 and memset_pattern8 also.

  return AliasAnalysis::getArgModRefInfo(CS, ArgIdx);
}

static bool isAssumeIntrinsic(ImmutableCallSite CS) {
  const IntrinsicInst *II = dyn_cast<IntrinsicInst>(CS.getInstruction());
  if (II && II->getIntrinsicID() == Intrinsic::assume)
    return true;

  return false;
}

bool BasicAliasAnalysis::doInitialization(Module &M) {
  InitializeAliasAnalysis(this, &M.getDataLayout());
  return true;
}

/// getModRefInfo - Check to see if the specified callsite can clobber the
/// specified memory object.  Since we only look at local properties of this
/// function, we really can't say much about this query.  We do, however, use
/// simple "address taken" analysis on local objects.
ModRefInfo BasicAliasAnalysis::getModRefInfo(ImmutableCallSite CS,
                                             const MemoryLocation &Loc) {
  assert(notDifferentParent(CS.getInstruction(), Loc.Ptr) &&
         "AliasAnalysis query involving multiple functions!");

  const Value *Object = GetUnderlyingObject(Loc.Ptr, *DL);

  // If this is a tail call and Loc.Ptr points to a stack location, we know that
  // the tail call cannot access or modify the local stack.
  // We cannot exclude byval arguments here; these belong to the caller of
  // the current function not to the current function, and a tail callee
  // may reference them.
  if (isa<AllocaInst>(Object))
    if (const CallInst *CI = dyn_cast<CallInst>(CS.getInstruction()))
      if (CI->isTailCall())
        return MRI_NoModRef;

  // If the pointer is to a locally allocated object that does not escape,
  // then the call can not mod/ref the pointer unless the call takes the pointer
  // as an argument, and itself doesn't capture it.
  if (!isa<Constant>(Object) && CS.getInstruction() != Object &&
      isNonEscapingLocalObject(Object)) {
    bool PassedAsArg = false;
    unsigned ArgNo = 0;
    for (ImmutableCallSite::arg_iterator CI = CS.arg_begin(), CE = CS.arg_end();
         CI != CE; ++CI, ++ArgNo) {
      // Only look at the no-capture or byval pointer arguments.  If this
      // pointer were passed to arguments that were neither of these, then it
      // couldn't be no-capture.
      if (!(*CI)->getType()->isPointerTy() ||
          (!CS.doesNotCapture(ArgNo) && !CS.isByValArgument(ArgNo)))
        continue;

      // If this is a no-capture pointer argument, see if we can tell that it
      // is impossible to alias the pointer we're checking.  If not, we have to
      // assume that the call could touch the pointer, even though it doesn't
      // escape.
      if (!isNoAlias(MemoryLocation(*CI), MemoryLocation(Object))) {
        PassedAsArg = true;
        break;
      }
    }

    if (!PassedAsArg)
      return MRI_NoModRef;
  }

  // While the assume intrinsic is marked as arbitrarily writing so that
  // proper control dependencies will be maintained, it never aliases any
  // particular memory location.
  if (isAssumeIntrinsic(CS))
    return MRI_NoModRef;

  // The AliasAnalysis base class has some smarts, lets use them.
  return AliasAnalysis::getModRefInfo(CS, Loc);
}

ModRefInfo BasicAliasAnalysis::getModRefInfo(ImmutableCallSite CS1,
                                             ImmutableCallSite CS2) {
  // While the assume intrinsic is marked as arbitrarily writing so that
  // proper control dependencies will be maintained, it never aliases any
  // particular memory location.
  if (isAssumeIntrinsic(CS1) || isAssumeIntrinsic(CS2))
    return MRI_NoModRef;

  // The AliasAnalysis base class has some smarts, lets use them.
  return AliasAnalysis::getModRefInfo(CS1, CS2);
}

/// \brief Provide ad-hoc rules to disambiguate accesses through two GEP
/// operators, both having the exact same pointer operand.
static AliasResult aliasSameBasePointerGEPs(const GEPOperator *GEP1,
                                            uint64_t V1Size,
                                            const GEPOperator *GEP2,
                                            uint64_t V2Size,
                                            const DataLayout &DL) {

  assert(GEP1->getPointerOperand() == GEP2->getPointerOperand() &&
         "Expected GEPs with the same pointer operand");

  // Try to determine whether GEP1 and GEP2 index through arrays, into structs,
  // such that the struct field accesses provably cannot alias.
  // We also need at least two indices (the pointer, and the struct field).
  if (GEP1->getNumIndices() != GEP2->getNumIndices() ||
      GEP1->getNumIndices() < 2)
    return MayAlias;

  // If we don't know the size of the accesses through both GEPs, we can't
  // determine whether the struct fields accessed can't alias.
  if (V1Size == MemoryLocation::UnknownSize ||
      V2Size == MemoryLocation::UnknownSize)
    return MayAlias;

  ConstantInt *C1 =
      dyn_cast<ConstantInt>(GEP1->getOperand(GEP1->getNumOperands() - 1));
  ConstantInt *C2 =
      dyn_cast<ConstantInt>(GEP2->getOperand(GEP2->getNumOperands() - 1));

  // If the last (struct) indices aren't constants, we can't say anything.
  // If they're identical, the other indices might be also be dynamically
  // equal, so the GEPs can alias.
  if (!C1 || !C2 || C1 == C2)
    return MayAlias;

  // Find the last-indexed type of the GEP, i.e., the type you'd get if
  // you stripped the last index.
  // On the way, look at each indexed type.  If there's something other
  // than an array, different indices can lead to different final types.
  SmallVector<Value *, 8> IntermediateIndices;

  // Insert the first index; we don't need to check the type indexed
  // through it as it only drops the pointer indirection.
  assert(GEP1->getNumIndices() > 1 && "Not enough GEP indices to examine");
  IntermediateIndices.push_back(GEP1->getOperand(1));

  // Insert all the remaining indices but the last one.
  // Also, check that they all index through arrays.
  for (unsigned i = 1, e = GEP1->getNumIndices() - 1; i != e; ++i) {
    if (!isa<ArrayType>(GetElementPtrInst::getIndexedType(
            GEP1->getSourceElementType(), IntermediateIndices)))
      return MayAlias;
    IntermediateIndices.push_back(GEP1->getOperand(i + 1));
  }

  StructType *LastIndexedStruct =
      dyn_cast<StructType>(GetElementPtrInst::getIndexedType(
          GEP1->getSourceElementType(), IntermediateIndices));

  if (!LastIndexedStruct)
    return MayAlias;

  // We know that:
  // - both GEPs begin indexing from the exact same pointer;
  // - the last indices in both GEPs are constants, indexing into a struct;
  // - said indices are different, hence, the pointed-to fields are different;
  // - both GEPs only index through arrays prior to that.
  //
  // This lets us determine that the struct that GEP1 indexes into and the
  // struct that GEP2 indexes into must either precisely overlap or be
  // completely disjoint.  Because they cannot partially overlap, indexing into
  // different non-overlapping fields of the struct will never alias.

  // Therefore, the only remaining thing needed to show that both GEPs can't
  // alias is that the fields are not overlapping.
  const StructLayout *SL = DL.getStructLayout(LastIndexedStruct);
  const uint64_t StructSize = SL->getSizeInBytes();
  const uint64_t V1Off = SL->getElementOffset(C1->getZExtValue());
  const uint64_t V2Off = SL->getElementOffset(C2->getZExtValue());

  auto EltsDontOverlap = [StructSize](uint64_t V1Off, uint64_t V1Size,
                                      uint64_t V2Off, uint64_t V2Size) {
    return V1Off < V2Off && V1Off + V1Size <= V2Off &&
           ((V2Off + V2Size <= StructSize) ||
            (V2Off + V2Size - StructSize <= V1Off));
  };

  if (EltsDontOverlap(V1Off, V1Size, V2Off, V2Size) ||
      EltsDontOverlap(V2Off, V2Size, V1Off, V1Size))
    return NoAlias;

  return MayAlias;
}

/// aliasGEP - Provide a bunch of ad-hoc rules to disambiguate a GEP instruction
/// against another pointer.  We know that V1 is a GEP, but we don't know
/// anything about V2.  UnderlyingV1 is GetUnderlyingObject(GEP1, DL),
/// UnderlyingV2 is the same for V2.
///
AliasResult BasicAliasAnalysis::aliasGEP(
    const GEPOperator *GEP1, uint64_t V1Size, const AAMDNodes &V1AAInfo,
    const Value *V2, uint64_t V2Size, const AAMDNodes &V2AAInfo,
    const Value *UnderlyingV1, const Value *UnderlyingV2) {
  int64_t GEP1BaseOffset;
  bool GEP1MaxLookupReached;
  SmallVector<VariableGEPIndex, 4> GEP1VariableIndices;

  // We have to get two AssumptionCaches here because GEP1 and V2 may be from
  // different functions.
  // FIXME: This really doesn't make any sense. We get a dominator tree below
  // that can only refer to a single function. But this function (aliasGEP) is
  // a method on an immutable pass that can be called when there *isn't*
  // a single function. The old pass management layer makes this "work", but
  // this isn't really a clean solution.
  AssumptionCacheTracker &ACT = getAnalysis<AssumptionCacheTracker>();
  AssumptionCache *AC1 = nullptr, *AC2 = nullptr;
  if (auto *GEP1I = dyn_cast<Instruction>(GEP1))
    AC1 = &ACT.getAssumptionCache(
        const_cast<Function &>(*GEP1I->getParent()->getParent()));
  if (auto *I2 = dyn_cast<Instruction>(V2))
    AC2 = &ACT.getAssumptionCache(
        const_cast<Function &>(*I2->getParent()->getParent()));

  DominatorTreeWrapperPass *DTWP =
      getAnalysisIfAvailable<DominatorTreeWrapperPass>();
  DominatorTree *DT = DTWP ? &DTWP->getDomTree() : nullptr;

  // If we have two gep instructions with must-alias or not-alias'ing base
  // pointers, figure out if the indexes to the GEP tell us anything about the
  // derived pointer.
  if (const GEPOperator *GEP2 = dyn_cast<GEPOperator>(V2)) {
    // Do the base pointers alias?
    AliasResult BaseAlias =
        aliasCheck(UnderlyingV1, MemoryLocation::UnknownSize, AAMDNodes(),
                   UnderlyingV2, MemoryLocation::UnknownSize, AAMDNodes());

    // Check for geps of non-aliasing underlying pointers where the offsets are
    // identical.
    if ((BaseAlias == MayAlias) && V1Size == V2Size) {
      // Do the base pointers alias assuming type and size.
      AliasResult PreciseBaseAlias = aliasCheck(UnderlyingV1, V1Size,
                                                V1AAInfo, UnderlyingV2,
                                                V2Size, V2AAInfo);
      if (PreciseBaseAlias == NoAlias) {
        // See if the computed offset from the common pointer tells us about the
        // relation of the resulting pointer.
        int64_t GEP2BaseOffset;
        bool GEP2MaxLookupReached;
        SmallVector<VariableGEPIndex, 4> GEP2VariableIndices;
        const Value *GEP2BasePtr =
            DecomposeGEPExpression(GEP2, GEP2BaseOffset, GEP2VariableIndices,
                                   GEP2MaxLookupReached, *DL, AC2, DT);
        const Value *GEP1BasePtr =
            DecomposeGEPExpression(GEP1, GEP1BaseOffset, GEP1VariableIndices,
                                   GEP1MaxLookupReached, *DL, AC1, DT);
        // DecomposeGEPExpression and GetUnderlyingObject should return the
        // same result except when DecomposeGEPExpression has no DataLayout.
        if (GEP1BasePtr != UnderlyingV1 || GEP2BasePtr != UnderlyingV2) {
          assert(!DL &&
                 "DecomposeGEPExpression and GetUnderlyingObject disagree!");
          return MayAlias;
        }
        // If the max search depth is reached the result is undefined
        if (GEP2MaxLookupReached || GEP1MaxLookupReached)
          return MayAlias;

        // Same offsets.
        if (GEP1BaseOffset == GEP2BaseOffset &&
            GEP1VariableIndices == GEP2VariableIndices)
          return NoAlias;
        GEP1VariableIndices.clear();
      }
    }

    // If we get a No or May, then return it immediately, no amount of analysis
    // will improve this situation.
    if (BaseAlias != MustAlias) return BaseAlias;

    // Otherwise, we have a MustAlias.  Since the base pointers alias each other
    // exactly, see if the computed offset from the common pointer tells us
    // about the relation of the resulting pointer.
    const Value *GEP1BasePtr =
        DecomposeGEPExpression(GEP1, GEP1BaseOffset, GEP1VariableIndices,
                               GEP1MaxLookupReached, *DL, AC1, DT);

    int64_t GEP2BaseOffset;
    bool GEP2MaxLookupReached;
    SmallVector<VariableGEPIndex, 4> GEP2VariableIndices;
    const Value *GEP2BasePtr =
        DecomposeGEPExpression(GEP2, GEP2BaseOffset, GEP2VariableIndices,
                               GEP2MaxLookupReached, *DL, AC2, DT);

    // DecomposeGEPExpression and GetUnderlyingObject should return the
    // same result except when DecomposeGEPExpression has no DataLayout.
    if (GEP1BasePtr != UnderlyingV1 || GEP2BasePtr != UnderlyingV2) {
      assert(!DL &&
             "DecomposeGEPExpression and GetUnderlyingObject disagree!");
      return MayAlias;
    }

    // If we know the two GEPs are based off of the exact same pointer (and not
    // just the same underlying object), see if that tells us anything about
    // the resulting pointers.
    if (DL && GEP1->getPointerOperand() == GEP2->getPointerOperand()) {
      AliasResult R = aliasSameBasePointerGEPs(GEP1, V1Size, GEP2, V2Size, *DL);
      // If we couldn't find anything interesting, don't abandon just yet.
      if (R != MayAlias)
        return R;
    }

    // If the max search depth is reached the result is undefined
    if (GEP2MaxLookupReached || GEP1MaxLookupReached)
      return MayAlias;

    // Subtract the GEP2 pointer from the GEP1 pointer to find out their
    // symbolic difference.
    GEP1BaseOffset -= GEP2BaseOffset;
    GetIndexDifference(GEP1VariableIndices, GEP2VariableIndices);

  } else {
    // Check to see if these two pointers are related by the getelementptr
    // instruction.  If one pointer is a GEP with a non-zero index of the other
    // pointer, we know they cannot alias.

    // If both accesses are unknown size, we can't do anything useful here.
    if (V1Size == MemoryLocation::UnknownSize &&
        V2Size == MemoryLocation::UnknownSize)
      return MayAlias;

    AliasResult R = aliasCheck(UnderlyingV1, MemoryLocation::UnknownSize,
                               AAMDNodes(), V2, V2Size, V2AAInfo);
    if (R != MustAlias)
      // If V2 may alias GEP base pointer, conservatively returns MayAlias.
      // If V2 is known not to alias GEP base pointer, then the two values
      // cannot alias per GEP semantics: "A pointer value formed from a
      // getelementptr instruction is associated with the addresses associated
      // with the first operand of the getelementptr".
      return R;

    const Value *GEP1BasePtr =
        DecomposeGEPExpression(GEP1, GEP1BaseOffset, GEP1VariableIndices,
                               GEP1MaxLookupReached, *DL, AC1, DT);

    // DecomposeGEPExpression and GetUnderlyingObject should return the
    // same result except when DecomposeGEPExpression has no DataLayout.
    if (GEP1BasePtr != UnderlyingV1) {
      assert(!DL &&
             "DecomposeGEPExpression and GetUnderlyingObject disagree!");
      return MayAlias;
    }
    // If the max search depth is reached the result is undefined
    if (GEP1MaxLookupReached)
      return MayAlias;
  }

  // In the two GEP Case, if there is no difference in the offsets of the
  // computed pointers, the resultant pointers are a must alias.  This
  // hapens when we have two lexically identical GEP's (for example).
  //
  // In the other case, if we have getelementptr <ptr>, 0, 0, 0, 0, ... and V2
  // must aliases the GEP, the end result is a must alias also.
  if (GEP1BaseOffset == 0 && GEP1VariableIndices.empty())
    return MustAlias;

  // If there is a constant difference between the pointers, but the difference
  // is less than the size of the associated memory object, then we know
  // that the objects are partially overlapping.  If the difference is
  // greater, we know they do not overlap.
  if (GEP1BaseOffset != 0 && GEP1VariableIndices.empty()) {
    if (GEP1BaseOffset >= 0) {
      if (V2Size != MemoryLocation::UnknownSize) {
        if ((uint64_t)GEP1BaseOffset < V2Size)
          return PartialAlias;
        return NoAlias;
      }
    } else {
      // We have the situation where:
      // +                +
      // | BaseOffset     |
      // ---------------->|
      // |-->V1Size       |-------> V2Size
      // GEP1             V2
      // We need to know that V2Size is not unknown, otherwise we might have
      // stripped a gep with negative index ('gep <ptr>, -1, ...).
      if (V1Size != MemoryLocation::UnknownSize &&
          V2Size != MemoryLocation::UnknownSize) {
        if (-(uint64_t)GEP1BaseOffset < V1Size)
          return PartialAlias;
        return NoAlias;
      }
    }
  }

  if (!GEP1VariableIndices.empty()) {
    uint64_t Modulo = 0;
    bool AllPositive = true;
    for (unsigned i = 0, e = GEP1VariableIndices.size(); i != e; ++i) {

      // Try to distinguish something like &A[i][1] against &A[42][0].
      // Grab the least significant bit set in any of the scales. We
      // don't need std::abs here (even if the scale's negative) as we'll
      // be ^'ing Modulo with itself later.
      Modulo |= (uint64_t) GEP1VariableIndices[i].Scale;

      if (AllPositive) {
        // If the Value could change between cycles, then any reasoning about
        // the Value this cycle may not hold in the next cycle. We'll just
        // give up if we can't determine conditions that hold for every cycle:
        const Value *V = GEP1VariableIndices[i].V;

        bool SignKnownZero, SignKnownOne;
        ComputeSignBit(const_cast<Value *>(V), SignKnownZero, SignKnownOne, *DL,
                       0, AC1, nullptr, DT);

        // Zero-extension widens the variable, and so forces the sign
        // bit to zero.
        bool IsZExt = GEP1VariableIndices[i].Extension == EK_ZeroExt;
        SignKnownZero |= IsZExt;
        SignKnownOne &= !IsZExt;

        // If the variable begins with a zero then we know it's
        // positive, regardless of whether the value is signed or
        // unsigned.
        int64_t Scale = GEP1VariableIndices[i].Scale;
        AllPositive =
          (SignKnownZero && Scale >= 0) ||
          (SignKnownOne && Scale < 0);
      }
    }

    Modulo = Modulo ^ (Modulo & (Modulo - 1));

    // We can compute the difference between the two addresses
    // mod Modulo. Check whether that difference guarantees that the
    // two locations do not alias.
    uint64_t ModOffset = (uint64_t)GEP1BaseOffset & (Modulo - 1);
    if (V1Size != MemoryLocation::UnknownSize &&
        V2Size != MemoryLocation::UnknownSize && ModOffset >= V2Size &&
        V1Size <= Modulo - ModOffset)
      return NoAlias;

    // If we know all the variables are positive, then GEP1 >= GEP1BasePtr.
    // If GEP1BasePtr > V2 (GEP1BaseOffset > 0) then we know the pointers
    // don't alias if V2Size can fit in the gap between V2 and GEP1BasePtr.
    if (AllPositive && GEP1BaseOffset > 0 && V2Size <= (uint64_t) GEP1BaseOffset)
      return NoAlias;
  }

  // Statically, we can see that the base objects are the same, but the
  // pointers have dynamic offsets which we can't resolve. And none of our
  // little tricks above worked.
  //
  // TODO: Returning PartialAlias instead of MayAlias is a mild hack; the
  // practical effect of this is protecting TBAA in the case of dynamic
  // indices into arrays of unions or malloc'd memory.
  return PartialAlias;
}

static AliasResult MergeAliasResults(AliasResult A, AliasResult B) {
  // If the results agree, take it.
  if (A == B)
    return A;
  // A mix of PartialAlias and MustAlias is PartialAlias.
  if ((A == PartialAlias && B == MustAlias) ||
      (B == PartialAlias && A == MustAlias))
    return PartialAlias;
  // Otherwise, we don't know anything.
  return MayAlias;
}

/// aliasSelect - Provide a bunch of ad-hoc rules to disambiguate a Select
/// instruction against another.
AliasResult BasicAliasAnalysis::aliasSelect(const SelectInst *SI,
                                            uint64_t SISize,
                                            const AAMDNodes &SIAAInfo,
                                            const Value *V2, uint64_t V2Size,
                                            const AAMDNodes &V2AAInfo) {
  // If the values are Selects with the same condition, we can do a more precise
  // check: just check for aliases between the values on corresponding arms.
  if (const SelectInst *SI2 = dyn_cast<SelectInst>(V2))
    if (SI->getCondition() == SI2->getCondition()) {
      AliasResult Alias =
        aliasCheck(SI->getTrueValue(), SISize, SIAAInfo,
                   SI2->getTrueValue(), V2Size, V2AAInfo);
      if (Alias == MayAlias)
        return MayAlias;
      AliasResult ThisAlias =
        aliasCheck(SI->getFalseValue(), SISize, SIAAInfo,
                   SI2->getFalseValue(), V2Size, V2AAInfo);
      return MergeAliasResults(ThisAlias, Alias);
    }

  // If both arms of the Select node NoAlias or MustAlias V2, then returns
  // NoAlias / MustAlias. Otherwise, returns MayAlias.
  AliasResult Alias =
    aliasCheck(V2, V2Size, V2AAInfo, SI->getTrueValue(), SISize, SIAAInfo);
  if (Alias == MayAlias)
    return MayAlias;

  AliasResult ThisAlias =
    aliasCheck(V2, V2Size, V2AAInfo, SI->getFalseValue(), SISize, SIAAInfo);
  return MergeAliasResults(ThisAlias, Alias);
}

// aliasPHI - Provide a bunch of ad-hoc rules to disambiguate a PHI instruction
// against another.
AliasResult BasicAliasAnalysis::aliasPHI(const PHINode *PN, uint64_t PNSize,
                                         const AAMDNodes &PNAAInfo,
                                         const Value *V2, uint64_t V2Size,
                                         const AAMDNodes &V2AAInfo) {
  // Track phi nodes we have visited. We use this information when we determine
  // value equivalence.
  VisitedPhiBBs.insert(PN->getParent());

  // If the values are PHIs in the same block, we can do a more precise
  // as well as efficient check: just check for aliases between the values
  // on corresponding edges.
  if (const PHINode *PN2 = dyn_cast<PHINode>(V2))
    if (PN2->getParent() == PN->getParent()) {
      LocPair Locs(MemoryLocation(PN, PNSize, PNAAInfo),
                   MemoryLocation(V2, V2Size, V2AAInfo));
      if (PN > V2)
        std::swap(Locs.first, Locs.second);
      // Analyse the PHIs' inputs under the assumption that the PHIs are
      // NoAlias.
      // If the PHIs are May/MustAlias there must be (recursively) an input
      // operand from outside the PHIs' cycle that is MayAlias/MustAlias or
      // there must be an operation on the PHIs within the PHIs' value cycle
      // that causes a MayAlias.
      // Pretend the phis do not alias.
      AliasResult Alias = NoAlias;
      assert(AliasCache.count(Locs) &&
             "There must exist an entry for the phi node");
      AliasResult OrigAliasResult = AliasCache[Locs];
      AliasCache[Locs] = NoAlias;

      for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
        AliasResult ThisAlias =
          aliasCheck(PN->getIncomingValue(i), PNSize, PNAAInfo,
                     PN2->getIncomingValueForBlock(PN->getIncomingBlock(i)),
                     V2Size, V2AAInfo);
        Alias = MergeAliasResults(ThisAlias, Alias);
        if (Alias == MayAlias)
          break;
      }

      // Reset if speculation failed.
      if (Alias != NoAlias)
        AliasCache[Locs] = OrigAliasResult;

      return Alias;
    }

  SmallPtrSet<Value*, 4> UniqueSrc;
  SmallVector<Value*, 4> V1Srcs;
  bool isRecursive = false;
  for (Value *PV1 : PN->incoming_values()) {
    if (isa<PHINode>(PV1))
      // If any of the source itself is a PHI, return MayAlias conservatively
      // to avoid compile time explosion. The worst possible case is if both
      // sides are PHI nodes. In which case, this is O(m x n) time where 'm'
      // and 'n' are the number of PHI sources.
      return MayAlias;

    if (EnableRecPhiAnalysis)
      if (GEPOperator *PV1GEP = dyn_cast<GEPOperator>(PV1)) {
        // Check whether the incoming value is a GEP that advances the pointer
        // result of this PHI node (e.g. in a loop). If this is the case, we
        // would recurse and always get a MayAlias. Handle this case specially
        // below.
        if (PV1GEP->getPointerOperand() == PN && PV1GEP->getNumIndices() == 1 &&
            isa<ConstantInt>(PV1GEP->idx_begin())) {
          isRecursive = true;
          continue;
        }
      }

    if (UniqueSrc.insert(PV1).second)
      V1Srcs.push_back(PV1);
  }

  // If this PHI node is recursive, set the size of the accessed memory to
  // unknown to represent all the possible values the GEP could advance the
  // pointer to.
  if (isRecursive)
    PNSize = MemoryLocation::UnknownSize;

  AliasResult Alias = aliasCheck(V2, V2Size, V2AAInfo,
                                 V1Srcs[0], PNSize, PNAAInfo);

  // Early exit if the check of the first PHI source against V2 is MayAlias.
  // Other results are not possible.
  if (Alias == MayAlias)
    return MayAlias;

  // If all sources of the PHI node NoAlias or MustAlias V2, then returns
  // NoAlias / MustAlias. Otherwise, returns MayAlias.
  for (unsigned i = 1, e = V1Srcs.size(); i != e; ++i) {
    Value *V = V1Srcs[i];

    AliasResult ThisAlias = aliasCheck(V2, V2Size, V2AAInfo,
                                       V, PNSize, PNAAInfo);
    Alias = MergeAliasResults(ThisAlias, Alias);
    if (Alias == MayAlias)
      break;
  }

  return Alias;
}

// aliasCheck - Provide a bunch of ad-hoc rules to disambiguate in common cases,
// such as array references.
//
AliasResult BasicAliasAnalysis::aliasCheck(const Value *V1, uint64_t V1Size,
                                           AAMDNodes V1AAInfo, const Value *V2,
                                           uint64_t V2Size,
                                           AAMDNodes V2AAInfo) {
  // If either of the memory references is empty, it doesn't matter what the
  // pointer values are.
  if (V1Size == 0 || V2Size == 0)
    return NoAlias;

  // Strip off any casts if they exist.
  V1 = V1->stripPointerCasts();
  V2 = V2->stripPointerCasts();

  // If V1 or V2 is undef, the result is NoAlias because we can always pick a
  // value for undef that aliases nothing in the program.
  if (isa<UndefValue>(V1) || isa<UndefValue>(V2))
    return NoAlias;

  // Are we checking for alias of the same value?
  // Because we look 'through' phi nodes we could look at "Value" pointers from
  // different iterations. We must therefore make sure that this is not the
  // case. The function isValueEqualInPotentialCycles ensures that this cannot
  // happen by looking at the visited phi nodes and making sure they cannot
  // reach the value.
  if (isValueEqualInPotentialCycles(V1, V2))
    return MustAlias;

  if (!V1->getType()->isPointerTy() || !V2->getType()->isPointerTy())
    return NoAlias;  // Scalars cannot alias each other

  // Figure out what objects these things are pointing to if we can.
  const Value *O1 = GetUnderlyingObject(V1, *DL, MaxLookupSearchDepth);
  const Value *O2 = GetUnderlyingObject(V2, *DL, MaxLookupSearchDepth);

  // Null values in the default address space don't point to any object, so they
  // don't alias any other pointer.
  if (const ConstantPointerNull *CPN = dyn_cast<ConstantPointerNull>(O1))
    if (CPN->getType()->getAddressSpace() == 0)
      return NoAlias;
  if (const ConstantPointerNull *CPN = dyn_cast<ConstantPointerNull>(O2))
    if (CPN->getType()->getAddressSpace() == 0)
      return NoAlias;

  if (O1 != O2) {
    // If V1/V2 point to two different objects we know that we have no alias.
    if (isIdentifiedObject(O1) && isIdentifiedObject(O2))
      return NoAlias;

    // Constant pointers can't alias with non-const isIdentifiedObject objects.
    if ((isa<Constant>(O1) && isIdentifiedObject(O2) && !isa<Constant>(O2)) ||
        (isa<Constant>(O2) && isIdentifiedObject(O1) && !isa<Constant>(O1)))
      return NoAlias;

    // Function arguments can't alias with things that are known to be
    // unambigously identified at the function level.
    if ((isa<Argument>(O1) && isIdentifiedFunctionLocal(O2)) ||
        (isa<Argument>(O2) && isIdentifiedFunctionLocal(O1)))
      return NoAlias;

    // Most objects can't alias null.
    if ((isa<ConstantPointerNull>(O2) && isKnownNonNull(O1)) ||
        (isa<ConstantPointerNull>(O1) && isKnownNonNull(O2)))
      return NoAlias;

    // If one pointer is the result of a call/invoke or load and the other is a
    // non-escaping local object within the same function, then we know the
    // object couldn't escape to a point where the call could return it.
    //
    // Note that if the pointers are in different functions, there are a
    // variety of complications. A call with a nocapture argument may still
    // temporary store the nocapture argument's value in a temporary memory
    // location if that memory location doesn't escape. Or it may pass a
    // nocapture value to other functions as long as they don't capture it.
    if (isEscapeSource(O1) && isNonEscapingLocalObject(O2))
      return NoAlias;
    if (isEscapeSource(O2) && isNonEscapingLocalObject(O1))
      return NoAlias;
  }

  // If the size of one access is larger than the entire object on the other
  // side, then we know such behavior is undefined and can assume no alias.
  if (DL)
    if ((V1Size != MemoryLocation::UnknownSize &&
         isObjectSmallerThan(O2, V1Size, *DL, *TLI)) ||
        (V2Size != MemoryLocation::UnknownSize &&
         isObjectSmallerThan(O1, V2Size, *DL, *TLI)))
      return NoAlias;

  // Check the cache before climbing up use-def chains. This also terminates
  // otherwise infinitely recursive queries.
  LocPair Locs(MemoryLocation(V1, V1Size, V1AAInfo),
               MemoryLocation(V2, V2Size, V2AAInfo));
  if (V1 > V2)
    std::swap(Locs.first, Locs.second);
  std::pair<AliasCacheTy::iterator, bool> Pair =
    AliasCache.insert(std::make_pair(Locs, MayAlias));
  if (!Pair.second)
    return Pair.first->second;

  // FIXME: This isn't aggressively handling alias(GEP, PHI) for example: if the
  // GEP can't simplify, we don't even look at the PHI cases.
  if (!isa<GEPOperator>(V1) && isa<GEPOperator>(V2)) {
    std::swap(V1, V2);
    std::swap(V1Size, V2Size);
    std::swap(O1, O2);
    std::swap(V1AAInfo, V2AAInfo);
  }
  if (const GEPOperator *GV1 = dyn_cast<GEPOperator>(V1)) {
    AliasResult Result = aliasGEP(GV1, V1Size, V1AAInfo, V2, V2Size, V2AAInfo, O1, O2);
    if (Result != MayAlias) return AliasCache[Locs] = Result;
  }

  if (isa<PHINode>(V2) && !isa<PHINode>(V1)) {
    std::swap(V1, V2);
    std::swap(V1Size, V2Size);
    std::swap(V1AAInfo, V2AAInfo);
  }
  if (const PHINode *PN = dyn_cast<PHINode>(V1)) {
    AliasResult Result = aliasPHI(PN, V1Size, V1AAInfo,
                                  V2, V2Size, V2AAInfo);
    if (Result != MayAlias) return AliasCache[Locs] = Result;
  }

  if (isa<SelectInst>(V2) && !isa<SelectInst>(V1)) {
    std::swap(V1, V2);
    std::swap(V1Size, V2Size);
    std::swap(V1AAInfo, V2AAInfo);
  }
  if (const SelectInst *S1 = dyn_cast<SelectInst>(V1)) {
    AliasResult Result = aliasSelect(S1, V1Size, V1AAInfo,
                                     V2, V2Size, V2AAInfo);
    if (Result != MayAlias) return AliasCache[Locs] = Result;
  }

  // If both pointers are pointing into the same object and one of them
  // accesses is accessing the entire object, then the accesses must
  // overlap in some way.
  if (DL && O1 == O2)
    if ((V1Size != MemoryLocation::UnknownSize &&
         isObjectSize(O1, V1Size, *DL, *TLI)) ||
        (V2Size != MemoryLocation::UnknownSize &&
         isObjectSize(O2, V2Size, *DL, *TLI)))
      return AliasCache[Locs] = PartialAlias;

  AliasResult Result =
      AliasAnalysis::alias(MemoryLocation(V1, V1Size, V1AAInfo),
                           MemoryLocation(V2, V2Size, V2AAInfo));
  return AliasCache[Locs] = Result;
}

bool BasicAliasAnalysis::isValueEqualInPotentialCycles(const Value *V,
                                                       const Value *V2) {
  if (V != V2)
    return false;

  const Instruction *Inst = dyn_cast<Instruction>(V);
  if (!Inst)
    return true;

  if (VisitedPhiBBs.empty())
    return true;

  if (VisitedPhiBBs.size() > MaxNumPhiBBsValueReachabilityCheck)
    return false;

  // Use dominance or loop info if available.
  DominatorTreeWrapperPass *DTWP =
      getAnalysisIfAvailable<DominatorTreeWrapperPass>();
  DominatorTree *DT = DTWP ? &DTWP->getDomTree() : nullptr;
  auto *LIWP = getAnalysisIfAvailable<LoopInfoWrapperPass>();
  LoopInfo *LI = LIWP ? &LIWP->getLoopInfo() : nullptr;

  // Make sure that the visited phis cannot reach the Value. This ensures that
  // the Values cannot come from different iterations of a potential cycle the
  // phi nodes could be involved in.
  for (auto *P : VisitedPhiBBs)
    if (isPotentiallyReachable(P->begin(), Inst, DT, LI))
      return false;

  return true;
}

/// GetIndexDifference - Dest and Src are the variable indices from two
/// decomposed GetElementPtr instructions GEP1 and GEP2 which have common base
/// pointers.  Subtract the GEP2 indices from GEP1 to find the symbolic
/// difference between the two pointers.
void BasicAliasAnalysis::GetIndexDifference(
    SmallVectorImpl<VariableGEPIndex> &Dest,
    const SmallVectorImpl<VariableGEPIndex> &Src) {
  if (Src.empty())
    return;

  for (unsigned i = 0, e = Src.size(); i != e; ++i) {
    const Value *V = Src[i].V;
    ExtensionKind Extension = Src[i].Extension;
    int64_t Scale = Src[i].Scale;

    // Find V in Dest.  This is N^2, but pointer indices almost never have more
    // than a few variable indexes.
    for (unsigned j = 0, e = Dest.size(); j != e; ++j) {
      if (!isValueEqualInPotentialCycles(Dest[j].V, V) ||
          Dest[j].Extension != Extension)
        continue;

      // If we found it, subtract off Scale V's from the entry in Dest.  If it
      // goes to zero, remove the entry.
      if (Dest[j].Scale != Scale)
        Dest[j].Scale -= Scale;
      else
        Dest.erase(Dest.begin() + j);
      Scale = 0;
      break;
    }

    // If we didn't consume this entry, add it to the end of the Dest list.
    if (Scale) {
      VariableGEPIndex Entry = { V, Extension, -Scale };
      Dest.push_back(Entry);
    }
  }
}