llvm.org GIT mirror llvm / 7268d97 lib / Target / X86 / X86MCCodeEmitter.cpp
7268d97

Tree @7268d97 (Download .tar.gz)

X86MCCodeEmitter.cpp @7268d97raw · history · blame

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
//===-- X86/X86MCCodeEmitter.cpp - Convert X86 code to machine code -------===//
//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements the X86MCCodeEmitter class.
//
//===----------------------------------------------------------------------===//

#define DEBUG_TYPE "x86-emitter"
#include "X86.h"
#include "X86InstrInfo.h"
#include "X86FixupKinds.h"
#include "llvm/MC/MCCodeEmitter.h"
#include "llvm/MC/MCExpr.h"
#include "llvm/MC/MCInst.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Support/Compiler.h"
using namespace llvm;

namespace {
class X86MCCodeEmitter : public MCCodeEmitter {
  X86MCCodeEmitter(const X86MCCodeEmitter &) ATTRIBUTE_UNUSED; // DONT IMPLEMENT
  void operator=(const X86MCCodeEmitter &) ATTRIBUTE_UNUSED; // DO NOT IMPLEMENT
  const TargetMachine &TM;
  const TargetInstrInfo &TII;
  MCContext &Ctx;
  bool Is64BitMode;
public:
  X86MCCodeEmitter(TargetMachine &tm, MCContext &ctx, bool is64Bit)
    : TM(tm), TII(*TM.getInstrInfo()), Ctx(ctx) {
    Is64BitMode = is64Bit;
  }

  ~X86MCCodeEmitter() {}

  unsigned getNumFixupKinds() const {
    return 5;
  }

  const MCFixupKindInfo &getFixupKindInfo(MCFixupKind Kind) const {
    const static MCFixupKindInfo Infos[] = {
      { "reloc_pcrel_4byte", 0, 4 * 8, MCFixupKindInfo::FKF_IsPCRel },
      { "reloc_pcrel_1byte", 0, 1 * 8, MCFixupKindInfo::FKF_IsPCRel },
      { "reloc_pcrel_2byte", 0, 2 * 8, MCFixupKindInfo::FKF_IsPCRel },
      { "reloc_riprel_4byte", 0, 4 * 8, MCFixupKindInfo::FKF_IsPCRel },
      { "reloc_riprel_4byte_movq_load", 0, 4 * 8, MCFixupKindInfo::FKF_IsPCRel }
    };

    if (Kind < FirstTargetFixupKind)
      return MCCodeEmitter::getFixupKindInfo(Kind);

    assert(unsigned(Kind - FirstTargetFixupKind) < getNumFixupKinds() &&
           "Invalid kind!");
    return Infos[Kind - FirstTargetFixupKind];
  }

  static unsigned GetX86RegNum(const MCOperand &MO) {
    return X86RegisterInfo::getX86RegNum(MO.getReg());
  }

  // On regular x86, both XMM0-XMM7 and XMM8-XMM15 are encoded in the range
  // 0-7 and the difference between the 2 groups is given by the REX prefix.
  // In the VEX prefix, registers are seen sequencially from 0-15 and encoded
  // in 1's complement form, example:
  //
  //  ModRM field => XMM9 => 1
  //  VEX.VVVV    => XMM9 => ~9
  //
  // See table 4-35 of Intel AVX Programming Reference for details.
  static unsigned char getVEXRegisterEncoding(const MCInst &MI,
                                              unsigned OpNum) {
    unsigned SrcReg = MI.getOperand(OpNum).getReg();
    unsigned SrcRegNum = GetX86RegNum(MI.getOperand(OpNum));
    if ((SrcReg >= X86::XMM8 && SrcReg <= X86::XMM15) ||
        (SrcReg >= X86::YMM8 && SrcReg <= X86::YMM15))
      SrcRegNum += 8;

    // The registers represented through VEX_VVVV should
    // be encoded in 1's complement form.
    return (~SrcRegNum) & 0xf;
  }

  void EmitByte(unsigned char C, unsigned &CurByte, raw_ostream &OS) const {
    OS << (char)C;
    ++CurByte;
  }

  void EmitConstant(uint64_t Val, unsigned Size, unsigned &CurByte,
                    raw_ostream &OS) const {
    // Output the constant in little endian byte order.
    for (unsigned i = 0; i != Size; ++i) {
      EmitByte(Val & 255, CurByte, OS);
      Val >>= 8;
    }
  }

  void EmitImmediate(const MCOperand &Disp,
                     unsigned ImmSize, MCFixupKind FixupKind,
                     unsigned &CurByte, raw_ostream &OS,
                     SmallVectorImpl<MCFixup> &Fixups,
                     int ImmOffset = 0) const;

  inline static unsigned char ModRMByte(unsigned Mod, unsigned RegOpcode,
                                        unsigned RM) {
    assert(Mod < 4 && RegOpcode < 8 && RM < 8 && "ModRM Fields out of range!");
    return RM | (RegOpcode << 3) | (Mod << 6);
  }

  void EmitRegModRMByte(const MCOperand &ModRMReg, unsigned RegOpcodeFld,
                        unsigned &CurByte, raw_ostream &OS) const {
    EmitByte(ModRMByte(3, RegOpcodeFld, GetX86RegNum(ModRMReg)), CurByte, OS);
  }

  void EmitSIBByte(unsigned SS, unsigned Index, unsigned Base,
                   unsigned &CurByte, raw_ostream &OS) const {
    // SIB byte is in the same format as the ModRMByte.
    EmitByte(ModRMByte(SS, Index, Base), CurByte, OS);
  }


  void EmitMemModRMByte(const MCInst &MI, unsigned Op,
                        unsigned RegOpcodeField,
                        uint64_t TSFlags, unsigned &CurByte, raw_ostream &OS,
                        SmallVectorImpl<MCFixup> &Fixups) const;

  void EncodeInstruction(const MCInst &MI, raw_ostream &OS,
                         SmallVectorImpl<MCFixup> &Fixups) const;

  void EmitVEXOpcodePrefix(uint64_t TSFlags, unsigned &CurByte, int MemOperand,
                           const MCInst &MI, const TargetInstrDesc &Desc,
                           raw_ostream &OS) const;

  void EmitSegmentOverridePrefix(uint64_t TSFlags, unsigned &CurByte,
                                 int MemOperand, const MCInst &MI,
                                 raw_ostream &OS) const;

  void EmitOpcodePrefix(uint64_t TSFlags, unsigned &CurByte, int MemOperand,
                        const MCInst &MI, const TargetInstrDesc &Desc,
                        raw_ostream &OS) const;
};

} // end anonymous namespace


MCCodeEmitter *llvm::createX86_32MCCodeEmitter(const Target &,
                                               TargetMachine &TM,
                                               MCContext &Ctx) {
  return new X86MCCodeEmitter(TM, Ctx, false);
}

MCCodeEmitter *llvm::createX86_64MCCodeEmitter(const Target &,
                                               TargetMachine &TM,
                                               MCContext &Ctx) {
  return new X86MCCodeEmitter(TM, Ctx, true);
}

/// isDisp8 - Return true if this signed displacement fits in a 8-bit
/// sign-extended field.
static bool isDisp8(int Value) {
  return Value == (signed char)Value;
}

/// getImmFixupKind - Return the appropriate fixup kind to use for an immediate
/// in an instruction with the specified TSFlags.
static MCFixupKind getImmFixupKind(uint64_t TSFlags) {
  unsigned Size = X86II::getSizeOfImm(TSFlags);
  bool isPCRel = X86II::isImmPCRel(TSFlags);

  switch (Size) {
  default: assert(0 && "Unknown immediate size");
  case 1: return isPCRel ? MCFixupKind(X86::reloc_pcrel_1byte) : FK_Data_1;
  case 2: return isPCRel ? MCFixupKind(X86::reloc_pcrel_2byte) : FK_Data_2;
  case 4: return isPCRel ? MCFixupKind(X86::reloc_pcrel_4byte) : FK_Data_4;
  case 8: assert(!isPCRel); return FK_Data_8;
  }
}


void X86MCCodeEmitter::
EmitImmediate(const MCOperand &DispOp, unsigned Size, MCFixupKind FixupKind,
              unsigned &CurByte, raw_ostream &OS,
              SmallVectorImpl<MCFixup> &Fixups, int ImmOffset) const {
  // If this is a simple integer displacement that doesn't require a relocation,
  // emit it now.
  if (DispOp.isImm()) {
    // FIXME: is this right for pc-rel encoding??  Probably need to emit this as
    // a fixup if so.
    EmitConstant(DispOp.getImm()+ImmOffset, Size, CurByte, OS);
    return;
  }

  // If we have an immoffset, add it to the expression.
  const MCExpr *Expr = DispOp.getExpr();

  // If the fixup is pc-relative, we need to bias the value to be relative to
  // the start of the field, not the end of the field.
  if (FixupKind == MCFixupKind(X86::reloc_pcrel_4byte) ||
      FixupKind == MCFixupKind(X86::reloc_riprel_4byte) ||
      FixupKind == MCFixupKind(X86::reloc_riprel_4byte_movq_load))
    ImmOffset -= 4;
  if (FixupKind == MCFixupKind(X86::reloc_pcrel_2byte))
    ImmOffset -= 2;
  if (FixupKind == MCFixupKind(X86::reloc_pcrel_1byte))
    ImmOffset -= 1;

  if (ImmOffset)
    Expr = MCBinaryExpr::CreateAdd(Expr, MCConstantExpr::Create(ImmOffset, Ctx),
                                   Ctx);

  // Emit a symbolic constant as a fixup and 4 zeros.
  Fixups.push_back(MCFixup::Create(CurByte, Expr, FixupKind));
  EmitConstant(0, Size, CurByte, OS);
}

void X86MCCodeEmitter::EmitMemModRMByte(const MCInst &MI, unsigned Op,
                                        unsigned RegOpcodeField,
                                        uint64_t TSFlags, unsigned &CurByte,
                                        raw_ostream &OS,
                                        SmallVectorImpl<MCFixup> &Fixups) const{
  const MCOperand &Disp     = MI.getOperand(Op+3);
  const MCOperand &Base     = MI.getOperand(Op);
  const MCOperand &Scale    = MI.getOperand(Op+1);
  const MCOperand &IndexReg = MI.getOperand(Op+2);
  unsigned BaseReg = Base.getReg();

  // Handle %rip relative addressing.
  if (BaseReg == X86::RIP) {    // [disp32+RIP] in X86-64 mode
    assert(Is64BitMode && "Rip-relative addressing requires 64-bit mode");
    assert(IndexReg.getReg() == 0 && "Invalid rip-relative address");
    EmitByte(ModRMByte(0, RegOpcodeField, 5), CurByte, OS);

    unsigned FixupKind = X86::reloc_riprel_4byte;

    // movq loads are handled with a special relocation form which allows the
    // linker to eliminate some loads for GOT references which end up in the
    // same linkage unit.
    if (MI.getOpcode() == X86::MOV64rm ||
        MI.getOpcode() == X86::MOV64rm_TC)
      FixupKind = X86::reloc_riprel_4byte_movq_load;

    // rip-relative addressing is actually relative to the *next* instruction.
    // Since an immediate can follow the mod/rm byte for an instruction, this
    // means that we need to bias the immediate field of the instruction with
    // the size of the immediate field.  If we have this case, add it into the
    // expression to emit.
    int ImmSize = X86II::hasImm(TSFlags) ? X86II::getSizeOfImm(TSFlags) : 0;

    EmitImmediate(Disp, 4, MCFixupKind(FixupKind),
                  CurByte, OS, Fixups, -ImmSize);
    return;
  }

  unsigned BaseRegNo = BaseReg ? GetX86RegNum(Base) : -1U;

  // Determine whether a SIB byte is needed.
  // If no BaseReg, issue a RIP relative instruction only if the MCE can
  // resolve addresses on-the-fly, otherwise use SIB (Intel Manual 2A, table
  // 2-7) and absolute references.

  if (// The SIB byte must be used if there is an index register.
      IndexReg.getReg() == 0 &&
      // The SIB byte must be used if the base is ESP/RSP/R12, all of which
      // encode to an R/M value of 4, which indicates that a SIB byte is
      // present.
      BaseRegNo != N86::ESP &&
      // If there is no base register and we're in 64-bit mode, we need a SIB
      // byte to emit an addr that is just 'disp32' (the non-RIP relative form).
      (!Is64BitMode || BaseReg != 0)) {

    if (BaseReg == 0) {          // [disp32]     in X86-32 mode
      EmitByte(ModRMByte(0, RegOpcodeField, 5), CurByte, OS);
      EmitImmediate(Disp, 4, FK_Data_4, CurByte, OS, Fixups);
      return;
    }

    // If the base is not EBP/ESP and there is no displacement, use simple
    // indirect register encoding, this handles addresses like [EAX].  The
    // encoding for [EBP] with no displacement means [disp32] so we handle it
    // by emitting a displacement of 0 below.
    if (Disp.isImm() && Disp.getImm() == 0 && BaseRegNo != N86::EBP) {
      EmitByte(ModRMByte(0, RegOpcodeField, BaseRegNo), CurByte, OS);
      return;
    }

    // Otherwise, if the displacement fits in a byte, encode as [REG+disp8].
    if (Disp.isImm() && isDisp8(Disp.getImm())) {
      EmitByte(ModRMByte(1, RegOpcodeField, BaseRegNo), CurByte, OS);
      EmitImmediate(Disp, 1, FK_Data_1, CurByte, OS, Fixups);
      return;
    }

    // Otherwise, emit the most general non-SIB encoding: [REG+disp32]
    EmitByte(ModRMByte(2, RegOpcodeField, BaseRegNo), CurByte, OS);
    EmitImmediate(Disp, 4, FK_Data_4, CurByte, OS, Fixups);
    return;
  }

  // We need a SIB byte, so start by outputting the ModR/M byte first
  assert(IndexReg.getReg() != X86::ESP &&
         IndexReg.getReg() != X86::RSP && "Cannot use ESP as index reg!");

  bool ForceDisp32 = false;
  bool ForceDisp8  = false;
  if (BaseReg == 0) {
    // If there is no base register, we emit the special case SIB byte with
    // MOD=0, BASE=5, to JUST get the index, scale, and displacement.
    EmitByte(ModRMByte(0, RegOpcodeField, 4), CurByte, OS);
    ForceDisp32 = true;
  } else if (!Disp.isImm()) {
    // Emit the normal disp32 encoding.
    EmitByte(ModRMByte(2, RegOpcodeField, 4), CurByte, OS);
    ForceDisp32 = true;
  } else if (Disp.getImm() == 0 &&
             // Base reg can't be anything that ends up with '5' as the base
             // reg, it is the magic [*] nomenclature that indicates no base.
             BaseRegNo != N86::EBP) {
    // Emit no displacement ModR/M byte
    EmitByte(ModRMByte(0, RegOpcodeField, 4), CurByte, OS);
  } else if (isDisp8(Disp.getImm())) {
    // Emit the disp8 encoding.
    EmitByte(ModRMByte(1, RegOpcodeField, 4), CurByte, OS);
    ForceDisp8 = true;           // Make sure to force 8 bit disp if Base=EBP
  } else {
    // Emit the normal disp32 encoding.
    EmitByte(ModRMByte(2, RegOpcodeField, 4), CurByte, OS);
  }

  // Calculate what the SS field value should be...
  static const unsigned SSTable[] = { ~0, 0, 1, ~0, 2, ~0, ~0, ~0, 3 };
  unsigned SS = SSTable[Scale.getImm()];

  if (BaseReg == 0) {
    // Handle the SIB byte for the case where there is no base, see Intel
    // Manual 2A, table 2-7. The displacement has already been output.
    unsigned IndexRegNo;
    if (IndexReg.getReg())
      IndexRegNo = GetX86RegNum(IndexReg);
    else // Examples: [ESP+1*<noreg>+4] or [scaled idx]+disp32 (MOD=0,BASE=5)
      IndexRegNo = 4;
    EmitSIBByte(SS, IndexRegNo, 5, CurByte, OS);
  } else {
    unsigned IndexRegNo;
    if (IndexReg.getReg())
      IndexRegNo = GetX86RegNum(IndexReg);
    else
      IndexRegNo = 4;   // For example [ESP+1*<noreg>+4]
    EmitSIBByte(SS, IndexRegNo, GetX86RegNum(Base), CurByte, OS);
  }

  // Do we need to output a displacement?
  if (ForceDisp8)
    EmitImmediate(Disp, 1, FK_Data_1, CurByte, OS, Fixups);
  else if (ForceDisp32 || Disp.getImm() != 0)
    EmitImmediate(Disp, 4, FK_Data_4, CurByte, OS, Fixups);
}

/// EmitVEXOpcodePrefix - AVX instructions are encoded using a opcode prefix
/// called VEX.
void X86MCCodeEmitter::EmitVEXOpcodePrefix(uint64_t TSFlags, unsigned &CurByte,
                                           int MemOperand, const MCInst &MI,
                                           const TargetInstrDesc &Desc,
                                           raw_ostream &OS) const {
  bool HasVEX_4V = false;
  if (TSFlags & X86II::VEX_4V)
    HasVEX_4V = true;

  // VEX_R: opcode externsion equivalent to REX.R in
  // 1's complement (inverted) form
  //
  //  1: Same as REX_R=0 (must be 1 in 32-bit mode)
  //  0: Same as REX_R=1 (64 bit mode only)
  //
  unsigned char VEX_R = 0x1;

  // VEX_X: equivalent to REX.X, only used when a
  // register is used for index in SIB Byte.
  //
  //  1: Same as REX.X=0 (must be 1 in 32-bit mode)
  //  0: Same as REX.X=1 (64-bit mode only)
  unsigned char VEX_X = 0x1;

  // VEX_B:
  //
  //  1: Same as REX_B=0 (ignored in 32-bit mode)
  //  0: Same as REX_B=1 (64 bit mode only)
  //
  unsigned char VEX_B = 0x1;

  // VEX_W: opcode specific (use like REX.W, or used for
  // opcode extension, or ignored, depending on the opcode byte)
  unsigned char VEX_W = 0;

  // VEX_5M (VEX m-mmmmm field):
  //
  //  0b00000: Reserved for future use
  //  0b00001: implied 0F leading opcode
  //  0b00010: implied 0F 38 leading opcode bytes
  //  0b00011: implied 0F 3A leading opcode bytes
  //  0b00100-0b11111: Reserved for future use
  //
  unsigned char VEX_5M = 0x1;

  // VEX_4V (VEX vvvv field): a register specifier
  // (in 1's complement form) or 1111 if unused.
  unsigned char VEX_4V = 0xf;

  // VEX_L (Vector Length):
  //
  //  0: scalar or 128-bit vector
  //  1: 256-bit vector
  //
  unsigned char VEX_L = 0;

  // VEX_PP: opcode extension providing equivalent
  // functionality of a SIMD prefix
  //
  //  0b00: None
  //  0b01: 66
  //  0b10: F3
  //  0b11: F2
  //
  unsigned char VEX_PP = 0;

  // Encode the operand size opcode prefix as needed.
  if (TSFlags & X86II::OpSize)
    VEX_PP = 0x01;

  if (TSFlags & X86II::VEX_W)
    VEX_W = 1;

  if (TSFlags & X86II::VEX_L)
    VEX_L = 1;

  switch (TSFlags & X86II::Op0Mask) {
  default: assert(0 && "Invalid prefix!");
  case X86II::T8:  // 0F 38
    VEX_5M = 0x2;
    break;
  case X86II::TA:  // 0F 3A
    VEX_5M = 0x3;
    break;
  case X86II::TF:  // F2 0F 38
    VEX_PP = 0x3;
    VEX_5M = 0x2;
    break;
  case X86II::XS:  // F3 0F
    VEX_PP = 0x2;
    break;
  case X86II::XD:  // F2 0F
    VEX_PP = 0x3;
    break;
  case X86II::TB:  // Bypass: Not used by VEX
  case 0:
    break;  // No prefix!
  }

  // Set the vector length to 256-bit if YMM0-YMM15 is used
  for (unsigned i = 0; i != MI.getNumOperands(); ++i) {
    if (!MI.getOperand(i).isReg())
      continue;
    unsigned SrcReg = MI.getOperand(i).getReg();
    if (SrcReg >= X86::YMM0 && SrcReg <= X86::YMM15)
      VEX_L = 1;
  }

  unsigned NumOps = MI.getNumOperands();
  unsigned CurOp = 0;
  bool IsDestMem = false;

  switch (TSFlags & X86II::FormMask) {
  case X86II::MRMInitReg: assert(0 && "FIXME: Remove this!");
  case X86II::MRMDestMem:
    IsDestMem = true;
    // The important info for the VEX prefix is never beyond the address
    // registers. Don't check beyond that.
    NumOps = CurOp = X86::AddrNumOperands;
  case X86II::MRM0m: case X86II::MRM1m:
  case X86II::MRM2m: case X86II::MRM3m:
  case X86II::MRM4m: case X86II::MRM5m:
  case X86II::MRM6m: case X86II::MRM7m:
  case X86II::MRMSrcMem:
  case X86II::MRMSrcReg:
    if (MI.getNumOperands() > CurOp && MI.getOperand(CurOp).isReg() &&
        X86InstrInfo::isX86_64ExtendedReg(MI.getOperand(CurOp).getReg()))
      VEX_R = 0x0;
    CurOp++;

    if (HasVEX_4V) {
      VEX_4V = getVEXRegisterEncoding(MI, IsDestMem ? CurOp-1 : CurOp);
      CurOp++;
    }

    // To only check operands before the memory address ones, start
    // the search from the begining
    if (IsDestMem)
      CurOp = 0;

    // If the last register should be encoded in the immediate field
    // do not use any bit from VEX prefix to this register, ignore it
    if (TSFlags & X86II::VEX_I8IMM)
      NumOps--;

    for (; CurOp != NumOps; ++CurOp) {
      const MCOperand &MO = MI.getOperand(CurOp);
      if (MO.isReg() && X86InstrInfo::isX86_64ExtendedReg(MO.getReg()))
        VEX_B = 0x0;
      if (!VEX_B && MO.isReg() &&
          ((TSFlags & X86II::FormMask) == X86II::MRMSrcMem) &&
          X86InstrInfo::isX86_64ExtendedReg(MO.getReg()))
        VEX_X = 0x0;
    }
    break;
  default: // MRMDestReg, MRM0r-MRM7r, RawFrm
    if (!MI.getNumOperands())
      break;

    if (MI.getOperand(CurOp).isReg() &&
        X86InstrInfo::isX86_64ExtendedReg(MI.getOperand(CurOp).getReg()))
      VEX_B = 0;

    if (HasVEX_4V)
      VEX_4V = getVEXRegisterEncoding(MI, CurOp);

    CurOp++;
    for (; CurOp != NumOps; ++CurOp) {
      const MCOperand &MO = MI.getOperand(CurOp);
      if (MO.isReg() && !HasVEX_4V &&
          X86InstrInfo::isX86_64ExtendedReg(MO.getReg()))
        VEX_R = 0x0;
    }
    break;
  }

  // Emit segment override opcode prefix as needed.
  EmitSegmentOverridePrefix(TSFlags, CurByte, MemOperand, MI, OS);

  // VEX opcode prefix can have 2 or 3 bytes
  //
  //  3 bytes:
  //    +-----+ +--------------+ +-------------------+
  //    | C4h | | RXB | m-mmmm | | W | vvvv | L | pp |
  //    +-----+ +--------------+ +-------------------+
  //  2 bytes:
  //    +-----+ +-------------------+
  //    | C5h | | R | vvvv | L | pp |
  //    +-----+ +-------------------+
  //
  unsigned char LastByte = VEX_PP | (VEX_L << 2) | (VEX_4V << 3);

  if (VEX_B && VEX_X && !VEX_W && (VEX_5M == 1)) { // 2 byte VEX prefix
    EmitByte(0xC5, CurByte, OS);
    EmitByte(LastByte | (VEX_R << 7), CurByte, OS);
    return;
  }

  // 3 byte VEX prefix
  EmitByte(0xC4, CurByte, OS);
  EmitByte(VEX_R << 7 | VEX_X << 6 | VEX_B << 5 | VEX_5M, CurByte, OS);
  EmitByte(LastByte | (VEX_W << 7), CurByte, OS);
}

/// DetermineREXPrefix - Determine if the MCInst has to be encoded with a X86-64
/// REX prefix which specifies 1) 64-bit instructions, 2) non-default operand
/// size, and 3) use of X86-64 extended registers.
static unsigned DetermineREXPrefix(const MCInst &MI, uint64_t TSFlags,
                                   const TargetInstrDesc &Desc) {
  unsigned REX = 0;
  if (TSFlags & X86II::REX_W)
    REX |= 1 << 3; // set REX.W

  if (MI.getNumOperands() == 0) return REX;

  unsigned NumOps = MI.getNumOperands();
  // FIXME: MCInst should explicitize the two-addrness.
  bool isTwoAddr = NumOps > 1 &&
                      Desc.getOperandConstraint(1, TOI::TIED_TO) != -1;

  // If it accesses SPL, BPL, SIL, or DIL, then it requires a 0x40 REX prefix.
  unsigned i = isTwoAddr ? 1 : 0;
  for (; i != NumOps; ++i) {
    const MCOperand &MO = MI.getOperand(i);
    if (!MO.isReg()) continue;
    unsigned Reg = MO.getReg();
    if (!X86InstrInfo::isX86_64NonExtLowByteReg(Reg)) continue;
    // FIXME: The caller of DetermineREXPrefix slaps this prefix onto anything
    // that returns non-zero.
    REX |= 0x40; // REX fixed encoding prefix
    break;
  }

  switch (TSFlags & X86II::FormMask) {
  case X86II::MRMInitReg: assert(0 && "FIXME: Remove this!");
  case X86II::MRMSrcReg:
    if (MI.getOperand(0).isReg() &&
        X86InstrInfo::isX86_64ExtendedReg(MI.getOperand(0).getReg()))
      REX |= 1 << 2; // set REX.R
    i = isTwoAddr ? 2 : 1;
    for (; i != NumOps; ++i) {
      const MCOperand &MO = MI.getOperand(i);
      if (MO.isReg() && X86InstrInfo::isX86_64ExtendedReg(MO.getReg()))
        REX |= 1 << 0; // set REX.B
    }
    break;
  case X86II::MRMSrcMem: {
    if (MI.getOperand(0).isReg() &&
        X86InstrInfo::isX86_64ExtendedReg(MI.getOperand(0).getReg()))
      REX |= 1 << 2; // set REX.R
    unsigned Bit = 0;
    i = isTwoAddr ? 2 : 1;
    for (; i != NumOps; ++i) {
      const MCOperand &MO = MI.getOperand(i);
      if (MO.isReg()) {
        if (X86InstrInfo::isX86_64ExtendedReg(MO.getReg()))
          REX |= 1 << Bit; // set REX.B (Bit=0) and REX.X (Bit=1)
        Bit++;
      }
    }
    break;
  }
  case X86II::MRM0m: case X86II::MRM1m:
  case X86II::MRM2m: case X86II::MRM3m:
  case X86II::MRM4m: case X86II::MRM5m:
  case X86II::MRM6m: case X86II::MRM7m:
  case X86II::MRMDestMem: {
    unsigned e = (isTwoAddr ? X86::AddrNumOperands+1 : X86::AddrNumOperands);
    i = isTwoAddr ? 1 : 0;
    if (NumOps > e && MI.getOperand(e).isReg() &&
        X86InstrInfo::isX86_64ExtendedReg(MI.getOperand(e).getReg()))
      REX |= 1 << 2; // set REX.R
    unsigned Bit = 0;
    for (; i != e; ++i) {
      const MCOperand &MO = MI.getOperand(i);
      if (MO.isReg()) {
        if (X86InstrInfo::isX86_64ExtendedReg(MO.getReg()))
          REX |= 1 << Bit; // REX.B (Bit=0) and REX.X (Bit=1)
        Bit++;
      }
    }
    break;
  }
  default:
    if (MI.getOperand(0).isReg() &&
        X86InstrInfo::isX86_64ExtendedReg(MI.getOperand(0).getReg()))
      REX |= 1 << 0; // set REX.B
    i = isTwoAddr ? 2 : 1;
    for (unsigned e = NumOps; i != e; ++i) {
      const MCOperand &MO = MI.getOperand(i);
      if (MO.isReg() && X86InstrInfo::isX86_64ExtendedReg(MO.getReg()))
        REX |= 1 << 2; // set REX.R
    }
    break;
  }
  return REX;
}

/// EmitSegmentOverridePrefix - Emit segment override opcode prefix as needed
void X86MCCodeEmitter::EmitSegmentOverridePrefix(uint64_t TSFlags,
                                        unsigned &CurByte, int MemOperand,
                                        const MCInst &MI,
                                        raw_ostream &OS) const {
  switch (TSFlags & X86II::SegOvrMask) {
  default: assert(0 && "Invalid segment!");
  case 0:
    // No segment override, check for explicit one on memory operand.
    if (MemOperand != -1) {   // If the instruction has a memory operand.
      switch (MI.getOperand(MemOperand+X86::AddrSegmentReg).getReg()) {
      default: assert(0 && "Unknown segment register!");
      case 0: break;
      case X86::CS: EmitByte(0x2E, CurByte, OS); break;
      case X86::SS: EmitByte(0x36, CurByte, OS); break;
      case X86::DS: EmitByte(0x3E, CurByte, OS); break;
      case X86::ES: EmitByte(0x26, CurByte, OS); break;
      case X86::FS: EmitByte(0x64, CurByte, OS); break;
      case X86::GS: EmitByte(0x65, CurByte, OS); break;
      }
    }
    break;
  case X86II::FS:
    EmitByte(0x64, CurByte, OS);
    break;
  case X86II::GS:
    EmitByte(0x65, CurByte, OS);
    break;
  }
}

/// EmitOpcodePrefix - Emit all instruction prefixes prior to the opcode.
///
/// MemOperand is the operand # of the start of a memory operand if present.  If
/// Not present, it is -1.
void X86MCCodeEmitter::EmitOpcodePrefix(uint64_t TSFlags, unsigned &CurByte,
                                        int MemOperand, const MCInst &MI,
                                        const TargetInstrDesc &Desc,
                                        raw_ostream &OS) const {

  // Emit the lock opcode prefix as needed.
  if (TSFlags & X86II::LOCK)
    EmitByte(0xF0, CurByte, OS);

  // Emit segment override opcode prefix as needed.
  EmitSegmentOverridePrefix(TSFlags, CurByte, MemOperand, MI, OS);

  // Emit the repeat opcode prefix as needed.
  if ((TSFlags & X86II::Op0Mask) == X86II::REP)
    EmitByte(0xF3, CurByte, OS);

  // Emit the operand size opcode prefix as needed.
  if (TSFlags & X86II::OpSize)
    EmitByte(0x66, CurByte, OS);

  // Emit the address size opcode prefix as needed.
  if (TSFlags & X86II::AdSize)
    EmitByte(0x67, CurByte, OS);

  bool Need0FPrefix = false;
  switch (TSFlags & X86II::Op0Mask) {
  default: assert(0 && "Invalid prefix!");
  case 0: break;  // No prefix!
  case X86II::REP: break; // already handled.
  case X86II::TB:  // Two-byte opcode prefix
  case X86II::T8:  // 0F 38
  case X86II::TA:  // 0F 3A
    Need0FPrefix = true;
    break;
  case X86II::TF: // F2 0F 38
    EmitByte(0xF2, CurByte, OS);
    Need0FPrefix = true;
    break;
  case X86II::XS:   // F3 0F
    EmitByte(0xF3, CurByte, OS);
    Need0FPrefix = true;
    break;
  case X86II::XD:   // F2 0F
    EmitByte(0xF2, CurByte, OS);
    Need0FPrefix = true;
    break;
  case X86II::D8: EmitByte(0xD8, CurByte, OS); break;
  case X86II::D9: EmitByte(0xD9, CurByte, OS); break;
  case X86II::DA: EmitByte(0xDA, CurByte, OS); break;
  case X86II::DB: EmitByte(0xDB, CurByte, OS); break;
  case X86II::DC: EmitByte(0xDC, CurByte, OS); break;
  case X86II::DD: EmitByte(0xDD, CurByte, OS); break;
  case X86II::DE: EmitByte(0xDE, CurByte, OS); break;
  case X86II::DF: EmitByte(0xDF, CurByte, OS); break;
  }

  // Handle REX prefix.
  // FIXME: Can this come before F2 etc to simplify emission?
  if (Is64BitMode) {
    if (unsigned REX = DetermineREXPrefix(MI, TSFlags, Desc))
      EmitByte(0x40 | REX, CurByte, OS);
  }

  // 0x0F escape code must be emitted just before the opcode.
  if (Need0FPrefix)
    EmitByte(0x0F, CurByte, OS);

  // FIXME: Pull this up into previous switch if REX can be moved earlier.
  switch (TSFlags & X86II::Op0Mask) {
  case X86II::TF:    // F2 0F 38
  case X86II::T8:    // 0F 38
    EmitByte(0x38, CurByte, OS);
    break;
  case X86II::TA:    // 0F 3A
    EmitByte(0x3A, CurByte, OS);
    break;
  }
}

void X86MCCodeEmitter::
EncodeInstruction(const MCInst &MI, raw_ostream &OS,
                  SmallVectorImpl<MCFixup> &Fixups) const {
  unsigned Opcode = MI.getOpcode();
  const TargetInstrDesc &Desc = TII.get(Opcode);
  uint64_t TSFlags = Desc.TSFlags;

  // Pseudo instructions don't get encoded.
  if ((TSFlags & X86II::FormMask) == X86II::Pseudo)
    return;

  // If this is a two-address instruction, skip one of the register operands.
  // FIXME: This should be handled during MCInst lowering.
  unsigned NumOps = Desc.getNumOperands();
  unsigned CurOp = 0;
  if (NumOps > 1 && Desc.getOperandConstraint(1, TOI::TIED_TO) != -1)
    ++CurOp;
  else if (NumOps > 2 && Desc.getOperandConstraint(NumOps-1, TOI::TIED_TO)== 0)
    // Skip the last source operand that is tied_to the dest reg. e.g. LXADD32
    --NumOps;

  // Keep track of the current byte being emitted.
  unsigned CurByte = 0;

  // Is this instruction encoded using the AVX VEX prefix?
  bool HasVEXPrefix = false;

  // It uses the VEX.VVVV field?
  bool HasVEX_4V = false;

  if (TSFlags & X86II::VEX)
    HasVEXPrefix = true;
  if (TSFlags & X86II::VEX_4V)
    HasVEX_4V = true;

  // Determine where the memory operand starts, if present.
  int MemoryOperand = X86II::getMemoryOperandNo(TSFlags);
  if (MemoryOperand != -1) MemoryOperand += CurOp;

  if (!HasVEXPrefix)
    EmitOpcodePrefix(TSFlags, CurByte, MemoryOperand, MI, Desc, OS);
  else
    EmitVEXOpcodePrefix(TSFlags, CurByte, MemoryOperand, MI, Desc, OS);

  unsigned char BaseOpcode = X86II::getBaseOpcodeFor(TSFlags);
  unsigned SrcRegNum = 0;
  switch (TSFlags & X86II::FormMask) {
  case X86II::MRMInitReg:
    assert(0 && "FIXME: Remove this form when the JIT moves to MCCodeEmitter!");
  default: errs() << "FORM: " << (TSFlags & X86II::FormMask) << "\n";
    assert(0 && "Unknown FormMask value in X86MCCodeEmitter!");
  case X86II::Pseudo:
    assert(0 && "Pseudo instruction shouldn't be emitted");
  case X86II::RawFrm:
    EmitByte(BaseOpcode, CurByte, OS);
    break;

  case X86II::AddRegFrm:
    EmitByte(BaseOpcode + GetX86RegNum(MI.getOperand(CurOp++)), CurByte, OS);
    break;

  case X86II::MRMDestReg:
    EmitByte(BaseOpcode, CurByte, OS);
    EmitRegModRMByte(MI.getOperand(CurOp),
                     GetX86RegNum(MI.getOperand(CurOp+1)), CurByte, OS);
    CurOp += 2;
    break;

  case X86II::MRMDestMem:
    EmitByte(BaseOpcode, CurByte, OS);
    SrcRegNum = CurOp + X86::AddrNumOperands;

    if (HasVEX_4V) // Skip 1st src (which is encoded in VEX_VVVV)
      SrcRegNum++;

    EmitMemModRMByte(MI, CurOp,
                     GetX86RegNum(MI.getOperand(SrcRegNum)),
                     TSFlags, CurByte, OS, Fixups);
    CurOp = SrcRegNum + 1;
    break;

  case X86II::MRMSrcReg:
    EmitByte(BaseOpcode, CurByte, OS);
    SrcRegNum = CurOp + 1;

    if (HasVEX_4V) // Skip 1st src (which is encoded in VEX_VVVV)
      SrcRegNum++;

    EmitRegModRMByte(MI.getOperand(SrcRegNum),
                     GetX86RegNum(MI.getOperand(CurOp)), CurByte, OS);
    CurOp = SrcRegNum + 1;
    break;

  case X86II::MRMSrcMem: {
    int AddrOperands = X86::AddrNumOperands;
    unsigned FirstMemOp = CurOp+1;
    if (HasVEX_4V) {
      ++AddrOperands;
      ++FirstMemOp;  // Skip the register source (which is encoded in VEX_VVVV).
    }

    EmitByte(BaseOpcode, CurByte, OS);

    EmitMemModRMByte(MI, FirstMemOp, GetX86RegNum(MI.getOperand(CurOp)),
                     TSFlags, CurByte, OS, Fixups);
    CurOp += AddrOperands + 1;
    break;
  }

  case X86II::MRM0r: case X86II::MRM1r:
  case X86II::MRM2r: case X86II::MRM3r:
  case X86II::MRM4r: case X86II::MRM5r:
  case X86II::MRM6r: case X86II::MRM7r:
    if (HasVEX_4V) // Skip the register dst (which is encoded in VEX_VVVV).
      CurOp++;
    EmitByte(BaseOpcode, CurByte, OS);
    EmitRegModRMByte(MI.getOperand(CurOp++),
                     (TSFlags & X86II::FormMask)-X86II::MRM0r,
                     CurByte, OS);
    break;
  case X86II::MRM0m: case X86II::MRM1m:
  case X86II::MRM2m: case X86II::MRM3m:
  case X86II::MRM4m: case X86II::MRM5m:
  case X86II::MRM6m: case X86II::MRM7m:
    EmitByte(BaseOpcode, CurByte, OS);
    EmitMemModRMByte(MI, CurOp, (TSFlags & X86II::FormMask)-X86II::MRM0m,
                     TSFlags, CurByte, OS, Fixups);
    CurOp += X86::AddrNumOperands;
    break;
  case X86II::MRM_C1:
    EmitByte(BaseOpcode, CurByte, OS);
    EmitByte(0xC1, CurByte, OS);
    break;
  case X86II::MRM_C2:
    EmitByte(BaseOpcode, CurByte, OS);
    EmitByte(0xC2, CurByte, OS);
    break;
  case X86II::MRM_C3:
    EmitByte(BaseOpcode, CurByte, OS);
    EmitByte(0xC3, CurByte, OS);
    break;
  case X86II::MRM_C4:
    EmitByte(BaseOpcode, CurByte, OS);
    EmitByte(0xC4, CurByte, OS);
    break;
  case X86II::MRM_C8:
    EmitByte(BaseOpcode, CurByte, OS);
    EmitByte(0xC8, CurByte, OS);
    break;
  case X86II::MRM_C9:
    EmitByte(BaseOpcode, CurByte, OS);
    EmitByte(0xC9, CurByte, OS);
    break;
  case X86II::MRM_E8:
    EmitByte(BaseOpcode, CurByte, OS);
    EmitByte(0xE8, CurByte, OS);
    break;
  case X86II::MRM_F0:
    EmitByte(BaseOpcode, CurByte, OS);
    EmitByte(0xF0, CurByte, OS);
    break;
  case X86II::MRM_F8:
    EmitByte(BaseOpcode, CurByte, OS);
    EmitByte(0xF8, CurByte, OS);
    break;
  case X86II::MRM_F9:
    EmitByte(BaseOpcode, CurByte, OS);
    EmitByte(0xF9, CurByte, OS);
    break;
  }

  // If there is a remaining operand, it must be a trailing immediate.  Emit it
  // according to the right size for the instruction.
  if (CurOp != NumOps) {
    // The last source register of a 4 operand instruction in AVX is encoded
    // in bits[7:4] of a immediate byte, and bits[3:0] are ignored.
    if (TSFlags & X86II::VEX_I8IMM) {
      const MCOperand &MO = MI.getOperand(CurOp++);
      bool IsExtReg =
        X86InstrInfo::isX86_64ExtendedReg(MO.getReg());
      unsigned RegNum = (IsExtReg ? (1 << 7) : 0);
      RegNum |= GetX86RegNum(MO) << 4;
      EmitImmediate(MCOperand::CreateImm(RegNum), 1, FK_Data_1, CurByte, OS,
                    Fixups);
    } else
      EmitImmediate(MI.getOperand(CurOp++),
                    X86II::getSizeOfImm(TSFlags), getImmFixupKind(TSFlags),
                    CurByte, OS, Fixups);
  }


#ifndef NDEBUG
  // FIXME: Verify.
  if (/*!Desc.isVariadic() &&*/ CurOp != NumOps) {
    errs() << "Cannot encode all operands of: ";
    MI.dump();
    errs() << '\n';
    abort();
  }
#endif
}