llvm.org GIT mirror llvm / 71f7f73 lib / CodeGen / PreAllocSplitting.cpp
71f7f73

Tree @71f7f73 (Download .tar.gz)

PreAllocSplitting.cpp @71f7f73raw · history · blame

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
//===-- PreAllocSplitting.cpp - Pre-allocation Interval Spltting Pass. ----===//
//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements the machine instruction level pre-register allocation
// live interval splitting pass. It finds live interval barriers, i.e.
// instructions which will kill all physical registers in certain register
// classes, and split all live intervals which cross the barrier.
//
//===----------------------------------------------------------------------===//

#define DEBUG_TYPE "pre-alloc-split"
#include "VirtRegMap.h"
#include "llvm/CodeGen/CalcSpillWeights.h"
#include "llvm/CodeGen/LiveIntervalAnalysis.h"
#include "llvm/CodeGen/LiveStackAnalysis.h"
#include "llvm/CodeGen/MachineDominators.h"
#include "llvm/CodeGen/MachineFrameInfo.h"
#include "llvm/CodeGen/MachineFunctionPass.h"
#include "llvm/CodeGen/MachineLoopInfo.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/CodeGen/Passes.h"
#include "llvm/CodeGen/RegisterCoalescer.h"
#include "llvm/Target/TargetInstrInfo.h"
#include "llvm/Target/TargetMachine.h"
#include "llvm/Target/TargetOptions.h"
#include "llvm/Target/TargetRegisterInfo.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/DepthFirstIterator.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/ADT/Statistic.h"
using namespace llvm;

static cl::opt<int> PreSplitLimit("pre-split-limit", cl::init(-1), cl::Hidden);
static cl::opt<int> DeadSplitLimit("dead-split-limit", cl::init(-1),
                                   cl::Hidden);
static cl::opt<int> RestoreFoldLimit("restore-fold-limit", cl::init(-1),
                                     cl::Hidden);

STATISTIC(NumSplits, "Number of intervals split");
STATISTIC(NumRemats, "Number of intervals split by rematerialization");
STATISTIC(NumFolds, "Number of intervals split with spill folding");
STATISTIC(NumRestoreFolds, "Number of intervals split with restore folding");
STATISTIC(NumRenumbers, "Number of intervals renumbered into new registers");
STATISTIC(NumDeadSpills, "Number of dead spills removed");

namespace {
  class PreAllocSplitting : public MachineFunctionPass {
    MachineFunction       *CurrMF;
    const TargetMachine   *TM;
    const TargetInstrInfo *TII;
    const TargetRegisterInfo* TRI;
    MachineFrameInfo      *MFI;
    MachineRegisterInfo   *MRI;
    SlotIndexes           *SIs;
    LiveIntervals         *LIs;
    LiveStacks            *LSs;
    VirtRegMap            *VRM;

    // Barrier - Current barrier being processed.
    MachineInstr          *Barrier;

    // BarrierMBB - Basic block where the barrier resides in.
    MachineBasicBlock     *BarrierMBB;

    // Barrier - Current barrier index.
    SlotIndex     BarrierIdx;

    // CurrLI - Current live interval being split.
    LiveInterval          *CurrLI;

    // CurrSLI - Current stack slot live interval.
    LiveInterval          *CurrSLI;

    // CurrSValNo - Current val# for the stack slot live interval.
    VNInfo                *CurrSValNo;

    // IntervalSSMap - A map from live interval to spill slots.
    DenseMap<unsigned, int> IntervalSSMap;

    // Def2SpillMap - A map from a def instruction index to spill index.
    DenseMap<SlotIndex, SlotIndex> Def2SpillMap;

  public:
    static char ID;
    PreAllocSplitting()
      : MachineFunctionPass(ID) {}

    virtual bool runOnMachineFunction(MachineFunction &MF);

    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
      AU.setPreservesCFG();
      AU.addRequired<SlotIndexes>();
      AU.addPreserved<SlotIndexes>();
      AU.addRequired<LiveIntervals>();
      AU.addPreserved<LiveIntervals>();
      AU.addRequired<LiveStacks>();
      AU.addPreserved<LiveStacks>();
      AU.addPreserved<RegisterCoalescer>();
      AU.addPreserved<CalculateSpillWeights>();
      if (StrongPHIElim)
        AU.addPreservedID(StrongPHIEliminationID);
      else
        AU.addPreservedID(PHIEliminationID);
      AU.addRequired<MachineDominatorTree>();
      AU.addRequired<MachineLoopInfo>();
      AU.addRequired<VirtRegMap>();
      AU.addPreserved<MachineDominatorTree>();
      AU.addPreserved<MachineLoopInfo>();
      AU.addPreserved<VirtRegMap>();
      MachineFunctionPass::getAnalysisUsage(AU);
    }
    
    virtual void releaseMemory() {
      IntervalSSMap.clear();
      Def2SpillMap.clear();
    }

    virtual const char *getPassName() const {
      return "Pre-Register Allocaton Live Interval Splitting";
    }

    /// print - Implement the dump method.
    virtual void print(raw_ostream &O, const Module* M = 0) const {
      LIs->print(O, M);
    }


  private:

    MachineBasicBlock::iterator
      findSpillPoint(MachineBasicBlock*, MachineInstr*, MachineInstr*,
                     SmallPtrSet<MachineInstr*, 4>&);

    MachineBasicBlock::iterator
      findRestorePoint(MachineBasicBlock*, MachineInstr*, SlotIndex,
                     SmallPtrSet<MachineInstr*, 4>&);

    int CreateSpillStackSlot(unsigned, const TargetRegisterClass *);

    bool IsAvailableInStack(MachineBasicBlock*, unsigned,
                            SlotIndex, SlotIndex,
                            SlotIndex&, int&) const;

    void UpdateSpillSlotInterval(VNInfo*, SlotIndex, SlotIndex);

    bool SplitRegLiveInterval(LiveInterval*);

    bool SplitRegLiveIntervals(const TargetRegisterClass **,
                               SmallPtrSet<LiveInterval*, 8>&);
    
    bool createsNewJoin(LiveRange* LR, MachineBasicBlock* DefMBB,
                        MachineBasicBlock* BarrierMBB);
    bool Rematerialize(unsigned vreg, VNInfo* ValNo,
                       MachineInstr* DefMI,
                       MachineBasicBlock::iterator RestorePt,
                       SmallPtrSet<MachineInstr*, 4>& RefsInMBB);
    MachineInstr* FoldSpill(unsigned vreg, const TargetRegisterClass* RC,
                            MachineInstr* DefMI,
                            MachineInstr* Barrier,
                            MachineBasicBlock* MBB,
                            int& SS,
                            SmallPtrSet<MachineInstr*, 4>& RefsInMBB);
    MachineInstr* FoldRestore(unsigned vreg, 
                              const TargetRegisterClass* RC,
                              MachineInstr* Barrier,
                              MachineBasicBlock* MBB,
                              int SS,
                              SmallPtrSet<MachineInstr*, 4>& RefsInMBB);
    void RenumberValno(VNInfo* VN);
    void ReconstructLiveInterval(LiveInterval* LI);
    bool removeDeadSpills(SmallPtrSet<LiveInterval*, 8>& split);
    unsigned getNumberOfNonSpills(SmallPtrSet<MachineInstr*, 4>& MIs,
                               unsigned Reg, int FrameIndex, bool& TwoAddr);
    VNInfo* PerformPHIConstruction(MachineBasicBlock::iterator Use,
                                   MachineBasicBlock* MBB, LiveInterval* LI,
                                   SmallPtrSet<MachineInstr*, 4>& Visited,
            DenseMap<MachineBasicBlock*, SmallPtrSet<MachineInstr*, 2> >& Defs,
            DenseMap<MachineBasicBlock*, SmallPtrSet<MachineInstr*, 2> >& Uses,
                                      DenseMap<MachineInstr*, VNInfo*>& NewVNs,
                                DenseMap<MachineBasicBlock*, VNInfo*>& LiveOut,
                                DenseMap<MachineBasicBlock*, VNInfo*>& Phis,
                                        bool IsTopLevel, bool IsIntraBlock);
    VNInfo* PerformPHIConstructionFallBack(MachineBasicBlock::iterator Use,
                                   MachineBasicBlock* MBB, LiveInterval* LI,
                                   SmallPtrSet<MachineInstr*, 4>& Visited,
            DenseMap<MachineBasicBlock*, SmallPtrSet<MachineInstr*, 2> >& Defs,
            DenseMap<MachineBasicBlock*, SmallPtrSet<MachineInstr*, 2> >& Uses,
                                      DenseMap<MachineInstr*, VNInfo*>& NewVNs,
                                DenseMap<MachineBasicBlock*, VNInfo*>& LiveOut,
                                DenseMap<MachineBasicBlock*, VNInfo*>& Phis,
                                        bool IsTopLevel, bool IsIntraBlock);
};
} // end anonymous namespace

char PreAllocSplitting::ID = 0;

INITIALIZE_PASS(PreAllocSplitting, "pre-alloc-splitting",
                "Pre-Register Allocation Live Interval Splitting",
                false, false);

char &llvm::PreAllocSplittingID = PreAllocSplitting::ID;

/// findSpillPoint - Find a gap as far away from the given MI that's suitable
/// for spilling the current live interval. The index must be before any
/// defs and uses of the live interval register in the mbb. Return begin() if
/// none is found.
MachineBasicBlock::iterator
PreAllocSplitting::findSpillPoint(MachineBasicBlock *MBB, MachineInstr *MI,
                                  MachineInstr *DefMI,
                                  SmallPtrSet<MachineInstr*, 4> &RefsInMBB) {
  MachineBasicBlock::iterator Pt = MBB->begin();

  MachineBasicBlock::iterator MII = MI;
  MachineBasicBlock::iterator EndPt = DefMI
    ? MachineBasicBlock::iterator(DefMI) : MBB->begin();
    
  while (MII != EndPt && !RefsInMBB.count(MII) &&
         MII->getOpcode() != TRI->getCallFrameSetupOpcode())
    --MII;
  if (MII == EndPt || RefsInMBB.count(MII)) return Pt;
    
  while (MII != EndPt && !RefsInMBB.count(MII)) {
    // We can't insert the spill between the barrier (a call), and its
    // corresponding call frame setup.
    if (MII->getOpcode() == TRI->getCallFrameDestroyOpcode()) {
      while (MII->getOpcode() != TRI->getCallFrameSetupOpcode()) {
        --MII;
        if (MII == EndPt) {
          return Pt;
        }
      }
      continue;
    } else {
      Pt = MII;
    }
    
    if (RefsInMBB.count(MII))
      return Pt;
    
    
    --MII;
  }

  return Pt;
}

/// findRestorePoint - Find a gap in the instruction index map that's suitable
/// for restoring the current live interval value. The index must be before any
/// uses of the live interval register in the mbb. Return end() if none is
/// found.
MachineBasicBlock::iterator
PreAllocSplitting::findRestorePoint(MachineBasicBlock *MBB, MachineInstr *MI,
                                    SlotIndex LastIdx,
                                    SmallPtrSet<MachineInstr*, 4> &RefsInMBB) {
  // FIXME: Allow spill to be inserted to the beginning of the mbb. Update mbb
  // begin index accordingly.
  MachineBasicBlock::iterator Pt = MBB->end();
  MachineBasicBlock::iterator EndPt = MBB->getFirstTerminator();

  // We start at the call, so walk forward until we find the call frame teardown
  // since we can't insert restores before that.  Bail if we encounter a use
  // during this time.
  MachineBasicBlock::iterator MII = MI;
  if (MII == EndPt) return Pt;
  
  while (MII != EndPt && !RefsInMBB.count(MII) &&
         MII->getOpcode() != TRI->getCallFrameDestroyOpcode())
    ++MII;
  if (MII == EndPt || RefsInMBB.count(MII)) return Pt;
  ++MII;
  
  // FIXME: Limit the number of instructions to examine to reduce
  // compile time?
  while (MII != EndPt) {
    SlotIndex Index = LIs->getInstructionIndex(MII);
    if (Index > LastIdx)
      break;
      
    // We can't insert a restore between the barrier (a call) and its 
    // corresponding call frame teardown.
    if (MII->getOpcode() == TRI->getCallFrameSetupOpcode()) {
      do {
        if (MII == EndPt || RefsInMBB.count(MII)) return Pt;
        ++MII;
      } while (MII->getOpcode() != TRI->getCallFrameDestroyOpcode());
    } else {
      Pt = MII;
    }
    
    if (RefsInMBB.count(MII))
      return Pt;
    
    ++MII;
  }

  return Pt;
}

/// CreateSpillStackSlot - Create a stack slot for the live interval being
/// split. If the live interval was previously split, just reuse the same
/// slot.
int PreAllocSplitting::CreateSpillStackSlot(unsigned Reg,
                                            const TargetRegisterClass *RC) {
  int SS;
  DenseMap<unsigned, int>::iterator I = IntervalSSMap.find(Reg);
  if (I != IntervalSSMap.end()) {
    SS = I->second;
  } else {
    SS = MFI->CreateSpillStackObject(RC->getSize(), RC->getAlignment());
    IntervalSSMap[Reg] = SS;
  }

  // Create live interval for stack slot.
  CurrSLI = &LSs->getOrCreateInterval(SS, RC);
  if (CurrSLI->hasAtLeastOneValue())
    CurrSValNo = CurrSLI->getValNumInfo(0);
  else
    CurrSValNo = CurrSLI->getNextValue(SlotIndex(), 0, false,
                                       LSs->getVNInfoAllocator());
  return SS;
}

/// IsAvailableInStack - Return true if register is available in a split stack
/// slot at the specified index.
bool
PreAllocSplitting::IsAvailableInStack(MachineBasicBlock *DefMBB,
                                    unsigned Reg, SlotIndex DefIndex,
                                    SlotIndex RestoreIndex,
                                    SlotIndex &SpillIndex,
                                    int& SS) const {
  if (!DefMBB)
    return false;

  DenseMap<unsigned, int>::const_iterator I = IntervalSSMap.find(Reg);
  if (I == IntervalSSMap.end())
    return false;
  DenseMap<SlotIndex, SlotIndex>::const_iterator
    II = Def2SpillMap.find(DefIndex);
  if (II == Def2SpillMap.end())
    return false;

  // If last spill of def is in the same mbb as barrier mbb (where restore will
  // be), make sure it's not below the intended restore index.
  // FIXME: Undo the previous spill?
  assert(LIs->getMBBFromIndex(II->second) == DefMBB);
  if (DefMBB == BarrierMBB && II->second >= RestoreIndex)
    return false;

  SS = I->second;
  SpillIndex = II->second;
  return true;
}

/// UpdateSpillSlotInterval - Given the specified val# of the register live
/// interval being split, and the spill and restore indicies, update the live
/// interval of the spill stack slot.
void
PreAllocSplitting::UpdateSpillSlotInterval(VNInfo *ValNo, SlotIndex SpillIndex,
                                           SlotIndex RestoreIndex) {
  assert(LIs->getMBBFromIndex(RestoreIndex) == BarrierMBB &&
         "Expect restore in the barrier mbb");

  MachineBasicBlock *MBB = LIs->getMBBFromIndex(SpillIndex);
  if (MBB == BarrierMBB) {
    // Intra-block spill + restore. We are done.
    LiveRange SLR(SpillIndex, RestoreIndex, CurrSValNo);
    CurrSLI->addRange(SLR);
    return;
  }

  SmallPtrSet<MachineBasicBlock*, 4> Processed;
  SlotIndex EndIdx = LIs->getMBBEndIdx(MBB);
  LiveRange SLR(SpillIndex, EndIdx, CurrSValNo);
  CurrSLI->addRange(SLR);
  Processed.insert(MBB);

  // Start from the spill mbb, figure out the extend of the spill slot's
  // live interval.
  SmallVector<MachineBasicBlock*, 4> WorkList;
  const LiveRange *LR = CurrLI->getLiveRangeContaining(SpillIndex);
  if (LR->end > EndIdx)
    // If live range extend beyond end of mbb, add successors to work list.
    for (MachineBasicBlock::succ_iterator SI = MBB->succ_begin(),
           SE = MBB->succ_end(); SI != SE; ++SI)
      WorkList.push_back(*SI);

  while (!WorkList.empty()) {
    MachineBasicBlock *MBB = WorkList.back();
    WorkList.pop_back();
    if (Processed.count(MBB))
      continue;
    SlotIndex Idx = LIs->getMBBStartIdx(MBB);
    LR = CurrLI->getLiveRangeContaining(Idx);
    if (LR && LR->valno == ValNo) {
      EndIdx = LIs->getMBBEndIdx(MBB);
      if (Idx <= RestoreIndex && RestoreIndex < EndIdx) {
        // Spill slot live interval stops at the restore.
        LiveRange SLR(Idx, RestoreIndex, CurrSValNo);
        CurrSLI->addRange(SLR);
      } else if (LR->end > EndIdx) {
        // Live range extends beyond end of mbb, process successors.
        LiveRange SLR(Idx, EndIdx.getNextIndex(), CurrSValNo);
        CurrSLI->addRange(SLR);
        for (MachineBasicBlock::succ_iterator SI = MBB->succ_begin(),
               SE = MBB->succ_end(); SI != SE; ++SI)
          WorkList.push_back(*SI);
      } else {
        LiveRange SLR(Idx, LR->end, CurrSValNo);
        CurrSLI->addRange(SLR);
      }
      Processed.insert(MBB);
    }
  }
}

/// PerformPHIConstruction - From properly set up use and def lists, use a PHI
/// construction algorithm to compute the ranges and valnos for an interval.
VNInfo*
PreAllocSplitting::PerformPHIConstruction(MachineBasicBlock::iterator UseI,
                                       MachineBasicBlock* MBB, LiveInterval* LI,
                                       SmallPtrSet<MachineInstr*, 4>& Visited,
             DenseMap<MachineBasicBlock*, SmallPtrSet<MachineInstr*, 2> >& Defs,
             DenseMap<MachineBasicBlock*, SmallPtrSet<MachineInstr*, 2> >& Uses,
                                       DenseMap<MachineInstr*, VNInfo*>& NewVNs,
                                 DenseMap<MachineBasicBlock*, VNInfo*>& LiveOut,
                                 DenseMap<MachineBasicBlock*, VNInfo*>& Phis,
                                           bool IsTopLevel, bool IsIntraBlock) {
  // Return memoized result if it's available.
  if (IsTopLevel && Visited.count(UseI) && NewVNs.count(UseI))
    return NewVNs[UseI];
  else if (!IsTopLevel && IsIntraBlock && NewVNs.count(UseI))
    return NewVNs[UseI];
  else if (!IsIntraBlock && LiveOut.count(MBB))
    return LiveOut[MBB];
  
  // Check if our block contains any uses or defs.
  bool ContainsDefs = Defs.count(MBB);
  bool ContainsUses = Uses.count(MBB);
  
  VNInfo* RetVNI = 0;
  
  // Enumerate the cases of use/def contaning blocks.
  if (!ContainsDefs && !ContainsUses) {
    return PerformPHIConstructionFallBack(UseI, MBB, LI, Visited, Defs, Uses,
                                          NewVNs, LiveOut, Phis,
                                          IsTopLevel, IsIntraBlock);
  } else if (ContainsDefs && !ContainsUses) {
    SmallPtrSet<MachineInstr*, 2>& BlockDefs = Defs[MBB];

    // Search for the def in this block.  If we don't find it before the
    // instruction we care about, go to the fallback case.  Note that that
    // should never happen: this cannot be intrablock, so use should
    // always be an end() iterator.
    assert(UseI == MBB->end() && "No use marked in intrablock");
    
    MachineBasicBlock::iterator Walker = UseI;
    --Walker;
    while (Walker != MBB->begin()) {
      if (BlockDefs.count(Walker))
        break;
      --Walker;
    }
    
    // Once we've found it, extend its VNInfo to our instruction.
    SlotIndex DefIndex = LIs->getInstructionIndex(Walker);
    DefIndex = DefIndex.getDefIndex();
    SlotIndex EndIndex = LIs->getMBBEndIdx(MBB);
    
    RetVNI = NewVNs[Walker];
    LI->addRange(LiveRange(DefIndex, EndIndex, RetVNI));
  } else if (!ContainsDefs && ContainsUses) {
    SmallPtrSet<MachineInstr*, 2>& BlockUses = Uses[MBB];
    
    // Search for the use in this block that precedes the instruction we care 
    // about, going to the fallback case if we don't find it.    
    MachineBasicBlock::iterator Walker = UseI;
    bool found = false;
    while (Walker != MBB->begin()) {
      --Walker;
      if (BlockUses.count(Walker)) {
        found = true;
        break;
      }
    }

    if (!found)
      return PerformPHIConstructionFallBack(UseI, MBB, LI, Visited, Defs,
                                            Uses, NewVNs, LiveOut, Phis,
                                            IsTopLevel, IsIntraBlock);

    SlotIndex UseIndex = LIs->getInstructionIndex(Walker);
    UseIndex = UseIndex.getUseIndex();
    SlotIndex EndIndex;
    if (IsIntraBlock) {
      EndIndex = LIs->getInstructionIndex(UseI).getDefIndex();
    } else
      EndIndex = LIs->getMBBEndIdx(MBB);

    // Now, recursively phi construct the VNInfo for the use we found,
    // and then extend it to include the instruction we care about
    RetVNI = PerformPHIConstruction(Walker, MBB, LI, Visited, Defs, Uses,
                                    NewVNs, LiveOut, Phis, false, true);
    
    LI->addRange(LiveRange(UseIndex, EndIndex, RetVNI));
    
    // FIXME: Need to set kills properly for inter-block stuff.
  } else if (ContainsDefs && ContainsUses) {
    SmallPtrSet<MachineInstr*, 2>& BlockDefs = Defs[MBB];
    SmallPtrSet<MachineInstr*, 2>& BlockUses = Uses[MBB];
    
    // This case is basically a merging of the two preceding case, with the
    // special note that checking for defs must take precedence over checking
    // for uses, because of two-address instructions.
    MachineBasicBlock::iterator Walker = UseI;
    bool foundDef = false;
    bool foundUse = false;
    while (Walker != MBB->begin()) {
      --Walker;
      if (BlockDefs.count(Walker)) {
        foundDef = true;
        break;
      } else if (BlockUses.count(Walker)) {
        foundUse = true;
        break;
      }
    }

    if (!foundDef && !foundUse)
      return PerformPHIConstructionFallBack(UseI, MBB, LI, Visited, Defs,
                                            Uses, NewVNs, LiveOut, Phis,
                                            IsTopLevel, IsIntraBlock);

    SlotIndex StartIndex = LIs->getInstructionIndex(Walker);
    StartIndex = foundDef ? StartIndex.getDefIndex() : StartIndex.getUseIndex();
    SlotIndex EndIndex;
    if (IsIntraBlock) {
      EndIndex = LIs->getInstructionIndex(UseI).getDefIndex();
    } else
      EndIndex = LIs->getMBBEndIdx(MBB);

    if (foundDef)
      RetVNI = NewVNs[Walker];
    else
      RetVNI = PerformPHIConstruction(Walker, MBB, LI, Visited, Defs, Uses,
                                      NewVNs, LiveOut, Phis, false, true);

    LI->addRange(LiveRange(StartIndex, EndIndex, RetVNI));
  }
  
  // Memoize results so we don't have to recompute them.
  if (!IsIntraBlock) LiveOut[MBB] = RetVNI;
  else {
    if (!NewVNs.count(UseI))
      NewVNs[UseI] = RetVNI;
    Visited.insert(UseI);
  }

  return RetVNI;
}

/// PerformPHIConstructionFallBack - PerformPHIConstruction fall back path.
///
VNInfo*
PreAllocSplitting::PerformPHIConstructionFallBack(MachineBasicBlock::iterator UseI,
                                       MachineBasicBlock* MBB, LiveInterval* LI,
                                       SmallPtrSet<MachineInstr*, 4>& Visited,
             DenseMap<MachineBasicBlock*, SmallPtrSet<MachineInstr*, 2> >& Defs,
             DenseMap<MachineBasicBlock*, SmallPtrSet<MachineInstr*, 2> >& Uses,
                                       DenseMap<MachineInstr*, VNInfo*>& NewVNs,
                                 DenseMap<MachineBasicBlock*, VNInfo*>& LiveOut,
                                 DenseMap<MachineBasicBlock*, VNInfo*>& Phis,
                                           bool IsTopLevel, bool IsIntraBlock) {
  // NOTE: Because this is the fallback case from other cases, we do NOT
  // assume that we are not intrablock here.
  if (Phis.count(MBB)) return Phis[MBB]; 

  SlotIndex StartIndex = LIs->getMBBStartIdx(MBB);
  VNInfo *RetVNI = Phis[MBB] =
    LI->getNextValue(SlotIndex(), /*FIXME*/ 0, false,
                     LIs->getVNInfoAllocator());

  if (!IsIntraBlock) LiveOut[MBB] = RetVNI;
    
  // If there are no uses or defs between our starting point and the
  // beginning of the block, then recursive perform phi construction
  // on our predecessors.
  DenseMap<MachineBasicBlock*, VNInfo*> IncomingVNs;
  for (MachineBasicBlock::pred_iterator PI = MBB->pred_begin(),
         PE = MBB->pred_end(); PI != PE; ++PI) {
    VNInfo* Incoming = PerformPHIConstruction((*PI)->end(), *PI, LI, 
                                              Visited, Defs, Uses, NewVNs,
                                              LiveOut, Phis, false, false);
    if (Incoming != 0)
      IncomingVNs[*PI] = Incoming;
  }
    
  if (MBB->pred_size() == 1 && !RetVNI->hasPHIKill()) {
    VNInfo* OldVN = RetVNI;
    VNInfo* NewVN = IncomingVNs.begin()->second;
    VNInfo* MergedVN = LI->MergeValueNumberInto(OldVN, NewVN);
    if (MergedVN == OldVN) std::swap(OldVN, NewVN);
    
    for (DenseMap<MachineBasicBlock*, VNInfo*>::iterator LOI = LiveOut.begin(),
         LOE = LiveOut.end(); LOI != LOE; ++LOI)
      if (LOI->second == OldVN)
        LOI->second = MergedVN;
    for (DenseMap<MachineInstr*, VNInfo*>::iterator NVI = NewVNs.begin(),
         NVE = NewVNs.end(); NVI != NVE; ++NVI)
      if (NVI->second == OldVN)
        NVI->second = MergedVN;
    for (DenseMap<MachineBasicBlock*, VNInfo*>::iterator PI = Phis.begin(),
         PE = Phis.end(); PI != PE; ++PI)
      if (PI->second == OldVN)
        PI->second = MergedVN;
    RetVNI = MergedVN;
  } else {
    // Otherwise, merge the incoming VNInfos with a phi join.  Create a new
    // VNInfo to represent the joined value.
    for (DenseMap<MachineBasicBlock*, VNInfo*>::iterator I =
           IncomingVNs.begin(), E = IncomingVNs.end(); I != E; ++I) {
      I->second->setHasPHIKill(true);
    }
  }
      
  SlotIndex EndIndex;
  if (IsIntraBlock) {
    EndIndex = LIs->getInstructionIndex(UseI).getDefIndex();
  } else
    EndIndex = LIs->getMBBEndIdx(MBB);
  LI->addRange(LiveRange(StartIndex, EndIndex, RetVNI));

  // Memoize results so we don't have to recompute them.
  if (!IsIntraBlock)
    LiveOut[MBB] = RetVNI;
  else {
    if (!NewVNs.count(UseI))
      NewVNs[UseI] = RetVNI;
    Visited.insert(UseI);
  }

  return RetVNI;
}

/// ReconstructLiveInterval - Recompute a live interval from scratch.
void PreAllocSplitting::ReconstructLiveInterval(LiveInterval* LI) {
  VNInfo::Allocator& Alloc = LIs->getVNInfoAllocator();
  
  // Clear the old ranges and valnos;
  LI->clear();
  
  // Cache the uses and defs of the register
  typedef DenseMap<MachineBasicBlock*, SmallPtrSet<MachineInstr*, 2> > RegMap;
  RegMap Defs, Uses;
  
  // Keep track of the new VNs we're creating.
  DenseMap<MachineInstr*, VNInfo*> NewVNs;
  SmallPtrSet<VNInfo*, 2> PhiVNs;
  
  // Cache defs, and create a new VNInfo for each def.
  for (MachineRegisterInfo::def_iterator DI = MRI->def_begin(LI->reg),
       DE = MRI->def_end(); DI != DE; ++DI) {
    Defs[(*DI).getParent()].insert(&*DI);
    
    SlotIndex DefIdx = LIs->getInstructionIndex(&*DI);
    DefIdx = DefIdx.getDefIndex();
    
    assert(!DI->isPHI() && "PHI instr in code during pre-alloc splitting.");
    VNInfo* NewVN = LI->getNextValue(DefIdx, 0, true, Alloc);
    
    // If the def is a move, set the copy field.
    if (DI->isCopyLike() && DI->getOperand(0).getReg() == LI->reg)
      NewVN->setCopy(&*DI);

    NewVNs[&*DI] = NewVN;
  }
  
  // Cache uses as a separate pass from actually processing them.
  for (MachineRegisterInfo::use_iterator UI = MRI->use_begin(LI->reg),
       UE = MRI->use_end(); UI != UE; ++UI)
    Uses[(*UI).getParent()].insert(&*UI);
    
  // Now, actually process every use and use a phi construction algorithm
  // to walk from it to its reaching definitions, building VNInfos along
  // the way.
  DenseMap<MachineBasicBlock*, VNInfo*> LiveOut;
  DenseMap<MachineBasicBlock*, VNInfo*> Phis;
  SmallPtrSet<MachineInstr*, 4> Visited;
  for (MachineRegisterInfo::use_iterator UI = MRI->use_begin(LI->reg),
       UE = MRI->use_end(); UI != UE; ++UI) {
    PerformPHIConstruction(&*UI, UI->getParent(), LI, Visited, Defs,
                           Uses, NewVNs, LiveOut, Phis, true, true); 
  }
  
  // Add ranges for dead defs
  for (MachineRegisterInfo::def_iterator DI = MRI->def_begin(LI->reg),
       DE = MRI->def_end(); DI != DE; ++DI) {
    SlotIndex DefIdx = LIs->getInstructionIndex(&*DI);
    DefIdx = DefIdx.getDefIndex();
    
    if (LI->liveAt(DefIdx)) continue;
    
    VNInfo* DeadVN = NewVNs[&*DI];
    LI->addRange(LiveRange(DefIdx, DefIdx.getNextSlot(), DeadVN));
  }
}

/// RenumberValno - Split the given valno out into a new vreg, allowing it to
/// be allocated to a different register.  This function creates a new vreg,
/// copies the valno and its live ranges over to the new vreg's interval,
/// removes them from the old interval, and rewrites all uses and defs of
/// the original reg to the new vreg within those ranges.
void PreAllocSplitting::RenumberValno(VNInfo* VN) {
  SmallVector<VNInfo*, 4> Stack;
  SmallVector<VNInfo*, 4> VNsToCopy;
  Stack.push_back(VN);

  // Walk through and copy the valno we care about, and any other valnos
  // that are two-address redefinitions of the one we care about.  These
  // will need to be rewritten as well.  We also check for safety of the 
  // renumbering here, by making sure that none of the valno involved has
  // phi kills.
  while (!Stack.empty()) {
    VNInfo* OldVN = Stack.back();
    Stack.pop_back();
    
    // Bail out if we ever encounter a valno that has a PHI kill.  We can't
    // renumber these.
    if (OldVN->hasPHIKill()) return;
    
    VNsToCopy.push_back(OldVN);
    
    // Locate two-address redefinitions
    for (MachineRegisterInfo::def_iterator DI = MRI->def_begin(CurrLI->reg),
         DE = MRI->def_end(); DI != DE; ++DI) {
      if (!DI->isRegTiedToUseOperand(DI.getOperandNo())) continue;
      SlotIndex DefIdx = LIs->getInstructionIndex(&*DI).getDefIndex();
      VNInfo* NextVN = CurrLI->findDefinedVNInfoForRegInt(DefIdx);
      if (std::find(VNsToCopy.begin(), VNsToCopy.end(), NextVN) !=
          VNsToCopy.end())
        Stack.push_back(NextVN);
    }
  }
  
  // Create the new vreg
  unsigned NewVReg = MRI->createVirtualRegister(MRI->getRegClass(CurrLI->reg));
  
  // Create the new live interval
  LiveInterval& NewLI = LIs->getOrCreateInterval(NewVReg);
  
  for (SmallVector<VNInfo*, 4>::iterator OI = VNsToCopy.begin(), OE = 
       VNsToCopy.end(); OI != OE; ++OI) {
    VNInfo* OldVN = *OI;
    
    // Copy the valno over
    VNInfo* NewVN = NewLI.createValueCopy(OldVN, LIs->getVNInfoAllocator());
    NewLI.MergeValueInAsValue(*CurrLI, OldVN, NewVN);

    // Remove the valno from the old interval
    CurrLI->removeValNo(OldVN);
  }
  
  // Rewrite defs and uses.  This is done in two stages to avoid invalidating
  // the reg_iterator.
  SmallVector<std::pair<MachineInstr*, unsigned>, 8> OpsToChange;
  
  for (MachineRegisterInfo::reg_iterator I = MRI->reg_begin(CurrLI->reg),
         E = MRI->reg_end(); I != E; ++I) {
    MachineOperand& MO = I.getOperand();
    SlotIndex InstrIdx = LIs->getInstructionIndex(&*I);
    
    if ((MO.isUse() && NewLI.liveAt(InstrIdx.getUseIndex())) ||
        (MO.isDef() && NewLI.liveAt(InstrIdx.getDefIndex())))
      OpsToChange.push_back(std::make_pair(&*I, I.getOperandNo()));
  }
  
  for (SmallVector<std::pair<MachineInstr*, unsigned>, 8>::iterator I =
       OpsToChange.begin(), E = OpsToChange.end(); I != E; ++I) {
    MachineInstr* Inst = I->first;
    unsigned OpIdx = I->second;
    MachineOperand& MO = Inst->getOperand(OpIdx);
    MO.setReg(NewVReg);
  }
  
  // Grow the VirtRegMap, since we've created a new vreg.
  VRM->grow();
  
  // The renumbered vreg shares a stack slot with the old register.
  if (IntervalSSMap.count(CurrLI->reg))
    IntervalSSMap[NewVReg] = IntervalSSMap[CurrLI->reg];
  
  ++NumRenumbers;
}

bool PreAllocSplitting::Rematerialize(unsigned VReg, VNInfo* ValNo,
                                      MachineInstr* DefMI,
                                      MachineBasicBlock::iterator RestorePt,
                                    SmallPtrSet<MachineInstr*, 4>& RefsInMBB) {
  MachineBasicBlock& MBB = *RestorePt->getParent();
  
  MachineBasicBlock::iterator KillPt = BarrierMBB->end();
  if (!ValNo->isDefAccurate() || DefMI->getParent() == BarrierMBB)
    KillPt = findSpillPoint(BarrierMBB, Barrier, NULL, RefsInMBB);
  else
    KillPt = llvm::next(MachineBasicBlock::iterator(DefMI));
  
  if (KillPt == DefMI->getParent()->end())
    return false;
  
  TII->reMaterialize(MBB, RestorePt, VReg, 0, DefMI, *TRI);
  SlotIndex RematIdx = LIs->InsertMachineInstrInMaps(prior(RestorePt));
  
  ReconstructLiveInterval(CurrLI);
  RematIdx = RematIdx.getDefIndex();
  RenumberValno(CurrLI->findDefinedVNInfoForRegInt(RematIdx));
  
  ++NumSplits;
  ++NumRemats;
  return true;  
}

MachineInstr* PreAllocSplitting::FoldSpill(unsigned vreg, 
                                           const TargetRegisterClass* RC,
                                           MachineInstr* DefMI,
                                           MachineInstr* Barrier,
                                           MachineBasicBlock* MBB,
                                           int& SS,
                                    SmallPtrSet<MachineInstr*, 4>& RefsInMBB) {
  // Go top down if RefsInMBB is empty.
  if (RefsInMBB.empty())
    return 0;
  
  MachineBasicBlock::iterator FoldPt = Barrier;
  while (&*FoldPt != DefMI && FoldPt != MBB->begin() &&
         !RefsInMBB.count(FoldPt))
    --FoldPt;
  
  int OpIdx = FoldPt->findRegisterDefOperandIdx(vreg);
  if (OpIdx == -1)
    return 0;
  
  SmallVector<unsigned, 1> Ops;
  Ops.push_back(OpIdx);
  
  if (!TII->canFoldMemoryOperand(FoldPt, Ops))
    return 0;
  
  DenseMap<unsigned, int>::iterator I = IntervalSSMap.find(vreg);
  if (I != IntervalSSMap.end()) {
    SS = I->second;
  } else {
    SS = MFI->CreateSpillStackObject(RC->getSize(), RC->getAlignment());
  }
  
  MachineInstr* FMI = TII->foldMemoryOperand(FoldPt, Ops, SS);
  
  if (FMI) {
    LIs->ReplaceMachineInstrInMaps(FoldPt, FMI);
    FoldPt->eraseFromParent();
    ++NumFolds;
    
    IntervalSSMap[vreg] = SS;
    CurrSLI = &LSs->getOrCreateInterval(SS, RC);
    if (CurrSLI->hasAtLeastOneValue())
      CurrSValNo = CurrSLI->getValNumInfo(0);
    else
      CurrSValNo = CurrSLI->getNextValue(SlotIndex(), 0, false,
                                         LSs->getVNInfoAllocator());
  }
  
  return FMI;
}

MachineInstr* PreAllocSplitting::FoldRestore(unsigned vreg, 
                                             const TargetRegisterClass* RC,
                                             MachineInstr* Barrier,
                                             MachineBasicBlock* MBB,
                                             int SS,
                                     SmallPtrSet<MachineInstr*, 4>& RefsInMBB) {
  if ((int)RestoreFoldLimit != -1 && RestoreFoldLimit == (int)NumRestoreFolds)
    return 0;
                                       
  // Go top down if RefsInMBB is empty.
  if (RefsInMBB.empty())
    return 0;
  
  // Can't fold a restore between a call stack setup and teardown.
  MachineBasicBlock::iterator FoldPt = Barrier;
  
  // Advance from barrier to call frame teardown.
  while (FoldPt != MBB->getFirstTerminator() &&
         FoldPt->getOpcode() != TRI->getCallFrameDestroyOpcode()) {
    if (RefsInMBB.count(FoldPt))
      return 0;
    
    ++FoldPt;
  }
  
  if (FoldPt == MBB->getFirstTerminator())
    return 0;
  else
    ++FoldPt;
  
  // Now find the restore point.
  while (FoldPt != MBB->getFirstTerminator() && !RefsInMBB.count(FoldPt)) {
    if (FoldPt->getOpcode() == TRI->getCallFrameSetupOpcode()) {
      while (FoldPt != MBB->getFirstTerminator() &&
             FoldPt->getOpcode() != TRI->getCallFrameDestroyOpcode()) {
        if (RefsInMBB.count(FoldPt))
          return 0;
        
        ++FoldPt;
      }
      
      if (FoldPt == MBB->getFirstTerminator())
        return 0;
    } 
    
    ++FoldPt;
  }
  
  if (FoldPt == MBB->getFirstTerminator())
    return 0;
  
  int OpIdx = FoldPt->findRegisterUseOperandIdx(vreg, true);
  if (OpIdx == -1)
    return 0;
  
  SmallVector<unsigned, 1> Ops;
  Ops.push_back(OpIdx);
  
  if (!TII->canFoldMemoryOperand(FoldPt, Ops))
    return 0;
  
  MachineInstr* FMI = TII->foldMemoryOperand(FoldPt, Ops, SS);
  
  if (FMI) {
    LIs->ReplaceMachineInstrInMaps(FoldPt, FMI);
    FoldPt->eraseFromParent();
    ++NumRestoreFolds;
  }
  
  return FMI;
}

/// SplitRegLiveInterval - Split (spill and restore) the given live interval
/// so it would not cross the barrier that's being processed. Shrink wrap
/// (minimize) the live interval to the last uses.
bool PreAllocSplitting::SplitRegLiveInterval(LiveInterval *LI) {
  DEBUG(dbgs() << "Pre-alloc splitting " << LI->reg << " for " << *Barrier
               << "  result: ");

  CurrLI = LI;

  // Find live range where current interval cross the barrier.
  LiveInterval::iterator LR =
    CurrLI->FindLiveRangeContaining(BarrierIdx.getUseIndex());
  VNInfo *ValNo = LR->valno;

  assert(!ValNo->isUnused() && "Val# is defined by a dead def?");

  MachineInstr *DefMI = ValNo->isDefAccurate()
    ? LIs->getInstructionFromIndex(ValNo->def) : NULL;

  // If this would create a new join point, do not split.
  if (DefMI && createsNewJoin(LR, DefMI->getParent(), Barrier->getParent())) {
    DEBUG(dbgs() << "FAILED (would create a new join point).\n");
    return false;
  }

  // Find all references in the barrier mbb.
  SmallPtrSet<MachineInstr*, 4> RefsInMBB;
  for (MachineRegisterInfo::reg_iterator I = MRI->reg_begin(CurrLI->reg),
         E = MRI->reg_end(); I != E; ++I) {
    MachineInstr *RefMI = &*I;
    if (RefMI->getParent() == BarrierMBB)
      RefsInMBB.insert(RefMI);
  }

  // Find a point to restore the value after the barrier.
  MachineBasicBlock::iterator RestorePt =
    findRestorePoint(BarrierMBB, Barrier, LR->end, RefsInMBB);
  if (RestorePt == BarrierMBB->end()) {
    DEBUG(dbgs() << "FAILED (could not find a suitable restore point).\n");
    return false;
  }

  if (DefMI && LIs->isReMaterializable(*LI, ValNo, DefMI))
    if (Rematerialize(LI->reg, ValNo, DefMI, RestorePt, RefsInMBB)) {
      DEBUG(dbgs() << "success (remat).\n");
      return true;
    }

  // Add a spill either before the barrier or after the definition.
  MachineBasicBlock *DefMBB = DefMI ? DefMI->getParent() : NULL;
  const TargetRegisterClass *RC = MRI->getRegClass(CurrLI->reg);
  SlotIndex SpillIndex;
  MachineInstr *SpillMI = NULL;
  int SS = -1;
  if (!ValNo->isDefAccurate()) {
    // If we don't know where the def is we must split just before the barrier.
    if ((SpillMI = FoldSpill(LI->reg, RC, 0, Barrier,
                            BarrierMBB, SS, RefsInMBB))) {
      SpillIndex = LIs->getInstructionIndex(SpillMI);
    } else {
      MachineBasicBlock::iterator SpillPt = 
        findSpillPoint(BarrierMBB, Barrier, NULL, RefsInMBB);
      if (SpillPt == BarrierMBB->begin()) {
        DEBUG(dbgs() << "FAILED (could not find a suitable spill point).\n");
        return false; // No gap to insert spill.
      }
      // Add spill.
    
      SS = CreateSpillStackSlot(CurrLI->reg, RC);
      TII->storeRegToStackSlot(*BarrierMBB, SpillPt, CurrLI->reg, true, SS, RC,
                               TRI);
      SpillMI = prior(SpillPt);
      SpillIndex = LIs->InsertMachineInstrInMaps(SpillMI);
    }
  } else if (!IsAvailableInStack(DefMBB, CurrLI->reg, ValNo->def,
                                 LIs->getZeroIndex(), SpillIndex, SS)) {
    // If it's already split, just restore the value. There is no need to spill
    // the def again.
    if (!DefMI) {
      DEBUG(dbgs() << "FAILED (def is dead).\n");
      return false; // Def is dead. Do nothing.
    }
    
    if ((SpillMI = FoldSpill(LI->reg, RC, DefMI, Barrier,
                             BarrierMBB, SS, RefsInMBB))) {
      SpillIndex = LIs->getInstructionIndex(SpillMI);
    } else {
      // Check if it's possible to insert a spill after the def MI.
      MachineBasicBlock::iterator SpillPt;
      if (DefMBB == BarrierMBB) {
        // Add spill after the def and the last use before the barrier.
        SpillPt = findSpillPoint(BarrierMBB, Barrier, DefMI,
                                 RefsInMBB);
        if (SpillPt == DefMBB->begin()) {
          DEBUG(dbgs() << "FAILED (could not find a suitable spill point).\n");
          return false; // No gap to insert spill.
        }
      } else {
        SpillPt = llvm::next(MachineBasicBlock::iterator(DefMI));
        if (SpillPt == DefMBB->end()) {
          DEBUG(dbgs() << "FAILED (could not find a suitable spill point).\n");
          return false; // No gap to insert spill.
        }
      }
      // Add spill. 
      SS = CreateSpillStackSlot(CurrLI->reg, RC);
      TII->storeRegToStackSlot(*DefMBB, SpillPt, CurrLI->reg, false, SS, RC,
                               TRI);
      SpillMI = prior(SpillPt);
      SpillIndex = LIs->InsertMachineInstrInMaps(SpillMI);
    }
  }

  // Remember def instruction index to spill index mapping.
  if (DefMI && SpillMI)
    Def2SpillMap[ValNo->def] = SpillIndex;

  // Add restore.
  bool FoldedRestore = false;
  SlotIndex RestoreIndex;
  if (MachineInstr* LMI = FoldRestore(CurrLI->reg, RC, Barrier,
                                      BarrierMBB, SS, RefsInMBB)) {
    RestorePt = LMI;
    RestoreIndex = LIs->getInstructionIndex(RestorePt);
    FoldedRestore = true;
  } else {
    TII->loadRegFromStackSlot(*BarrierMBB, RestorePt, CurrLI->reg, SS, RC, TRI);
    MachineInstr *LoadMI = prior(RestorePt);
    RestoreIndex = LIs->InsertMachineInstrInMaps(LoadMI);
  }

  // Update spill stack slot live interval.
  UpdateSpillSlotInterval(ValNo, SpillIndex.getUseIndex().getNextSlot(),
                          RestoreIndex.getDefIndex());

  ReconstructLiveInterval(CurrLI);

  if (!FoldedRestore) {
    SlotIndex RestoreIdx = LIs->getInstructionIndex(prior(RestorePt));
    RestoreIdx = RestoreIdx.getDefIndex();
    RenumberValno(CurrLI->findDefinedVNInfoForRegInt(RestoreIdx));
  }
  
  ++NumSplits;
  DEBUG(dbgs() << "success.\n");
  return true;
}

/// SplitRegLiveIntervals - Split all register live intervals that cross the
/// barrier that's being processed.
bool
PreAllocSplitting::SplitRegLiveIntervals(const TargetRegisterClass **RCs,
                                         SmallPtrSet<LiveInterval*, 8>& Split) {
  // First find all the virtual registers whose live intervals are intercepted
  // by the current barrier.
  SmallVector<LiveInterval*, 8> Intervals;
  for (const TargetRegisterClass **RC = RCs; *RC; ++RC) {
    // FIXME: If it's not safe to move any instruction that defines the barrier
    // register class, then it means there are some special dependencies which
    // codegen is not modelling. Ignore these barriers for now.
    if (!TII->isSafeToMoveRegClassDefs(*RC))
      continue;
    const std::vector<unsigned> &VRs = MRI->getRegClassVirtRegs(*RC);
    for (unsigned i = 0, e = VRs.size(); i != e; ++i) {
      unsigned Reg = VRs[i];
      if (!LIs->hasInterval(Reg))
        continue;
      LiveInterval *LI = &LIs->getInterval(Reg);
      if (LI->liveAt(BarrierIdx) && !Barrier->readsRegister(Reg))
        // Virtual register live interval is intercepted by the barrier. We
        // should split and shrink wrap its interval if possible.
        Intervals.push_back(LI);
    }
  }

  // Process the affected live intervals.
  bool Change = false;
  while (!Intervals.empty()) {
    if (PreSplitLimit != -1 && (int)NumSplits == PreSplitLimit)
      break;
    LiveInterval *LI = Intervals.back();
    Intervals.pop_back();
    bool result = SplitRegLiveInterval(LI);
    if (result) Split.insert(LI);
    Change |= result;
  }

  return Change;
}

unsigned PreAllocSplitting::getNumberOfNonSpills(
                                  SmallPtrSet<MachineInstr*, 4>& MIs,
                                  unsigned Reg, int FrameIndex,
                                  bool& FeedsTwoAddr) {
  unsigned NonSpills = 0;
  for (SmallPtrSet<MachineInstr*, 4>::iterator UI = MIs.begin(), UE = MIs.end();
       UI != UE; ++UI) {
    int StoreFrameIndex;
    unsigned StoreVReg = TII->isStoreToStackSlot(*UI, StoreFrameIndex);
    if (StoreVReg != Reg || StoreFrameIndex != FrameIndex)
      ++NonSpills;
    
    int DefIdx = (*UI)->findRegisterDefOperandIdx(Reg);
    if (DefIdx != -1 && (*UI)->isRegTiedToUseOperand(DefIdx))
      FeedsTwoAddr = true;
  }
  
  return NonSpills;
}

/// removeDeadSpills - After doing splitting, filter through all intervals we've
/// split, and see if any of the spills are unnecessary.  If so, remove them.
bool PreAllocSplitting::removeDeadSpills(SmallPtrSet<LiveInterval*, 8>& split) {
  bool changed = false;
  
  // Walk over all of the live intervals that were touched by the splitter,
  // and see if we can do any DCE and/or folding.
  for (SmallPtrSet<LiveInterval*, 8>::iterator LI = split.begin(),
       LE = split.end(); LI != LE; ++LI) {
    DenseMap<VNInfo*, SmallPtrSet<MachineInstr*, 4> > VNUseCount;
    
    // First, collect all the uses of the vreg, and sort them by their
    // reaching definition (VNInfo).
    for (MachineRegisterInfo::use_iterator UI = MRI->use_begin((*LI)->reg),
         UE = MRI->use_end(); UI != UE; ++UI) {
      SlotIndex index = LIs->getInstructionIndex(&*UI);
      index = index.getUseIndex();
      
      const LiveRange* LR = (*LI)->getLiveRangeContaining(index);
      VNUseCount[LR->valno].insert(&*UI);
    }
    
    // Now, take the definitions (VNInfo's) one at a time and try to DCE 
    // and/or fold them away.
    for (LiveInterval::vni_iterator VI = (*LI)->vni_begin(),
         VE = (*LI)->vni_end(); VI != VE; ++VI) {
      
      if (DeadSplitLimit != -1 && (int)NumDeadSpills == DeadSplitLimit) 
        return changed;
      
      VNInfo* CurrVN = *VI;
      
      // We don't currently try to handle definitions with PHI kills, because
      // it would involve processing more than one VNInfo at once.
      if (CurrVN->hasPHIKill()) continue;
      
      // We also don't try to handle the results of PHI joins, since there's
      // no defining instruction to analyze.
      if (!CurrVN->isDefAccurate() || CurrVN->isUnused()) continue;
    
      // We're only interested in eliminating cruft introduced by the splitter,
      // is of the form load-use or load-use-store.  First, check that the
      // definition is a load, and remember what stack slot we loaded it from.
      MachineInstr* DefMI = LIs->getInstructionFromIndex(CurrVN->def);
      int FrameIndex;
      if (!TII->isLoadFromStackSlot(DefMI, FrameIndex)) continue;
      
      // If the definition has no uses at all, just DCE it.
      if (VNUseCount[CurrVN].size() == 0) {
        LIs->RemoveMachineInstrFromMaps(DefMI);
        (*LI)->removeValNo(CurrVN);
        DefMI->eraseFromParent();
        VNUseCount.erase(CurrVN);
        ++NumDeadSpills;
        changed = true;
        continue;
      }
      
      // Second, get the number of non-store uses of the definition, as well as
      // a flag indicating whether it feeds into a later two-address definition.
      bool FeedsTwoAddr = false;
      unsigned NonSpillCount = getNumberOfNonSpills(VNUseCount[CurrVN],
                                                    (*LI)->reg, FrameIndex,
                                                    FeedsTwoAddr);
      
      // If there's one non-store use and it doesn't feed a two-addr, then
      // this is a load-use-store case that we can try to fold.
      if (NonSpillCount == 1 && !FeedsTwoAddr) {
        // Start by finding the non-store use MachineInstr.
        SmallPtrSet<MachineInstr*, 4>::iterator UI = VNUseCount[CurrVN].begin();
        int StoreFrameIndex;
        unsigned StoreVReg = TII->isStoreToStackSlot(*UI, StoreFrameIndex);
        while (UI != VNUseCount[CurrVN].end() &&
               (StoreVReg == (*LI)->reg && StoreFrameIndex == FrameIndex)) {
          ++UI;
          if (UI != VNUseCount[CurrVN].end())
            StoreVReg = TII->isStoreToStackSlot(*UI, StoreFrameIndex);
        }
        if (UI == VNUseCount[CurrVN].end()) continue;
        
        MachineInstr* use = *UI;
        
        // Attempt to fold it away!
        int OpIdx = use->findRegisterUseOperandIdx((*LI)->reg, false);
        if (OpIdx == -1) continue;
        SmallVector<unsigned, 1> Ops;
        Ops.push_back(OpIdx);
        if (!TII->canFoldMemoryOperand(use, Ops)) continue;

        MachineInstr* NewMI = TII->foldMemoryOperand(use, Ops, FrameIndex);

        if (!NewMI) continue;

        // Update relevant analyses.
        LIs->RemoveMachineInstrFromMaps(DefMI);
        LIs->ReplaceMachineInstrInMaps(use, NewMI);
        (*LI)->removeValNo(CurrVN);

        DefMI->eraseFromParent();
        use->eraseFromParent();
        VNUseCount[CurrVN].erase(use);

        // Remove deleted instructions.  Note that we need to remove them from 
        // the VNInfo->use map as well, just to be safe.
        for (SmallPtrSet<MachineInstr*, 4>::iterator II = 
             VNUseCount[CurrVN].begin(), IE = VNUseCount[CurrVN].end();
             II != IE; ++II) {
          for (DenseMap<VNInfo*, SmallPtrSet<MachineInstr*, 4> >::iterator
               VNI = VNUseCount.begin(), VNE = VNUseCount.end(); VNI != VNE; 
               ++VNI)
            if (VNI->first != CurrVN)
              VNI->second.erase(*II);
          LIs->RemoveMachineInstrFromMaps(*II);
          (*II)->eraseFromParent();
        }
        
        VNUseCount.erase(CurrVN);

        for (DenseMap<VNInfo*, SmallPtrSet<MachineInstr*, 4> >::iterator
             VI = VNUseCount.begin(), VE = VNUseCount.end(); VI != VE; ++VI)
          if (VI->second.erase(use))
            VI->second.insert(NewMI);

        ++NumDeadSpills;
        changed = true;
        continue;
      }
      
      // If there's more than one non-store instruction, we can't profitably
      // fold it, so bail.
      if (NonSpillCount) continue;
        
      // Otherwise, this is a load-store case, so DCE them.
      for (SmallPtrSet<MachineInstr*, 4>::iterator UI = 
           VNUseCount[CurrVN].begin(), UE = VNUseCount[CurrVN].end();
           UI != UE; ++UI) {
        LIs->RemoveMachineInstrFromMaps(*UI);
        (*UI)->eraseFromParent();
      }
        
      VNUseCount.erase(CurrVN);
        
      LIs->RemoveMachineInstrFromMaps(DefMI);
      (*LI)->removeValNo(CurrVN);
      DefMI->eraseFromParent();
      ++NumDeadSpills;
      changed = true;
    }
  }
  
  return changed;
}

bool PreAllocSplitting::createsNewJoin(LiveRange* LR,
                                       MachineBasicBlock* DefMBB,
                                       MachineBasicBlock* BarrierMBB) {
  if (DefMBB == BarrierMBB)
    return false;
  
  if (LR->valno->hasPHIKill())
    return false;
  
  SlotIndex MBBEnd = LIs->getMBBEndIdx(BarrierMBB);
  if (LR->end < MBBEnd)
    return false;
  
  MachineLoopInfo& MLI = getAnalysis<MachineLoopInfo>();
  if (MLI.getLoopFor(DefMBB) != MLI.getLoopFor(BarrierMBB))
    return true;
  
  MachineDominatorTree& MDT = getAnalysis<MachineDominatorTree>();
  SmallPtrSet<MachineBasicBlock*, 4> Visited;
  typedef std::pair<MachineBasicBlock*,
                    MachineBasicBlock::succ_iterator> ItPair;
  SmallVector<ItPair, 4> Stack;
  Stack.push_back(std::make_pair(BarrierMBB, BarrierMBB->succ_begin()));
  
  while (!Stack.empty()) {
    ItPair P = Stack.back();
    Stack.pop_back();
    
    MachineBasicBlock* PredMBB = P.first;
    MachineBasicBlock::succ_iterator S = P.second;
    
    if (S == PredMBB->succ_end())
      continue;
    else if (Visited.count(*S)) {
      Stack.push_back(std::make_pair(PredMBB, ++S));
      continue;
    } else
      Stack.push_back(std::make_pair(PredMBB, S+1));
    
    MachineBasicBlock* MBB = *S;
    Visited.insert(MBB);
    
    if (MBB == BarrierMBB)
      return true;
    
    MachineDomTreeNode* DefMDTN = MDT.getNode(DefMBB);
    MachineDomTreeNode* BarrierMDTN = MDT.getNode(BarrierMBB);
    MachineDomTreeNode* MDTN = MDT.getNode(MBB)->getIDom();
    while (MDTN) {
      if (MDTN == DefMDTN)
        return true;
      else if (MDTN == BarrierMDTN)
        break;
      MDTN = MDTN->getIDom();
    }
    
    MBBEnd = LIs->getMBBEndIdx(MBB);
    if (LR->end > MBBEnd)
      Stack.push_back(std::make_pair(MBB, MBB->succ_begin()));
  }
  
  return false;
} 
  

bool PreAllocSplitting::runOnMachineFunction(MachineFunction &MF) {
  CurrMF = &MF;
  TM     = &MF.getTarget();
  TRI    = TM->getRegisterInfo();
  TII    = TM->getInstrInfo();
  MFI    = MF.getFrameInfo();
  MRI    = &MF.getRegInfo();
  SIs    = &getAnalysis<SlotIndexes>();
  LIs    = &getAnalysis<LiveIntervals>();
  LSs    = &getAnalysis<LiveStacks>();
  VRM    = &getAnalysis<VirtRegMap>();

  bool MadeChange = false;

  // Make sure blocks are numbered in order.
  MF.RenumberBlocks();

  MachineBasicBlock *Entry = MF.begin();
  SmallPtrSet<MachineBasicBlock*,16> Visited;

  SmallPtrSet<LiveInterval*, 8> Split;

  for (df_ext_iterator<MachineBasicBlock*, SmallPtrSet<MachineBasicBlock*,16> >
         DFI = df_ext_begin(Entry, Visited), E = df_ext_end(Entry, Visited);
       DFI != E; ++DFI) {
    BarrierMBB = *DFI;
    for (MachineBasicBlock::iterator I = BarrierMBB->begin(),
           E = BarrierMBB->end(); I != E; ++I) {
      Barrier = &*I;
      const TargetRegisterClass **BarrierRCs =
        Barrier->getDesc().getRegClassBarriers();
      if (!BarrierRCs)
        continue;
      BarrierIdx = LIs->getInstructionIndex(Barrier);
      MadeChange |= SplitRegLiveIntervals(BarrierRCs, Split);
    }
  }

  MadeChange |= removeDeadSpills(Split);

  return MadeChange;
}