llvm.org GIT mirror llvm / 71f7f73 lib / CodeGen / MachineLICM.cpp
71f7f73

Tree @71f7f73 (Download .tar.gz)

MachineLICM.cpp @71f7f73raw · history · blame

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
//===-- MachineLICM.cpp - Machine Loop Invariant Code Motion Pass ---------===//
//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This pass performs loop invariant code motion on machine instructions. We
// attempt to remove as much code from the body of a loop as possible.
//
// This pass does not attempt to throttle itself to limit register pressure.
// The register allocation phases are expected to perform rematerialization
// to recover when register pressure is high.
//
// This pass is not intended to be a replacement or a complete alternative
// for the LLVM-IR-level LICM pass. It is only designed to hoist simple
// constructs that are not exposed before lowering and instruction selection.
//
//===----------------------------------------------------------------------===//

#define DEBUG_TYPE "machine-licm"
#include "llvm/CodeGen/Passes.h"
#include "llvm/CodeGen/MachineDominators.h"
#include "llvm/CodeGen/MachineFrameInfo.h"
#include "llvm/CodeGen/MachineLoopInfo.h"
#include "llvm/CodeGen/MachineMemOperand.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/CodeGen/PseudoSourceValue.h"
#include "llvm/Target/TargetRegisterInfo.h"
#include "llvm/Target/TargetInstrInfo.h"
#include "llvm/Target/TargetMachine.h"
#include "llvm/Analysis/AliasAnalysis.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/SmallSet.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/raw_ostream.h"

using namespace llvm;

STATISTIC(NumHoisted, "Number of machine instructions hoisted out of loops");
STATISTIC(NumCSEed,   "Number of hoisted machine instructions CSEed");
STATISTIC(NumPostRAHoisted,
          "Number of machine instructions hoisted out of loops post regalloc");

namespace {
  class MachineLICM : public MachineFunctionPass {
    bool PreRegAlloc;

    const TargetMachine   *TM;
    const TargetInstrInfo *TII;
    const TargetRegisterInfo *TRI;
    const MachineFrameInfo *MFI;
    MachineRegisterInfo *RegInfo;

    // Various analyses that we use...
    AliasAnalysis        *AA;      // Alias analysis info.
    MachineLoopInfo      *MLI;     // Current MachineLoopInfo
    MachineDominatorTree *DT;      // Machine dominator tree for the cur loop

    // State that is updated as we process loops
    bool         Changed;          // True if a loop is changed.
    bool         FirstInLoop;      // True if it's the first LICM in the loop.
    MachineLoop *CurLoop;          // The current loop we are working on.
    MachineBasicBlock *CurPreheader; // The preheader for CurLoop.

    BitVector AllocatableSet;

    // For each opcode, keep a list of potential CSE instructions.
    DenseMap<unsigned, std::vector<const MachineInstr*> > CSEMap;

  public:
    static char ID; // Pass identification, replacement for typeid
    MachineLICM() :
      MachineFunctionPass(ID), PreRegAlloc(true) {}

    explicit MachineLICM(bool PreRA) :
      MachineFunctionPass(ID), PreRegAlloc(PreRA) {}

    virtual bool runOnMachineFunction(MachineFunction &MF);

    const char *getPassName() const { return "Machine Instruction LICM"; }

    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
      AU.setPreservesCFG();
      AU.addRequired<MachineLoopInfo>();
      AU.addRequired<MachineDominatorTree>();
      AU.addRequired<AliasAnalysis>();
      AU.addPreserved<MachineLoopInfo>();
      AU.addPreserved<MachineDominatorTree>();
      MachineFunctionPass::getAnalysisUsage(AU);
    }

    virtual void releaseMemory() {
      CSEMap.clear();
    }

  private:
    /// CandidateInfo - Keep track of information about hoisting candidates.
    struct CandidateInfo {
      MachineInstr *MI;
      unsigned      Def;
      int           FI;
      CandidateInfo(MachineInstr *mi, unsigned def, int fi)
        : MI(mi), Def(def), FI(fi) {}
    };

    /// HoistRegionPostRA - Walk the specified region of the CFG and hoist loop
    /// invariants out to the preheader.
    void HoistRegionPostRA();

    /// HoistPostRA - When an instruction is found to only use loop invariant
    /// operands that is safe to hoist, this instruction is called to do the
    /// dirty work.
    void HoistPostRA(MachineInstr *MI, unsigned Def);

    /// ProcessMI - Examine the instruction for potentai LICM candidate. Also
    /// gather register def and frame object update information.
    void ProcessMI(MachineInstr *MI, unsigned *PhysRegDefs,
                   SmallSet<int, 32> &StoredFIs,
                   SmallVector<CandidateInfo, 32> &Candidates);

    /// AddToLiveIns - Add register 'Reg' to the livein sets of BBs in the
    /// current loop.
    void AddToLiveIns(unsigned Reg);

    /// IsLICMCandidate - Returns true if the instruction may be a suitable
    /// candidate for LICM. e.g. If the instruction is a call, then it's
    /// obviously not safe to hoist it.
    bool IsLICMCandidate(MachineInstr &I);

    /// IsLoopInvariantInst - Returns true if the instruction is loop
    /// invariant. I.e., all virtual register operands are defined outside of
    /// the loop, physical registers aren't accessed (explicitly or implicitly),
    /// and the instruction is hoistable.
    /// 
    bool IsLoopInvariantInst(MachineInstr &I);

    /// IsProfitableToHoist - Return true if it is potentially profitable to
    /// hoist the given loop invariant.
    bool IsProfitableToHoist(MachineInstr &MI);

    /// HoistRegion - Walk the specified region of the CFG (defined by all
    /// blocks dominated by the specified block, and that are in the current
    /// loop) in depth first order w.r.t the DominatorTree. This allows us to
    /// visit definitions before uses, allowing us to hoist a loop body in one
    /// pass without iteration.
    ///
    void HoistRegion(MachineDomTreeNode *N);

    /// isLoadFromConstantMemory - Return true if the given instruction is a
    /// load from constant memory.
    bool isLoadFromConstantMemory(MachineInstr *MI);

    /// ExtractHoistableLoad - Unfold a load from the given machineinstr if
    /// the load itself could be hoisted. Return the unfolded and hoistable
    /// load, or null if the load couldn't be unfolded or if it wouldn't
    /// be hoistable.
    MachineInstr *ExtractHoistableLoad(MachineInstr *MI);

    /// LookForDuplicate - Find an instruction amount PrevMIs that is a
    /// duplicate of MI. Return this instruction if it's found.
    const MachineInstr *LookForDuplicate(const MachineInstr *MI,
                                     std::vector<const MachineInstr*> &PrevMIs);

    /// EliminateCSE - Given a LICM'ed instruction, look for an instruction on
    /// the preheader that compute the same value. If it's found, do a RAU on
    /// with the definition of the existing instruction rather than hoisting
    /// the instruction to the preheader.
    bool EliminateCSE(MachineInstr *MI,
           DenseMap<unsigned, std::vector<const MachineInstr*> >::iterator &CI);

    /// Hoist - When an instruction is found to only use loop invariant operands
    /// that is safe to hoist, this instruction is called to do the dirty work.
    ///
    void Hoist(MachineInstr *MI);

    /// InitCSEMap - Initialize the CSE map with instructions that are in the
    /// current loop preheader that may become duplicates of instructions that
    /// are hoisted out of the loop.
    void InitCSEMap(MachineBasicBlock *BB);

    /// getCurPreheader - Get the preheader for the current loop, splitting
    /// a critical edge if needed.
    MachineBasicBlock *getCurPreheader();
  };
} // end anonymous namespace

char MachineLICM::ID = 0;
INITIALIZE_PASS(MachineLICM, "machinelicm",
                "Machine Loop Invariant Code Motion", false, false);

FunctionPass *llvm::createMachineLICMPass(bool PreRegAlloc) {
  return new MachineLICM(PreRegAlloc);
}

/// LoopIsOuterMostWithPredecessor - Test if the given loop is the outer-most
/// loop that has a unique predecessor.
static bool LoopIsOuterMostWithPredecessor(MachineLoop *CurLoop) {
  // Check whether this loop even has a unique predecessor.
  if (!CurLoop->getLoopPredecessor())
    return false;
  // Ok, now check to see if any of its outer loops do.
  for (MachineLoop *L = CurLoop->getParentLoop(); L; L = L->getParentLoop())
    if (L->getLoopPredecessor())
      return false;
  // None of them did, so this is the outermost with a unique predecessor.
  return true;
}

bool MachineLICM::runOnMachineFunction(MachineFunction &MF) {
  if (PreRegAlloc)
    DEBUG(dbgs() << "******** Pre-regalloc Machine LICM ********\n");
  else
    DEBUG(dbgs() << "******** Post-regalloc Machine LICM ********\n");

  Changed = FirstInLoop = false;
  TM = &MF.getTarget();
  TII = TM->getInstrInfo();
  TRI = TM->getRegisterInfo();
  MFI = MF.getFrameInfo();
  RegInfo = &MF.getRegInfo();
  AllocatableSet = TRI->getAllocatableSet(MF);

  // Get our Loop information...
  MLI = &getAnalysis<MachineLoopInfo>();
  DT  = &getAnalysis<MachineDominatorTree>();
  AA  = &getAnalysis<AliasAnalysis>();

  SmallVector<MachineLoop *, 8> Worklist(MLI->begin(), MLI->end());
  while (!Worklist.empty()) {
    CurLoop = Worklist.pop_back_val();
    CurPreheader = 0;

    // If this is done before regalloc, only visit outer-most preheader-sporting
    // loops.
    if (PreRegAlloc && !LoopIsOuterMostWithPredecessor(CurLoop)) {
      Worklist.append(CurLoop->begin(), CurLoop->end());
      continue;
    }

    if (!PreRegAlloc)
      HoistRegionPostRA();
    else {
      // CSEMap is initialized for loop header when the first instruction is
      // being hoisted.
      MachineDomTreeNode *N = DT->getNode(CurLoop->getHeader());
      FirstInLoop = true;
      HoistRegion(N);
      CSEMap.clear();
    }
  }

  return Changed;
}

/// InstructionStoresToFI - Return true if instruction stores to the
/// specified frame.
static bool InstructionStoresToFI(const MachineInstr *MI, int FI) {
  for (MachineInstr::mmo_iterator o = MI->memoperands_begin(),
         oe = MI->memoperands_end(); o != oe; ++o) {
    if (!(*o)->isStore() || !(*o)->getValue())
      continue;
    if (const FixedStackPseudoSourceValue *Value =
        dyn_cast<const FixedStackPseudoSourceValue>((*o)->getValue())) {
      if (Value->getFrameIndex() == FI)
        return true;
    }
  }
  return false;
}

/// ProcessMI - Examine the instruction for potentai LICM candidate. Also
/// gather register def and frame object update information.
void MachineLICM::ProcessMI(MachineInstr *MI,
                            unsigned *PhysRegDefs,
                            SmallSet<int, 32> &StoredFIs,
                            SmallVector<CandidateInfo, 32> &Candidates) {
  bool RuledOut = false;
  bool HasNonInvariantUse = false;
  unsigned Def = 0;
  for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
    const MachineOperand &MO = MI->getOperand(i);
    if (MO.isFI()) {
      // Remember if the instruction stores to the frame index.
      int FI = MO.getIndex();
      if (!StoredFIs.count(FI) &&
          MFI->isSpillSlotObjectIndex(FI) &&
          InstructionStoresToFI(MI, FI))
        StoredFIs.insert(FI);
      HasNonInvariantUse = true;
      continue;
    }

    if (!MO.isReg())
      continue;
    unsigned Reg = MO.getReg();
    if (!Reg)
      continue;
    assert(TargetRegisterInfo::isPhysicalRegister(Reg) &&
           "Not expecting virtual register!");

    if (!MO.isDef()) {
      if (Reg && PhysRegDefs[Reg])
        // If it's using a non-loop-invariant register, then it's obviously not
        // safe to hoist.
        HasNonInvariantUse = true;
      continue;
    }

    if (MO.isImplicit()) {
      ++PhysRegDefs[Reg];
      for (const unsigned *AS = TRI->getAliasSet(Reg); *AS; ++AS)
        ++PhysRegDefs[*AS];
      if (!MO.isDead())
        // Non-dead implicit def? This cannot be hoisted.
        RuledOut = true;
      // No need to check if a dead implicit def is also defined by
      // another instruction.
      continue;
    }

    // FIXME: For now, avoid instructions with multiple defs, unless
    // it's a dead implicit def.
    if (Def)
      RuledOut = true;
    else
      Def = Reg;

    // If we have already seen another instruction that defines the same
    // register, then this is not safe.
    if (++PhysRegDefs[Reg] > 1)
      // MI defined register is seen defined by another instruction in
      // the loop, it cannot be a LICM candidate.
      RuledOut = true;
    for (const unsigned *AS = TRI->getAliasSet(Reg); *AS; ++AS)
      if (++PhysRegDefs[*AS] > 1)
        RuledOut = true;
  }

  // Only consider reloads for now and remats which do not have register
  // operands. FIXME: Consider unfold load folding instructions.
  if (Def && !RuledOut) {
    int FI = INT_MIN;
    if ((!HasNonInvariantUse && IsLICMCandidate(*MI)) ||
        (TII->isLoadFromStackSlot(MI, FI) && MFI->isSpillSlotObjectIndex(FI)))
      Candidates.push_back(CandidateInfo(MI, Def, FI));
  }
}

/// HoistRegionPostRA - Walk the specified region of the CFG and hoist loop
/// invariants out to the preheader.
void MachineLICM::HoistRegionPostRA() {
  unsigned NumRegs = TRI->getNumRegs();
  unsigned *PhysRegDefs = new unsigned[NumRegs];
  std::fill(PhysRegDefs, PhysRegDefs + NumRegs, 0);

  SmallVector<CandidateInfo, 32> Candidates;
  SmallSet<int, 32> StoredFIs;

  // Walk the entire region, count number of defs for each register, and
  // collect potential LICM candidates.
  const std::vector<MachineBasicBlock*> Blocks = CurLoop->getBlocks();
  for (unsigned i = 0, e = Blocks.size(); i != e; ++i) {
    MachineBasicBlock *BB = Blocks[i];
    // Conservatively treat live-in's as an external def.
    // FIXME: That means a reload that're reused in successor block(s) will not
    // be LICM'ed.
    for (MachineBasicBlock::livein_iterator I = BB->livein_begin(),
           E = BB->livein_end(); I != E; ++I) {
      unsigned Reg = *I;
      ++PhysRegDefs[Reg];
      for (const unsigned *AS = TRI->getAliasSet(Reg); *AS; ++AS)
        ++PhysRegDefs[*AS];
    }

    for (MachineBasicBlock::iterator
           MII = BB->begin(), E = BB->end(); MII != E; ++MII) {
      MachineInstr *MI = &*MII;
      ProcessMI(MI, PhysRegDefs, StoredFIs, Candidates);
    }
  }

  // Now evaluate whether the potential candidates qualify.
  // 1. Check if the candidate defined register is defined by another
  //    instruction in the loop.
  // 2. If the candidate is a load from stack slot (always true for now),
  //    check if the slot is stored anywhere in the loop.
  for (unsigned i = 0, e = Candidates.size(); i != e; ++i) {
    if (Candidates[i].FI != INT_MIN &&
        StoredFIs.count(Candidates[i].FI))
      continue;

    if (PhysRegDefs[Candidates[i].Def] == 1) {
      bool Safe = true;
      MachineInstr *MI = Candidates[i].MI;
      for (unsigned j = 0, ee = MI->getNumOperands(); j != ee; ++j) {
        const MachineOperand &MO = MI->getOperand(j);
        if (!MO.isReg() || MO.isDef() || !MO.getReg())
          continue;
        if (PhysRegDefs[MO.getReg()]) {
          // If it's using a non-loop-invariant register, then it's obviously
          // not safe to hoist.
          Safe = false;
          break;
        }
      }
      if (Safe)
        HoistPostRA(MI, Candidates[i].Def);
    }
  }

  delete[] PhysRegDefs;
}

/// AddToLiveIns - Add register 'Reg' to the livein sets of BBs in the current
/// loop, and make sure it is not killed by any instructions in the loop.
void MachineLICM::AddToLiveIns(unsigned Reg) {
  const std::vector<MachineBasicBlock*> Blocks = CurLoop->getBlocks();
  for (unsigned i = 0, e = Blocks.size(); i != e; ++i) {
    MachineBasicBlock *BB = Blocks[i];
    if (!BB->isLiveIn(Reg))
      BB->addLiveIn(Reg);
    for (MachineBasicBlock::iterator
           MII = BB->begin(), E = BB->end(); MII != E; ++MII) {
      MachineInstr *MI = &*MII;
      for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
        MachineOperand &MO = MI->getOperand(i);
        if (!MO.isReg() || !MO.getReg() || MO.isDef()) continue;
        if (MO.getReg() == Reg || TRI->isSuperRegister(Reg, MO.getReg()))
          MO.setIsKill(false);
      }
    }
  }
}

/// HoistPostRA - When an instruction is found to only use loop invariant
/// operands that is safe to hoist, this instruction is called to do the
/// dirty work.
void MachineLICM::HoistPostRA(MachineInstr *MI, unsigned Def) {
  MachineBasicBlock *Preheader = getCurPreheader();
  if (!Preheader) return;

  // Now move the instructions to the predecessor, inserting it before any
  // terminator instructions.
  DEBUG({
      dbgs() << "Hoisting " << *MI;
      if (Preheader->getBasicBlock())
        dbgs() << " to MachineBasicBlock "
               << Preheader->getName();
      if (MI->getParent()->getBasicBlock())
        dbgs() << " from MachineBasicBlock "
               << MI->getParent()->getName();
      dbgs() << "\n";
    });

  // Splice the instruction to the preheader.
  MachineBasicBlock *MBB = MI->getParent();
  Preheader->splice(Preheader->getFirstTerminator(), MBB, MI);

  // Add register to livein list to all the BBs in the current loop since a 
  // loop invariant must be kept live throughout the whole loop. This is
  // important to ensure later passes do not scavenge the def register.
  AddToLiveIns(Def);

  ++NumPostRAHoisted;
  Changed = true;
}

/// HoistRegion - Walk the specified region of the CFG (defined by all blocks
/// dominated by the specified block, and that are in the current loop) in depth
/// first order w.r.t the DominatorTree. This allows us to visit definitions
/// before uses, allowing us to hoist a loop body in one pass without iteration.
///
void MachineLICM::HoistRegion(MachineDomTreeNode *N) {
  assert(N != 0 && "Null dominator tree node?");
  MachineBasicBlock *BB = N->getBlock();

  // If this subregion is not in the top level loop at all, exit.
  if (!CurLoop->contains(BB)) return;

  for (MachineBasicBlock::iterator
         MII = BB->begin(), E = BB->end(); MII != E; ) {
    MachineBasicBlock::iterator NextMII = MII; ++NextMII;
    Hoist(&*MII);
    MII = NextMII;
  }

  // Don't hoist things out of a large switch statement.  This often causes
  // code to be hoisted that wasn't going to be executed, and increases
  // register pressure in a situation where it's likely to matter.
  if (BB->succ_size() < 25) {
    const std::vector<MachineDomTreeNode*> &Children = N->getChildren();
    for (unsigned I = 0, E = Children.size(); I != E; ++I)
      HoistRegion(Children[I]);
  }
}

/// IsLICMCandidate - Returns true if the instruction may be a suitable
/// candidate for LICM. e.g. If the instruction is a call, then it's obviously
/// not safe to hoist it.
bool MachineLICM::IsLICMCandidate(MachineInstr &I) {
  // Check if it's safe to move the instruction.
  bool DontMoveAcrossStore = true;
  if (!I.isSafeToMove(TII, AA, DontMoveAcrossStore))
    return false;
  
  return true;
}

/// IsLoopInvariantInst - Returns true if the instruction is loop
/// invariant. I.e., all virtual register operands are defined outside of the
/// loop, physical registers aren't accessed explicitly, and there are no side
/// effects that aren't captured by the operands or other flags.
/// 
bool MachineLICM::IsLoopInvariantInst(MachineInstr &I) {
  if (!IsLICMCandidate(I))
    return false;

  // The instruction is loop invariant if all of its operands are.
  for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) {
    const MachineOperand &MO = I.getOperand(i);

    if (!MO.isReg())
      continue;

    unsigned Reg = MO.getReg();
    if (Reg == 0) continue;

    // Don't hoist an instruction that uses or defines a physical register.
    if (TargetRegisterInfo::isPhysicalRegister(Reg)) {
      if (MO.isUse()) {
        // If the physreg has no defs anywhere, it's just an ambient register
        // and we can freely move its uses. Alternatively, if it's allocatable,
        // it could get allocated to something with a def during allocation.
        if (!RegInfo->def_empty(Reg))
          return false;
        if (AllocatableSet.test(Reg))
          return false;
        // Check for a def among the register's aliases too.
        for (const unsigned *Alias = TRI->getAliasSet(Reg); *Alias; ++Alias) {
          unsigned AliasReg = *Alias;
          if (!RegInfo->def_empty(AliasReg))
            return false;
          if (AllocatableSet.test(AliasReg))
            return false;
        }
        // Otherwise it's safe to move.
        continue;
      } else if (!MO.isDead()) {
        // A def that isn't dead. We can't move it.
        return false;
      } else if (CurLoop->getHeader()->isLiveIn(Reg)) {
        // If the reg is live into the loop, we can't hoist an instruction
        // which would clobber it.
        return false;
      }
    }

    if (!MO.isUse())
      continue;

    assert(RegInfo->getVRegDef(Reg) &&
           "Machine instr not mapped for this vreg?!");

    // If the loop contains the definition of an operand, then the instruction
    // isn't loop invariant.
    if (CurLoop->contains(RegInfo->getVRegDef(Reg)))
      return false;
  }

  // If we got this far, the instruction is loop invariant!
  return true;
}


/// HasPHIUses - Return true if the specified register has any PHI use.
static bool HasPHIUses(unsigned Reg, MachineRegisterInfo *RegInfo) {
  for (MachineRegisterInfo::use_iterator UI = RegInfo->use_begin(Reg),
         UE = RegInfo->use_end(); UI != UE; ++UI) {
    MachineInstr *UseMI = &*UI;
    if (UseMI->isPHI())
      return true;
  }
  return false;
}

/// isLoadFromConstantMemory - Return true if the given instruction is a
/// load from constant memory. Machine LICM will hoist these even if they are
/// not re-materializable.
bool MachineLICM::isLoadFromConstantMemory(MachineInstr *MI) {
  if (!MI->getDesc().mayLoad()) return false;
  if (!MI->hasOneMemOperand()) return false;
  MachineMemOperand *MMO = *MI->memoperands_begin();
  if (MMO->isVolatile()) return false;
  if (!MMO->getValue()) return false;
  const PseudoSourceValue *PSV = dyn_cast<PseudoSourceValue>(MMO->getValue());
  if (PSV) {
    MachineFunction &MF = *MI->getParent()->getParent();
    return PSV->isConstant(MF.getFrameInfo());
  } else {
    return AA->pointsToConstantMemory(MMO->getValue());
  }
}

/// IsProfitableToHoist - Return true if it is potentially profitable to hoist
/// the given loop invariant.
bool MachineLICM::IsProfitableToHoist(MachineInstr &MI) {
  // FIXME: For now, only hoist re-materilizable instructions. LICM will
  // increase register pressure. We want to make sure it doesn't increase
  // spilling.
  // Also hoist loads from constant memory, e.g. load from stubs, GOT. Hoisting
  // these tend to help performance in low register pressure situation. The
  // trade off is it may cause spill in high pressure situation. It will end up
  // adding a store in the loop preheader. But the reload is no more expensive.
  // The side benefit is these loads are frequently CSE'ed.
  if (!TII->isTriviallyReMaterializable(&MI, AA)) {
    if (!isLoadFromConstantMemory(&MI))
      return false;
  }

  // If result(s) of this instruction is used by PHIs, then don't hoist it.
  // The presence of joins makes it difficult for current register allocator
  // implementation to perform remat.
  for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
    const MachineOperand &MO = MI.getOperand(i);
    if (!MO.isReg() || !MO.isDef())
      continue;
    if (HasPHIUses(MO.getReg(), RegInfo))
      return false;
  }

  return true;
}

MachineInstr *MachineLICM::ExtractHoistableLoad(MachineInstr *MI) {
  // If not, we may be able to unfold a load and hoist that.
  // First test whether the instruction is loading from an amenable
  // memory location.
  if (!isLoadFromConstantMemory(MI))
    return 0;

  // Next determine the register class for a temporary register.
  unsigned LoadRegIndex;
  unsigned NewOpc =
    TII->getOpcodeAfterMemoryUnfold(MI->getOpcode(),
                                    /*UnfoldLoad=*/true,
                                    /*UnfoldStore=*/false,
                                    &LoadRegIndex);
  if (NewOpc == 0) return 0;
  const TargetInstrDesc &TID = TII->get(NewOpc);
  if (TID.getNumDefs() != 1) return 0;
  const TargetRegisterClass *RC = TID.OpInfo[LoadRegIndex].getRegClass(TRI);
  // Ok, we're unfolding. Create a temporary register and do the unfold.
  unsigned Reg = RegInfo->createVirtualRegister(RC);

  MachineFunction &MF = *MI->getParent()->getParent();
  SmallVector<MachineInstr *, 2> NewMIs;
  bool Success =
    TII->unfoldMemoryOperand(MF, MI, Reg,
                             /*UnfoldLoad=*/true, /*UnfoldStore=*/false,
                             NewMIs);
  (void)Success;
  assert(Success &&
         "unfoldMemoryOperand failed when getOpcodeAfterMemoryUnfold "
         "succeeded!");
  assert(NewMIs.size() == 2 &&
         "Unfolded a load into multiple instructions!");
  MachineBasicBlock *MBB = MI->getParent();
  MBB->insert(MI, NewMIs[0]);
  MBB->insert(MI, NewMIs[1]);
  // If unfolding produced a load that wasn't loop-invariant or profitable to
  // hoist, discard the new instructions and bail.
  if (!IsLoopInvariantInst(*NewMIs[0]) || !IsProfitableToHoist(*NewMIs[0])) {
    NewMIs[0]->eraseFromParent();
    NewMIs[1]->eraseFromParent();
    return 0;
  }
  // Otherwise we successfully unfolded a load that we can hoist.
  MI->eraseFromParent();
  return NewMIs[0];
}

void MachineLICM::InitCSEMap(MachineBasicBlock *BB) {
  for (MachineBasicBlock::iterator I = BB->begin(),E = BB->end(); I != E; ++I) {
    const MachineInstr *MI = &*I;
    // FIXME: For now, only hoist re-materilizable instructions. LICM will
    // increase register pressure. We want to make sure it doesn't increase
    // spilling.
    if (TII->isTriviallyReMaterializable(MI, AA)) {
      unsigned Opcode = MI->getOpcode();
      DenseMap<unsigned, std::vector<const MachineInstr*> >::iterator
        CI = CSEMap.find(Opcode);
      if (CI != CSEMap.end())
        CI->second.push_back(MI);
      else {
        std::vector<const MachineInstr*> CSEMIs;
        CSEMIs.push_back(MI);
        CSEMap.insert(std::make_pair(Opcode, CSEMIs));
      }
    }
  }
}

const MachineInstr*
MachineLICM::LookForDuplicate(const MachineInstr *MI,
                              std::vector<const MachineInstr*> &PrevMIs) {
  for (unsigned i = 0, e = PrevMIs.size(); i != e; ++i) {
    const MachineInstr *PrevMI = PrevMIs[i];
    if (TII->produceSameValue(MI, PrevMI))
      return PrevMI;
  }
  return 0;
}

bool MachineLICM::EliminateCSE(MachineInstr *MI,
          DenseMap<unsigned, std::vector<const MachineInstr*> >::iterator &CI) {
  // Do not CSE implicit_def so ProcessImplicitDefs can properly propagate
  // the undef property onto uses.
  if (CI == CSEMap.end() || MI->isImplicitDef())
    return false;

  if (const MachineInstr *Dup = LookForDuplicate(MI, CI->second)) {
    DEBUG(dbgs() << "CSEing " << *MI << " with " << *Dup);

    // Replace virtual registers defined by MI by their counterparts defined
    // by Dup.
    for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
      const MachineOperand &MO = MI->getOperand(i);

      // Physical registers may not differ here.
      assert((!MO.isReg() || MO.getReg() == 0 ||
              !TargetRegisterInfo::isPhysicalRegister(MO.getReg()) ||
              MO.getReg() == Dup->getOperand(i).getReg()) &&
             "Instructions with different phys regs are not identical!");

      if (MO.isReg() && MO.isDef() &&
          !TargetRegisterInfo::isPhysicalRegister(MO.getReg())) {
        RegInfo->replaceRegWith(MO.getReg(), Dup->getOperand(i).getReg());
        RegInfo->clearKillFlags(Dup->getOperand(i).getReg());
      }
    }
    MI->eraseFromParent();
    ++NumCSEed;
    return true;
  }
  return false;
}

/// Hoist - When an instruction is found to use only loop invariant operands
/// that are safe to hoist, this instruction is called to do the dirty work.
///
void MachineLICM::Hoist(MachineInstr *MI) {
  MachineBasicBlock *Preheader = getCurPreheader();
  if (!Preheader) return;

  // First check whether we should hoist this instruction.
  if (!IsLoopInvariantInst(*MI) || !IsProfitableToHoist(*MI)) {
    // If not, try unfolding a hoistable load.
    MI = ExtractHoistableLoad(MI);
    if (!MI) return;
  }

  // Now move the instructions to the predecessor, inserting it before any
  // terminator instructions.
  DEBUG({
      dbgs() << "Hoisting " << *MI;
      if (Preheader->getBasicBlock())
        dbgs() << " to MachineBasicBlock "
               << Preheader->getName();
      if (MI->getParent()->getBasicBlock())
        dbgs() << " from MachineBasicBlock "
               << MI->getParent()->getName();
      dbgs() << "\n";
    });

  // If this is the first instruction being hoisted to the preheader,
  // initialize the CSE map with potential common expressions.
  if (FirstInLoop) {
    InitCSEMap(Preheader);
    FirstInLoop = false;
  }

  // Look for opportunity to CSE the hoisted instruction.
  unsigned Opcode = MI->getOpcode();
  DenseMap<unsigned, std::vector<const MachineInstr*> >::iterator
    CI = CSEMap.find(Opcode);
  if (!EliminateCSE(MI, CI)) {
    // Otherwise, splice the instruction to the preheader.
    Preheader->splice(Preheader->getFirstTerminator(),MI->getParent(),MI);

    // Clear the kill flags of any register this instruction defines,
    // since they may need to be live throughout the entire loop
    // rather than just live for part of it.
    for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
      MachineOperand &MO = MI->getOperand(i);
      if (MO.isReg() && MO.isDef() && !MO.isDead())
        RegInfo->clearKillFlags(MO.getReg());
    }

    // Add to the CSE map.
    if (CI != CSEMap.end())
      CI->second.push_back(MI);
    else {
      std::vector<const MachineInstr*> CSEMIs;
      CSEMIs.push_back(MI);
      CSEMap.insert(std::make_pair(Opcode, CSEMIs));
    }
  }

  ++NumHoisted;
  Changed = true;
}

MachineBasicBlock *MachineLICM::getCurPreheader() {
  // Determine the block to which to hoist instructions. If we can't find a
  // suitable loop predecessor, we can't do any hoisting.

  // If we've tried to get a preheader and failed, don't try again.
  if (CurPreheader == reinterpret_cast<MachineBasicBlock *>(-1))
    return 0;

  if (!CurPreheader) {
    CurPreheader = CurLoop->getLoopPreheader();
    if (!CurPreheader) {
      MachineBasicBlock *Pred = CurLoop->getLoopPredecessor();
      if (!Pred) {
        CurPreheader = reinterpret_cast<MachineBasicBlock *>(-1);
        return 0;
      }

      CurPreheader = Pred->SplitCriticalEdge(CurLoop->getHeader(), this);
      if (!CurPreheader) {
        CurPreheader = reinterpret_cast<MachineBasicBlock *>(-1);
        return 0;
      }
    }
  }
  return CurPreheader;
}