llvm.org GIT mirror llvm / 719df2e lib / IR / SafepointIRVerifier.cpp
719df2e

Tree @719df2e (Download .tar.gz)

SafepointIRVerifier.cpp @719df2eraw · history · blame

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
//===-- SafepointIRVerifier.cpp - Verify gc.statepoint invariants ---------===//
//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// Run a sanity check on the IR to ensure that Safepoints - if they've been
// inserted - were inserted correctly.  In particular, look for use of
// non-relocated values after a safepoint.  It's primary use is to check the
// correctness of safepoint insertion immediately after insertion, but it can
// also be used to verify that later transforms have not found a way to break
// safepoint semenatics.
//
// In its current form, this verify checks a property which is sufficient, but
// not neccessary for correctness.  There are some cases where an unrelocated
// pointer can be used after the safepoint.  Consider this example:
//
//    a = ...
//    b = ...
//    (a',b') = safepoint(a,b)
//    c = cmp eq a b
//    br c, ..., ....
//
// Because it is valid to reorder 'c' above the safepoint, this is legal.  In
// practice, this is a somewhat uncommon transform, but CodeGenPrep does create
// idioms like this.  The verifier knows about these cases and avoids reporting
// false positives.
//
//===----------------------------------------------------------------------===//

#include "llvm/ADT/DenseSet.h"
#include "llvm/ADT/PostOrderIterator.h"
#include "llvm/ADT/SetOperations.h"
#include "llvm/ADT/SetVector.h"
#include "llvm/IR/BasicBlock.h"
#include "llvm/IR/Dominators.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/Intrinsics.h"
#include "llvm/IR/IntrinsicInst.h"
#include "llvm/IR/Module.h"
#include "llvm/IR/Value.h"
#include "llvm/IR/SafepointIRVerifier.h"
#include "llvm/IR/Statepoint.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/raw_ostream.h"

#define DEBUG_TYPE "safepoint-ir-verifier"

using namespace llvm;

/// This option is used for writing test cases.  Instead of crashing the program
/// when verification fails, report a message to the console (for FileCheck
/// usage) and continue execution as if nothing happened.
static cl::opt<bool> PrintOnly("safepoint-ir-verifier-print-only",
                               cl::init(false));

namespace {

/// This CFG Deadness finds dead blocks and edges. Algorithm starts with a set
/// of blocks unreachable from entry then propagates deadness using foldable
/// conditional branches without modifying CFG. So GVN does but it changes CFG
/// by splitting critical edges. In most cases passes rely on SimplifyCFG to
/// clean up dead blocks, but in some cases, like verification or loop passes
/// it's not possible.
class CFGDeadness {
  const DominatorTree *DT = nullptr;
  SetVector<const BasicBlock *> DeadBlocks;
  SetVector<const Use *> DeadEdges; // Contains all dead edges from live blocks.

public:
  /// Return the edge that coresponds to the predecessor.
  static const Use& getEdge(const_pred_iterator &PredIt) {
    auto &PU = PredIt.getUse();
    return PU.getUser()->getOperandUse(PU.getOperandNo());
  }

  /// Return true if there is at least one live edge that corresponds to the
  /// basic block InBB listed in the phi node.
  bool hasLiveIncomingEdge(const PHINode *PN, const BasicBlock *InBB) const {
    assert(!isDeadBlock(InBB) && "block must be live");
    const BasicBlock* BB = PN->getParent();
    bool Listed = false;
    for (const_pred_iterator PredIt(BB), End(BB, true); PredIt != End; ++PredIt) {
      if (InBB == *PredIt) {
        if (!isDeadEdge(&getEdge(PredIt)))
          return true;
        Listed = true;
      }
    }
    (void)Listed;
    assert(Listed && "basic block is not found among incoming blocks");
    return false;
  }


  bool isDeadBlock(const BasicBlock *BB) const {
    return DeadBlocks.count(BB);
  }

  bool isDeadEdge(const Use *U) const {
    assert(dyn_cast<Instruction>(U->getUser())->isTerminator() &&
           "edge must be operand of terminator");
    assert(cast_or_null<BasicBlock>(U->get()) &&
           "edge must refer to basic block");
    assert(!isDeadBlock(dyn_cast<Instruction>(U->getUser())->getParent()) &&
           "isDeadEdge() must be applied to edge from live block");
    return DeadEdges.count(U);
  }

  bool hasLiveIncomingEdges(const BasicBlock *BB) const {
    // Check if all incoming edges are dead.
    for (const_pred_iterator PredIt(BB), End(BB, true); PredIt != End; ++PredIt) {
      auto &PU = PredIt.getUse();
      const Use &U = PU.getUser()->getOperandUse(PU.getOperandNo());
      if (!isDeadBlock(*PredIt) && !isDeadEdge(&U))
        return true; // Found a live edge.
    }
    return false;
  }

  void processFunction(const Function &F, const DominatorTree &DT) {
    this->DT = &DT;

    // Start with all blocks unreachable from entry.
    for (const BasicBlock &BB : F)
      if (!DT.isReachableFromEntry(&BB))
        DeadBlocks.insert(&BB);

    // Top-down walk of the dominator tree
    ReversePostOrderTraversal<const Function *> RPOT(&F);
    for (const BasicBlock *BB : RPOT) {
      const Instruction *TI = BB->getTerminator();
      assert(TI && "blocks must be well formed");

      // For conditional branches, we can perform simple conditional propagation on
      // the condition value itself.
      const BranchInst *BI = dyn_cast<BranchInst>(TI);
      if (!BI || !BI->isConditional() || !isa<Constant>(BI->getCondition()))
        continue;

      // If a branch has two identical successors, we cannot declare either dead.
      if (BI->getSuccessor(0) == BI->getSuccessor(1))
        continue;

      ConstantInt *Cond = dyn_cast<ConstantInt>(BI->getCondition());
      if (!Cond)
        continue;

      addDeadEdge(BI->getOperandUse(Cond->getZExtValue() ? 1 : 2));
    }
  }

protected:
  void addDeadBlock(const BasicBlock *BB) {
    SmallVector<const BasicBlock *, 4> NewDead;
    SmallSetVector<const BasicBlock *, 4> DF;

    NewDead.push_back(BB);
    while (!NewDead.empty()) {
      const BasicBlock *D = NewDead.pop_back_val();
      if (isDeadBlock(D))
        continue;

      // All blocks dominated by D are dead.
      SmallVector<BasicBlock *, 8> Dom;
      DT->getDescendants(const_cast<BasicBlock*>(D), Dom);
      // Do not need to mark all in and out edges dead
      // because BB is marked dead and this is enough
      // to run further.
      DeadBlocks.insert(Dom.begin(), Dom.end());

      // Figure out the dominance-frontier(D).
      for (BasicBlock *B : Dom)
        for (BasicBlock *S : successors(B))
          if (!isDeadBlock(S) && !hasLiveIncomingEdges(S))
            NewDead.push_back(S);
    }
  }

  void addDeadEdge(const Use &DeadEdge) {
    if (!DeadEdges.insert(&DeadEdge))
      return;

    BasicBlock *BB = cast_or_null<BasicBlock>(DeadEdge.get());
    if (hasLiveIncomingEdges(BB))
      return;

    addDeadBlock(BB);
  }
};
} // namespace

static void Verify(const Function &F, const DominatorTree &DT,
                   const CFGDeadness &CD);

namespace {

struct SafepointIRVerifier : public FunctionPass {
  static char ID; // Pass identification, replacement for typeid
  SafepointIRVerifier() : FunctionPass(ID) {
    initializeSafepointIRVerifierPass(*PassRegistry::getPassRegistry());
  }

  bool runOnFunction(Function &F) override {
    auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
    CFGDeadness CD;
    CD.processFunction(F, DT);
    Verify(F, DT, CD);
    return false; // no modifications
  }

  void getAnalysisUsage(AnalysisUsage &AU) const override {
    AU.addRequiredID(DominatorTreeWrapperPass::ID);
    AU.setPreservesAll();
  }

  StringRef getPassName() const override { return "safepoint verifier"; }
};
} // namespace

void llvm::verifySafepointIR(Function &F) {
  SafepointIRVerifier pass;
  pass.runOnFunction(F);
}

char SafepointIRVerifier::ID = 0;

FunctionPass *llvm::createSafepointIRVerifierPass() {
  return new SafepointIRVerifier();
}

INITIALIZE_PASS_BEGIN(SafepointIRVerifier, "verify-safepoint-ir",
                      "Safepoint IR Verifier", false, false)
INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
INITIALIZE_PASS_END(SafepointIRVerifier, "verify-safepoint-ir",
                    "Safepoint IR Verifier", false, false)

static bool isGCPointerType(Type *T) {
  if (auto *PT = dyn_cast<PointerType>(T))
    // For the sake of this example GC, we arbitrarily pick addrspace(1) as our
    // GC managed heap.  We know that a pointer into this heap needs to be
    // updated and that no other pointer does.
    return (1 == PT->getAddressSpace());
  return false;
}

static bool containsGCPtrType(Type *Ty) {
  if (isGCPointerType(Ty))
    return true;
  if (VectorType *VT = dyn_cast<VectorType>(Ty))
    return isGCPointerType(VT->getScalarType());
  if (ArrayType *AT = dyn_cast<ArrayType>(Ty))
    return containsGCPtrType(AT->getElementType());
  if (StructType *ST = dyn_cast<StructType>(Ty))
    return llvm::any_of(ST->elements(), containsGCPtrType);
  return false;
}

// Debugging aid -- prints a [Begin, End) range of values.
template<typename IteratorTy>
static void PrintValueSet(raw_ostream &OS, IteratorTy Begin, IteratorTy End) {
  OS << "[ ";
  while (Begin != End) {
    OS << **Begin << " ";
    ++Begin;
  }
  OS << "]";
}

/// The verifier algorithm is phrased in terms of availability.  The set of
/// values "available" at a given point in the control flow graph is the set of
/// correctly relocated value at that point, and is a subset of the set of
/// definitions dominating that point.

using AvailableValueSet = DenseSet<const Value *>;

/// State we compute and track per basic block.
struct BasicBlockState {
  // Set of values available coming in, before the phi nodes
  AvailableValueSet AvailableIn;

  // Set of values available going out
  AvailableValueSet AvailableOut;

  // AvailableOut minus AvailableIn.
  // All elements are Instructions
  AvailableValueSet Contribution;

  // True if this block contains a safepoint and thus AvailableIn does not
  // contribute to AvailableOut.
  bool Cleared = false;
};

/// A given derived pointer can have multiple base pointers through phi/selects.
/// This type indicates when the base pointer is exclusively constant
/// (ExclusivelySomeConstant), and if that constant is proven to be exclusively
/// null, we record that as ExclusivelyNull. In all other cases, the BaseType is
/// NonConstant.
enum BaseType {
  NonConstant = 1, // Base pointers is not exclusively constant.
  ExclusivelyNull,
  ExclusivelySomeConstant // Base pointers for a given derived pointer is from a
                          // set of constants, but they are not exclusively
                          // null.
};

/// Return the baseType for Val which states whether Val is exclusively
/// derived from constant/null, or not exclusively derived from constant.
/// Val is exclusively derived off a constant base when all operands of phi and
/// selects are derived off a constant base.
static enum BaseType getBaseType(const Value *Val) {

  SmallVector<const Value *, 32> Worklist;
  DenseSet<const Value *> Visited;
  bool isExclusivelyDerivedFromNull = true;
  Worklist.push_back(Val);
  // Strip through all the bitcasts and geps to get base pointer. Also check for
  // the exclusive value when there can be multiple base pointers (through phis
  // or selects).
  while(!Worklist.empty()) {
    const Value *V = Worklist.pop_back_val();
    if (!Visited.insert(V).second)
      continue;

    if (const auto *CI = dyn_cast<CastInst>(V)) {
      Worklist.push_back(CI->stripPointerCasts());
      continue;
    }
    if (const auto *GEP = dyn_cast<GetElementPtrInst>(V)) {
      Worklist.push_back(GEP->getPointerOperand());
      continue;
    }
    // Push all the incoming values of phi node into the worklist for
    // processing.
    if (const auto *PN = dyn_cast<PHINode>(V)) {
      for (Value *InV: PN->incoming_values())
        Worklist.push_back(InV);
      continue;
    }
    if (const auto *SI = dyn_cast<SelectInst>(V)) {
      // Push in the true and false values
      Worklist.push_back(SI->getTrueValue());
      Worklist.push_back(SI->getFalseValue());
      continue;
    }
    if (isa<Constant>(V)) {
      // We found at least one base pointer which is non-null, so this derived
      // pointer is not exclusively derived from null.
      if (V != Constant::getNullValue(V->getType()))
        isExclusivelyDerivedFromNull = false;
      // Continue processing the remaining values to make sure it's exclusively
      // constant.
      continue;
    }
    // At this point, we know that the base pointer is not exclusively
    // constant.
    return BaseType::NonConstant;
  }
  // Now, we know that the base pointer is exclusively constant, but we need to
  // differentiate between exclusive null constant and non-null constant.
  return isExclusivelyDerivedFromNull ? BaseType::ExclusivelyNull
                                      : BaseType::ExclusivelySomeConstant;
}

static bool isNotExclusivelyConstantDerived(const Value *V) {
  return getBaseType(V) == BaseType::NonConstant;
}

namespace {
class InstructionVerifier;

/// Builds BasicBlockState for each BB of the function.
/// It can traverse function for verification and provides all required
/// information.
///
/// GC pointer may be in one of three states: relocated, unrelocated and
/// poisoned.
/// Relocated pointer may be used without any restrictions.
/// Unrelocated pointer cannot be dereferenced, passed as argument to any call
/// or returned. Unrelocated pointer may be safely compared against another
/// unrelocated pointer or against a pointer exclusively derived from null.
/// Poisoned pointers are produced when we somehow derive pointer from relocated
/// and unrelocated pointers (e.g. phi, select). This pointers may be safely
/// used in a very limited number of situations. Currently the only way to use
/// it is comparison against constant exclusively derived from null. All
/// limitations arise due to their undefined state: this pointers should be
/// treated as relocated and unrelocated simultaneously.
/// Rules of deriving:
/// R + U = P - that's where the poisoned pointers come from
/// P + X = P
/// U + U = U
/// R + R = R
/// X + C = X
/// Where "+" - any operation that somehow derive pointer, U - unrelocated,
/// R - relocated and P - poisoned, C - constant, X - U or R or P or C or
/// nothing (in case when "+" is unary operation).
/// Deriving of pointers by itself is always safe.
/// NOTE: when we are making decision on the status of instruction's result:
/// a) for phi we need to check status of each input *at the end of
///    corresponding predecessor BB*.
/// b) for other instructions we need to check status of each input *at the
///    current point*.
///
/// FIXME: This works fairly well except one case
///     bb1:
///     p = *some GC-ptr def*
///     p1 = gep p, offset
///         /     |
///        /      |
///    bb2:       |
///    safepoint  |
///        \      |
///         \     |
///      bb3:
///      p2 = phi [p, bb2] [p1, bb1]
///      p3 = phi [p, bb2] [p, bb1]
///      here p and p1 is unrelocated
///           p2 and p3 is poisoned (though they shouldn't be)
///
/// This leads to some weird results:
///      cmp eq p, p2 - illegal instruction (false-positive)
///      cmp eq p1, p2 - illegal instruction (false-positive)
///      cmp eq p, p3 - illegal instruction (false-positive)
///      cmp eq p, p1 - ok
/// To fix this we need to introduce conception of generations and be able to
/// check if two values belong to one generation or not. This way p2 will be
/// considered to be unrelocated and no false alarm will happen.
class GCPtrTracker {
  const Function &F;
  const CFGDeadness &CD;
  SpecificBumpPtrAllocator<BasicBlockState> BSAllocator;
  DenseMap<const BasicBlock *, BasicBlockState *> BlockMap;
  // This set contains defs of unrelocated pointers that are proved to be legal
  // and don't need verification.
  DenseSet<const Instruction *> ValidUnrelocatedDefs;
  // This set contains poisoned defs. They can be safely ignored during
  // verification too.
  DenseSet<const Value *> PoisonedDefs;

public:
  GCPtrTracker(const Function &F, const DominatorTree &DT,
               const CFGDeadness &CD);

  bool hasLiveIncomingEdge(const PHINode *PN, const BasicBlock *InBB) const {
    return CD.hasLiveIncomingEdge(PN, InBB);
  }

  BasicBlockState *getBasicBlockState(const BasicBlock *BB);
  const BasicBlockState *getBasicBlockState(const BasicBlock *BB) const;

  bool isValuePoisoned(const Value *V) const { return PoisonedDefs.count(V); }

  /// Traverse each BB of the function and call
  /// InstructionVerifier::verifyInstruction for each possibly invalid
  /// instruction.
  /// It destructively modifies GCPtrTracker so it's passed via rvalue reference
  /// in order to prohibit further usages of GCPtrTracker as it'll be in
  /// inconsistent state.
  static void verifyFunction(GCPtrTracker &&Tracker,
                             InstructionVerifier &Verifier);

  /// Returns true for reachable and live blocks.
  bool isMapped(const BasicBlock *BB) const {
    return BlockMap.find(BB) != BlockMap.end();
  }

private:
  /// Returns true if the instruction may be safely skipped during verification.
  bool instructionMayBeSkipped(const Instruction *I) const;

  /// Iterates over all BBs from BlockMap and recalculates AvailableIn/Out for
  /// each of them until it converges.
  void recalculateBBsStates();

  /// Remove from Contribution all defs that legally produce unrelocated
  /// pointers and saves them to ValidUnrelocatedDefs.
  /// Though Contribution should belong to BBS it is passed separately with
  /// different const-modifier in order to emphasize (and guarantee) that only
  /// Contribution will be changed.
  /// Returns true if Contribution was changed otherwise false.
  bool removeValidUnrelocatedDefs(const BasicBlock *BB,
                                  const BasicBlockState *BBS,
                                  AvailableValueSet &Contribution);

  /// Gather all the definitions dominating the start of BB into Result. This is
  /// simply the defs introduced by every dominating basic block and the
  /// function arguments.
  void gatherDominatingDefs(const BasicBlock *BB, AvailableValueSet &Result,
                            const DominatorTree &DT);

  /// Compute the AvailableOut set for BB, based on the BasicBlockState BBS,
  /// which is the BasicBlockState for BB.
  /// ContributionChanged is set when the verifier runs for the first time
  /// (in this case Contribution was changed from 'empty' to its initial state)
  /// or when Contribution of this BB was changed since last computation.
  static void transferBlock(const BasicBlock *BB, BasicBlockState &BBS,
                            bool ContributionChanged);

  /// Model the effect of an instruction on the set of available values.
  static void transferInstruction(const Instruction &I, bool &Cleared,
                                  AvailableValueSet &Available);
};

/// It is a visitor for GCPtrTracker::verifyFunction. It decides if the
/// instruction (which uses heap reference) is legal or not, given our safepoint
/// semantics.
class InstructionVerifier {
  bool AnyInvalidUses = false;

public:
  void verifyInstruction(const GCPtrTracker *Tracker, const Instruction &I,
                         const AvailableValueSet &AvailableSet);

  bool hasAnyInvalidUses() const { return AnyInvalidUses; }

private:
  void reportInvalidUse(const Value &V, const Instruction &I);
};
} // end anonymous namespace

GCPtrTracker::GCPtrTracker(const Function &F, const DominatorTree &DT,
                           const CFGDeadness &CD) : F(F), CD(CD) {
  // Calculate Contribution of each live BB.
  // Allocate BB states for live blocks.
  for (const BasicBlock &BB : F)
    if (!CD.isDeadBlock(&BB)) {
      BasicBlockState *BBS = new (BSAllocator.Allocate()) BasicBlockState;
      for (const auto &I : BB)
        transferInstruction(I, BBS->Cleared, BBS->Contribution);
      BlockMap[&BB] = BBS;
    }

  // Initialize AvailableIn/Out sets of each BB using only information about
  // dominating BBs.
  for (auto &BBI : BlockMap) {
    gatherDominatingDefs(BBI.first, BBI.second->AvailableIn, DT);
    transferBlock(BBI.first, *BBI.second, true);
  }

  // Simulate the flow of defs through the CFG and recalculate AvailableIn/Out
  // sets of each BB until it converges. If any def is proved to be an
  // unrelocated pointer, it will be removed from all BBSs.
  recalculateBBsStates();
}

BasicBlockState *GCPtrTracker::getBasicBlockState(const BasicBlock *BB) {
  auto it = BlockMap.find(BB);
  return it != BlockMap.end() ? it->second : nullptr;
}

const BasicBlockState *GCPtrTracker::getBasicBlockState(
    const BasicBlock *BB) const {
  return const_cast<GCPtrTracker *>(this)->getBasicBlockState(BB);
}

bool GCPtrTracker::instructionMayBeSkipped(const Instruction *I) const {
  // Poisoned defs are skipped since they are always safe by itself by
  // definition (for details see comment to this class).
  return ValidUnrelocatedDefs.count(I) || PoisonedDefs.count(I);
}

void GCPtrTracker::verifyFunction(GCPtrTracker &&Tracker,
                                  InstructionVerifier &Verifier) {
  // We need RPO here to a) report always the first error b) report errors in
  // same order from run to run.
  ReversePostOrderTraversal<const Function *> RPOT(&Tracker.F);
  for (const BasicBlock *BB : RPOT) {
    BasicBlockState *BBS = Tracker.getBasicBlockState(BB);
    if (!BBS)
      continue;

    // We destructively modify AvailableIn as we traverse the block instruction
    // by instruction.
    AvailableValueSet &AvailableSet = BBS->AvailableIn;
    for (const Instruction &I : *BB) {
      if (Tracker.instructionMayBeSkipped(&I))
        continue; // This instruction shouldn't be added to AvailableSet.

      Verifier.verifyInstruction(&Tracker, I, AvailableSet);

      // Model the effect of current instruction on AvailableSet to keep the set
      // relevant at each point of BB.
      bool Cleared = false;
      transferInstruction(I, Cleared, AvailableSet);
      (void)Cleared;
    }
  }
}

void GCPtrTracker::recalculateBBsStates() {
  SetVector<const BasicBlock *> Worklist;
  // TODO: This order is suboptimal, it's better to replace it with priority
  // queue where priority is RPO number of BB.
  for (auto &BBI : BlockMap)
    Worklist.insert(BBI.first);

  // This loop iterates the AvailableIn/Out sets until it converges.
  // The AvailableIn and AvailableOut sets decrease as we iterate.
  while (!Worklist.empty()) {
    const BasicBlock *BB = Worklist.pop_back_val();
    BasicBlockState *BBS = getBasicBlockState(BB);
    if (!BBS)
      continue; // Ignore dead successors.

    size_t OldInCount = BBS->AvailableIn.size();
    for (const_pred_iterator PredIt(BB), End(BB, true); PredIt != End; ++PredIt) {
      const BasicBlock *PBB = *PredIt;
      BasicBlockState *PBBS = getBasicBlockState(PBB);
      if (PBBS && !CD.isDeadEdge(&CFGDeadness::getEdge(PredIt)))
        set_intersect(BBS->AvailableIn, PBBS->AvailableOut);
    }

    assert(OldInCount >= BBS->AvailableIn.size() && "invariant!");

    bool InputsChanged = OldInCount != BBS->AvailableIn.size();
    bool ContributionChanged =
        removeValidUnrelocatedDefs(BB, BBS, BBS->Contribution);
    if (!InputsChanged && !ContributionChanged)
      continue;

    size_t OldOutCount = BBS->AvailableOut.size();
    transferBlock(BB, *BBS, ContributionChanged);
    if (OldOutCount != BBS->AvailableOut.size()) {
      assert(OldOutCount > BBS->AvailableOut.size() && "invariant!");
      Worklist.insert(succ_begin(BB), succ_end(BB));
    }
  }
}

bool GCPtrTracker::removeValidUnrelocatedDefs(const BasicBlock *BB,
                                              const BasicBlockState *BBS,
                                              AvailableValueSet &Contribution) {
  assert(&BBS->Contribution == &Contribution &&
         "Passed Contribution should be from the passed BasicBlockState!");
  AvailableValueSet AvailableSet = BBS->AvailableIn;
  bool ContributionChanged = false;
  // For explanation why instructions are processed this way see
  // "Rules of deriving" in the comment to this class.
  for (const Instruction &I : *BB) {
    bool ValidUnrelocatedPointerDef = false;
    bool PoisonedPointerDef = false;
    // TODO: `select` instructions should be handled here too.
    if (const PHINode *PN = dyn_cast<PHINode>(&I)) {
      if (containsGCPtrType(PN->getType())) {
        // If both is true, output is poisoned.
        bool HasRelocatedInputs = false;
        bool HasUnrelocatedInputs = false;
        for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
          const BasicBlock *InBB = PN->getIncomingBlock(i);
          if (!isMapped(InBB) ||
              !CD.hasLiveIncomingEdge(PN, InBB))
            continue; // Skip dead block or dead edge.

          const Value *InValue = PN->getIncomingValue(i);

          if (isNotExclusivelyConstantDerived(InValue)) {
            if (isValuePoisoned(InValue)) {
              // If any of inputs is poisoned, output is always poisoned too.
              HasRelocatedInputs = true;
              HasUnrelocatedInputs = true;
              break;
            }
            if (BlockMap[InBB]->AvailableOut.count(InValue))
              HasRelocatedInputs = true;
            else
              HasUnrelocatedInputs = true;
          }
        }
        if (HasUnrelocatedInputs) {
          if (HasRelocatedInputs)
            PoisonedPointerDef = true;
          else
            ValidUnrelocatedPointerDef = true;
        }
      }
    } else if ((isa<GetElementPtrInst>(I) || isa<BitCastInst>(I)) &&
               containsGCPtrType(I.getType())) {
      // GEP/bitcast of unrelocated pointer is legal by itself but this def
      // shouldn't appear in any AvailableSet.
      for (const Value *V : I.operands())
        if (containsGCPtrType(V->getType()) &&
            isNotExclusivelyConstantDerived(V) && !AvailableSet.count(V)) {
          if (isValuePoisoned(V))
            PoisonedPointerDef = true;
          else
            ValidUnrelocatedPointerDef = true;
          break;
        }
    }
    assert(!(ValidUnrelocatedPointerDef && PoisonedPointerDef) &&
           "Value cannot be both unrelocated and poisoned!");
    if (ValidUnrelocatedPointerDef) {
      // Remove def of unrelocated pointer from Contribution of this BB and
      // trigger update of all its successors.
      Contribution.erase(&I);
      PoisonedDefs.erase(&I);
      ValidUnrelocatedDefs.insert(&I);
      LLVM_DEBUG(dbgs() << "Removing urelocated " << I
                        << " from Contribution of " << BB->getName() << "\n");
      ContributionChanged = true;
    } else if (PoisonedPointerDef) {
      // Mark pointer as poisoned, remove its def from Contribution and trigger
      // update of all successors.
      Contribution.erase(&I);
      PoisonedDefs.insert(&I);
      LLVM_DEBUG(dbgs() << "Removing poisoned " << I << " from Contribution of "
                        << BB->getName() << "\n");
      ContributionChanged = true;
    } else {
      bool Cleared = false;
      transferInstruction(I, Cleared, AvailableSet);
      (void)Cleared;
    }
  }
  return ContributionChanged;
}

void GCPtrTracker::gatherDominatingDefs(const BasicBlock *BB,
                                        AvailableValueSet &Result,
                                        const DominatorTree &DT) {
  DomTreeNode *DTN = DT[const_cast<BasicBlock *>(BB)];

  assert(DTN && "Unreachable blocks are ignored");
  while (DTN->getIDom()) {
    DTN = DTN->getIDom();
    auto BBS = getBasicBlockState(DTN->getBlock());
    assert(BBS && "immediate dominator cannot be dead for a live block");
    const auto &Defs = BBS->Contribution;
    Result.insert(Defs.begin(), Defs.end());
    // If this block is 'Cleared', then nothing LiveIn to this block can be
    // available after this block completes.  Note: This turns out to be
    // really important for reducing memory consuption of the initial available
    // sets and thus peak memory usage by this verifier.
    if (BBS->Cleared)
      return;
  }

  for (const Argument &A : BB->getParent()->args())
    if (containsGCPtrType(A.getType()))
      Result.insert(&A);
}

void GCPtrTracker::transferBlock(const BasicBlock *BB, BasicBlockState &BBS,
                                 bool ContributionChanged) {
  const AvailableValueSet &AvailableIn = BBS.AvailableIn;
  AvailableValueSet &AvailableOut = BBS.AvailableOut;

  if (BBS.Cleared) {
    // AvailableOut will change only when Contribution changed.
    if (ContributionChanged)
      AvailableOut = BBS.Contribution;
  } else {
    // Otherwise, we need to reduce the AvailableOut set by things which are no
    // longer in our AvailableIn
    AvailableValueSet Temp = BBS.Contribution;
    set_union(Temp, AvailableIn);
    AvailableOut = std::move(Temp);
  }

  LLVM_DEBUG(dbgs() << "Transfered block " << BB->getName() << " from ";
             PrintValueSet(dbgs(), AvailableIn.begin(), AvailableIn.end());
             dbgs() << " to ";
             PrintValueSet(dbgs(), AvailableOut.begin(), AvailableOut.end());
             dbgs() << "\n";);
}

void GCPtrTracker::transferInstruction(const Instruction &I, bool &Cleared,
                                       AvailableValueSet &Available) {
  if (isStatepoint(I)) {
    Cleared = true;
    Available.clear();
  } else if (containsGCPtrType(I.getType()))
    Available.insert(&I);
}

void InstructionVerifier::verifyInstruction(
    const GCPtrTracker *Tracker, const Instruction &I,
    const AvailableValueSet &AvailableSet) {
  if (const PHINode *PN = dyn_cast<PHINode>(&I)) {
    if (containsGCPtrType(PN->getType()))
      for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
        const BasicBlock *InBB = PN->getIncomingBlock(i);
        const BasicBlockState *InBBS = Tracker->getBasicBlockState(InBB);
        if (!InBBS ||
            !Tracker->hasLiveIncomingEdge(PN, InBB))
          continue; // Skip dead block or dead edge.

        const Value *InValue = PN->getIncomingValue(i);

        if (isNotExclusivelyConstantDerived(InValue) &&
            !InBBS->AvailableOut.count(InValue))
          reportInvalidUse(*InValue, *PN);
      }
  } else if (isa<CmpInst>(I) &&
             containsGCPtrType(I.getOperand(0)->getType())) {
    Value *LHS = I.getOperand(0), *RHS = I.getOperand(1);
    enum BaseType baseTyLHS = getBaseType(LHS),
                  baseTyRHS = getBaseType(RHS);

    // Returns true if LHS and RHS are unrelocated pointers and they are
    // valid unrelocated uses.
    auto hasValidUnrelocatedUse = [&AvailableSet, Tracker, baseTyLHS, baseTyRHS,
                                   &LHS, &RHS] () {
        // A cmp instruction has valid unrelocated pointer operands only if
        // both operands are unrelocated pointers.
        // In the comparison between two pointers, if one is an unrelocated
        // use, the other *should be* an unrelocated use, for this
        // instruction to contain valid unrelocated uses. This unrelocated
        // use can be a null constant as well, or another unrelocated
        // pointer.
        if (AvailableSet.count(LHS) || AvailableSet.count(RHS))
          return false;
        // Constant pointers (that are not exclusively null) may have
        // meaning in different VMs, so we cannot reorder the compare
        // against constant pointers before the safepoint. In other words,
        // comparison of an unrelocated use against a non-null constant
        // maybe invalid.
        if ((baseTyLHS == BaseType::ExclusivelySomeConstant &&
             baseTyRHS == BaseType::NonConstant) ||
            (baseTyLHS == BaseType::NonConstant &&
             baseTyRHS == BaseType::ExclusivelySomeConstant))
          return false;

        // If one of pointers is poisoned and other is not exclusively derived
        // from null it is an invalid expression: it produces poisoned result
        // and unless we want to track all defs (not only gc pointers) the only
        // option is to prohibit such instructions.
        if ((Tracker->isValuePoisoned(LHS) && baseTyRHS != ExclusivelyNull) ||
            (Tracker->isValuePoisoned(RHS) && baseTyLHS != ExclusivelyNull))
            return false;

        // All other cases are valid cases enumerated below:
        // 1. Comparison between an exclusively derived null pointer and a
        // constant base pointer.
        // 2. Comparison between an exclusively derived null pointer and a
        // non-constant unrelocated base pointer.
        // 3. Comparison between 2 unrelocated pointers.
        // 4. Comparison between a pointer exclusively derived from null and a
        // non-constant poisoned pointer.
        return true;
    };
    if (!hasValidUnrelocatedUse()) {
      // Print out all non-constant derived pointers that are unrelocated
      // uses, which are invalid.
      if (baseTyLHS == BaseType::NonConstant && !AvailableSet.count(LHS))
        reportInvalidUse(*LHS, I);
      if (baseTyRHS == BaseType::NonConstant && !AvailableSet.count(RHS))
        reportInvalidUse(*RHS, I);
    }
  } else {
    for (const Value *V : I.operands())
      if (containsGCPtrType(V->getType()) &&
          isNotExclusivelyConstantDerived(V) && !AvailableSet.count(V))
        reportInvalidUse(*V, I);
  }
}

void InstructionVerifier::reportInvalidUse(const Value &V,
                                           const Instruction &I) {
  errs() << "Illegal use of unrelocated value found!\n";
  errs() << "Def: " << V << "\n";
  errs() << "Use: " << I << "\n";
  if (!PrintOnly)
    abort();
  AnyInvalidUses = true;
}

static void Verify(const Function &F, const DominatorTree &DT,
                   const CFGDeadness &CD) {
  LLVM_DEBUG(dbgs() << "Verifying gc pointers in function: " << F.getName()
                    << "\n");
  if (PrintOnly)
    dbgs() << "Verifying gc pointers in function: " << F.getName() << "\n";

  GCPtrTracker Tracker(F, DT, CD);

  // We now have all the information we need to decide if the use of a heap
  // reference is legal or not, given our safepoint semantics.

  InstructionVerifier Verifier;
  GCPtrTracker::verifyFunction(std::move(Tracker), Verifier);

  if (PrintOnly && !Verifier.hasAnyInvalidUses()) {
    dbgs() << "No illegal uses found by SafepointIRVerifier in: " << F.getName()
           << "\n";
  }
}