llvm.org GIT mirror llvm / 69f971e lib / Target / AMDGPU / Utils / AMDGPUBaseInfo.cpp
69f971e

Tree @69f971e (Download .tar.gz)

AMDGPUBaseInfo.cpp @69f971eraw · history · blame

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
//===- AMDGPUBaseInfo.cpp - AMDGPU Base encoding information --------------===//
//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//

#include "AMDGPUBaseInfo.h"
#include "AMDGPUTargetTransformInfo.h"
#include "AMDGPU.h"
#include "SIDefines.h"
#include "llvm/ADT/StringRef.h"
#include "llvm/ADT/Triple.h"
#include "llvm/BinaryFormat/ELF.h"
#include "llvm/CodeGen/MachineMemOperand.h"
#include "llvm/IR/Attributes.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/GlobalValue.h"
#include "llvm/IR/Instruction.h"
#include "llvm/IR/LLVMContext.h"
#include "llvm/IR/Module.h"
#include "llvm/MC/MCContext.h"
#include "llvm/MC/MCInstrDesc.h"
#include "llvm/MC/MCInstrInfo.h"
#include "llvm/MC/MCRegisterInfo.h"
#include "llvm/MC/MCSectionELF.h"
#include "llvm/MC/MCSubtargetInfo.h"
#include "llvm/MC/SubtargetFeature.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/MathExtras.h"
#include <algorithm>
#include <cassert>
#include <cstdint>
#include <cstring>
#include <utility>

#include "MCTargetDesc/AMDGPUMCTargetDesc.h"

#define GET_INSTRINFO_NAMED_OPS
#define GET_INSTRMAP_INFO
#include "AMDGPUGenInstrInfo.inc"
#undef GET_INSTRMAP_INFO
#undef GET_INSTRINFO_NAMED_OPS

namespace {

/// \returns Bit mask for given bit \p Shift and bit \p Width.
unsigned getBitMask(unsigned Shift, unsigned Width) {
  return ((1 << Width) - 1) << Shift;
}

/// Packs \p Src into \p Dst for given bit \p Shift and bit \p Width.
///
/// \returns Packed \p Dst.
unsigned packBits(unsigned Src, unsigned Dst, unsigned Shift, unsigned Width) {
  Dst &= ~(1 << Shift) & ~getBitMask(Shift, Width);
  Dst |= (Src << Shift) & getBitMask(Shift, Width);
  return Dst;
}

/// Unpacks bits from \p Src for given bit \p Shift and bit \p Width.
///
/// \returns Unpacked bits.
unsigned unpackBits(unsigned Src, unsigned Shift, unsigned Width) {
  return (Src & getBitMask(Shift, Width)) >> Shift;
}

/// \returns Vmcnt bit shift (lower bits).
unsigned getVmcntBitShiftLo() { return 0; }

/// \returns Vmcnt bit width (lower bits).
unsigned getVmcntBitWidthLo() { return 4; }

/// \returns Expcnt bit shift.
unsigned getExpcntBitShift() { return 4; }

/// \returns Expcnt bit width.
unsigned getExpcntBitWidth() { return 3; }

/// \returns Lgkmcnt bit shift.
unsigned getLgkmcntBitShift() { return 8; }

/// \returns Lgkmcnt bit width.
unsigned getLgkmcntBitWidth() { return 4; }

/// \returns Vmcnt bit shift (higher bits).
unsigned getVmcntBitShiftHi() { return 14; }

/// \returns Vmcnt bit width (higher bits).
unsigned getVmcntBitWidthHi() { return 2; }

} // end namespace anonymous

namespace llvm {

namespace AMDGPU {

struct MIMGInfo {
  uint16_t Opcode;
  uint16_t BaseOpcode;
  uint8_t MIMGEncoding;
  uint8_t VDataDwords;
  uint8_t VAddrDwords;
};

#define GET_MIMGBaseOpcodesTable_IMPL
#define GET_MIMGDimInfoTable_IMPL
#define GET_MIMGInfoTable_IMPL
#define GET_MIMGLZMappingTable_IMPL
#include "AMDGPUGenSearchableTables.inc"

int getMIMGOpcode(unsigned BaseOpcode, unsigned MIMGEncoding,
                  unsigned VDataDwords, unsigned VAddrDwords) {
  const MIMGInfo *Info = getMIMGOpcodeHelper(BaseOpcode, MIMGEncoding,
                                             VDataDwords, VAddrDwords);
  return Info ? Info->Opcode : -1;
}

int getMaskedMIMGOp(unsigned Opc, unsigned NewChannels) {
  const MIMGInfo *OrigInfo = getMIMGInfo(Opc);
  const MIMGInfo *NewInfo =
      getMIMGOpcodeHelper(OrigInfo->BaseOpcode, OrigInfo->MIMGEncoding,
                          NewChannels, OrigInfo->VAddrDwords);
  return NewInfo ? NewInfo->Opcode : -1;
}

// Wrapper for Tablegen'd function.  enum Subtarget is not defined in any
// header files, so we need to wrap it in a function that takes unsigned
// instead.
int getMCOpcode(uint16_t Opcode, unsigned Gen) {
  return getMCOpcodeGen(Opcode, static_cast<Subtarget>(Gen));
}

namespace IsaInfo {

void streamIsaVersion(const MCSubtargetInfo *STI, raw_ostream &Stream) {
  auto TargetTriple = STI->getTargetTriple();
  auto Version = getIsaVersion(STI->getCPU());

  Stream << TargetTriple.getArchName() << '-'
         << TargetTriple.getVendorName() << '-'
         << TargetTriple.getOSName() << '-'
         << TargetTriple.getEnvironmentName() << '-'
         << "gfx"
         << Version.Major
         << Version.Minor
         << Version.Stepping;

  if (hasXNACK(*STI))
    Stream << "+xnack";
  if (hasSRAMECC(*STI))
    Stream << "+sram-ecc";

  Stream.flush();
}

bool hasCodeObjectV3(const MCSubtargetInfo *STI) {
  return STI->getFeatureBits().test(FeatureCodeObjectV3);
}

unsigned getWavefrontSize(const MCSubtargetInfo *STI) {
  if (STI->getFeatureBits().test(FeatureWavefrontSize16))
    return 16;
  if (STI->getFeatureBits().test(FeatureWavefrontSize32))
    return 32;

  return 64;
}

unsigned getLocalMemorySize(const MCSubtargetInfo *STI) {
  if (STI->getFeatureBits().test(FeatureLocalMemorySize32768))
    return 32768;
  if (STI->getFeatureBits().test(FeatureLocalMemorySize65536))
    return 65536;

  return 0;
}

unsigned getEUsPerCU(const MCSubtargetInfo *STI) {
  return 4;
}

unsigned getMaxWorkGroupsPerCU(const MCSubtargetInfo *STI,
                               unsigned FlatWorkGroupSize) {
  if (!STI->getFeatureBits().test(FeatureGCN))
    return 8;
  unsigned N = getWavesPerWorkGroup(STI, FlatWorkGroupSize);
  if (N == 1)
    return 40;
  N = 40 / N;
  return std::min(N, 16u);
}

unsigned getMaxWavesPerCU(const MCSubtargetInfo *STI) {
  return getMaxWavesPerEU() * getEUsPerCU(STI);
}

unsigned getMaxWavesPerCU(const MCSubtargetInfo *STI,
                          unsigned FlatWorkGroupSize) {
  return getWavesPerWorkGroup(STI, FlatWorkGroupSize);
}

unsigned getMinWavesPerEU(const MCSubtargetInfo *STI) {
  return 1;
}

unsigned getMaxWavesPerEU() {
  // FIXME: Need to take scratch memory into account.
  return 10;
}

unsigned getMaxWavesPerEU(const MCSubtargetInfo *STI,
                          unsigned FlatWorkGroupSize) {
  return alignTo(getMaxWavesPerCU(STI, FlatWorkGroupSize),
                 getEUsPerCU(STI)) / getEUsPerCU(STI);
}

unsigned getMinFlatWorkGroupSize(const MCSubtargetInfo *STI) {
  return 1;
}

unsigned getMaxFlatWorkGroupSize(const MCSubtargetInfo *STI) {
  return 2048;
}

unsigned getWavesPerWorkGroup(const MCSubtargetInfo *STI,
                              unsigned FlatWorkGroupSize) {
  return alignTo(FlatWorkGroupSize, getWavefrontSize(STI)) /
                 getWavefrontSize(STI);
}

unsigned getSGPRAllocGranule(const MCSubtargetInfo *STI) {
  IsaVersion Version = getIsaVersion(STI->getCPU());
  if (Version.Major >= 8)
    return 16;
  return 8;
}

unsigned getSGPREncodingGranule(const MCSubtargetInfo *STI) {
  return 8;
}

unsigned getTotalNumSGPRs(const MCSubtargetInfo *STI) {
  IsaVersion Version = getIsaVersion(STI->getCPU());
  if (Version.Major >= 8)
    return 800;
  return 512;
}

unsigned getAddressableNumSGPRs(const MCSubtargetInfo *STI) {
  if (STI->getFeatureBits().test(FeatureSGPRInitBug))
    return FIXED_NUM_SGPRS_FOR_INIT_BUG;

  IsaVersion Version = getIsaVersion(STI->getCPU());
  if (Version.Major >= 8)
    return 102;
  return 104;
}

unsigned getMinNumSGPRs(const MCSubtargetInfo *STI, unsigned WavesPerEU) {
  assert(WavesPerEU != 0);

  if (WavesPerEU >= getMaxWavesPerEU())
    return 0;

  unsigned MinNumSGPRs = getTotalNumSGPRs(STI) / (WavesPerEU + 1);
  if (STI->getFeatureBits().test(FeatureTrapHandler))
    MinNumSGPRs -= std::min(MinNumSGPRs, (unsigned)TRAP_NUM_SGPRS);
  MinNumSGPRs = alignDown(MinNumSGPRs, getSGPRAllocGranule(STI)) + 1;
  return std::min(MinNumSGPRs, getAddressableNumSGPRs(STI));
}

unsigned getMaxNumSGPRs(const MCSubtargetInfo *STI, unsigned WavesPerEU,
                        bool Addressable) {
  assert(WavesPerEU != 0);

  IsaVersion Version = getIsaVersion(STI->getCPU());
  unsigned AddressableNumSGPRs = getAddressableNumSGPRs(STI);
  if (Version.Major >= 8 && !Addressable)
    AddressableNumSGPRs = 112;
  unsigned MaxNumSGPRs = getTotalNumSGPRs(STI) / WavesPerEU;
  if (STI->getFeatureBits().test(FeatureTrapHandler))
    MaxNumSGPRs -= std::min(MaxNumSGPRs, (unsigned)TRAP_NUM_SGPRS);
  MaxNumSGPRs = alignDown(MaxNumSGPRs, getSGPRAllocGranule(STI));
  return std::min(MaxNumSGPRs, AddressableNumSGPRs);
}

unsigned getNumExtraSGPRs(const MCSubtargetInfo *STI, bool VCCUsed,
                          bool FlatScrUsed, bool XNACKUsed) {
  unsigned ExtraSGPRs = 0;
  if (VCCUsed)
    ExtraSGPRs = 2;

  IsaVersion Version = getIsaVersion(STI->getCPU());
  if (Version.Major < 8) {
    if (FlatScrUsed)
      ExtraSGPRs = 4;
  } else {
    if (XNACKUsed)
      ExtraSGPRs = 4;

    if (FlatScrUsed)
      ExtraSGPRs = 6;
  }

  return ExtraSGPRs;
}

unsigned getNumExtraSGPRs(const MCSubtargetInfo *STI, bool VCCUsed,
                          bool FlatScrUsed) {
  return getNumExtraSGPRs(STI, VCCUsed, FlatScrUsed,
                          STI->getFeatureBits().test(AMDGPU::FeatureXNACK));
}

unsigned getNumSGPRBlocks(const MCSubtargetInfo *STI, unsigned NumSGPRs) {
  NumSGPRs = alignTo(std::max(1u, NumSGPRs), getSGPREncodingGranule(STI));
  // SGPRBlocks is actual number of SGPR blocks minus 1.
  return NumSGPRs / getSGPREncodingGranule(STI) - 1;
}

unsigned getVGPRAllocGranule(const MCSubtargetInfo *STI) {
  return 4;
}

unsigned getVGPREncodingGranule(const MCSubtargetInfo *STI) {
  return getVGPRAllocGranule(STI);
}

unsigned getTotalNumVGPRs(const MCSubtargetInfo *STI) {
  return 256;
}

unsigned getAddressableNumVGPRs(const MCSubtargetInfo *STI) {
  return getTotalNumVGPRs(STI);
}

unsigned getMinNumVGPRs(const MCSubtargetInfo *STI, unsigned WavesPerEU) {
  assert(WavesPerEU != 0);

  if (WavesPerEU >= getMaxWavesPerEU())
    return 0;
  unsigned MinNumVGPRs =
      alignDown(getTotalNumVGPRs(STI) / (WavesPerEU + 1),
                getVGPRAllocGranule(STI)) + 1;
  return std::min(MinNumVGPRs, getAddressableNumVGPRs(STI));
}

unsigned getMaxNumVGPRs(const MCSubtargetInfo *STI, unsigned WavesPerEU) {
  assert(WavesPerEU != 0);

  unsigned MaxNumVGPRs = alignDown(getTotalNumVGPRs(STI) / WavesPerEU,
                                   getVGPRAllocGranule(STI));
  unsigned AddressableNumVGPRs = getAddressableNumVGPRs(STI);
  return std::min(MaxNumVGPRs, AddressableNumVGPRs);
}

unsigned getNumVGPRBlocks(const MCSubtargetInfo *STI, unsigned NumVGPRs) {
  NumVGPRs = alignTo(std::max(1u, NumVGPRs), getVGPREncodingGranule(STI));
  // VGPRBlocks is actual number of VGPR blocks minus 1.
  return NumVGPRs / getVGPREncodingGranule(STI) - 1;
}

} // end namespace IsaInfo

void initDefaultAMDKernelCodeT(amd_kernel_code_t &Header,
                               const MCSubtargetInfo *STI) {
  IsaVersion Version = getIsaVersion(STI->getCPU());

  memset(&Header, 0, sizeof(Header));

  Header.amd_kernel_code_version_major = 1;
  Header.amd_kernel_code_version_minor = 2;
  Header.amd_machine_kind = 1; // AMD_MACHINE_KIND_AMDGPU
  Header.amd_machine_version_major = Version.Major;
  Header.amd_machine_version_minor = Version.Minor;
  Header.amd_machine_version_stepping = Version.Stepping;
  Header.kernel_code_entry_byte_offset = sizeof(Header);
  // wavefront_size is specified as a power of 2: 2^6 = 64 threads.
  Header.wavefront_size = 6;

  // If the code object does not support indirect functions, then the value must
  // be 0xffffffff.
  Header.call_convention = -1;

  // These alignment values are specified in powers of two, so alignment =
  // 2^n.  The minimum alignment is 2^4 = 16.
  Header.kernarg_segment_alignment = 4;
  Header.group_segment_alignment = 4;
  Header.private_segment_alignment = 4;
}

amdhsa::kernel_descriptor_t getDefaultAmdhsaKernelDescriptor() {
  amdhsa::kernel_descriptor_t KD;
  memset(&KD, 0, sizeof(KD));
  AMDHSA_BITS_SET(KD.compute_pgm_rsrc1,
                  amdhsa::COMPUTE_PGM_RSRC1_FLOAT_DENORM_MODE_16_64,
                  amdhsa::FLOAT_DENORM_MODE_FLUSH_NONE);
  AMDHSA_BITS_SET(KD.compute_pgm_rsrc1,
                  amdhsa::COMPUTE_PGM_RSRC1_ENABLE_DX10_CLAMP, 1);
  AMDHSA_BITS_SET(KD.compute_pgm_rsrc1,
                  amdhsa::COMPUTE_PGM_RSRC1_ENABLE_IEEE_MODE, 1);
  AMDHSA_BITS_SET(KD.compute_pgm_rsrc2,
                  amdhsa::COMPUTE_PGM_RSRC2_ENABLE_SGPR_WORKGROUP_ID_X, 1);
  return KD;
}

bool isGroupSegment(const GlobalValue *GV) {
  return GV->getType()->getAddressSpace() == AMDGPUAS::LOCAL_ADDRESS;
}

bool isGlobalSegment(const GlobalValue *GV) {
  return GV->getType()->getAddressSpace() == AMDGPUAS::GLOBAL_ADDRESS;
}

bool isReadOnlySegment(const GlobalValue *GV) {
  return GV->getType()->getAddressSpace() == AMDGPUAS::CONSTANT_ADDRESS ||
         GV->getType()->getAddressSpace() == AMDGPUAS::CONSTANT_ADDRESS_32BIT;
}

bool shouldEmitConstantsToTextSection(const Triple &TT) {
  return TT.getOS() != Triple::AMDHSA;
}

int getIntegerAttribute(const Function &F, StringRef Name, int Default) {
  Attribute A = F.getFnAttribute(Name);
  int Result = Default;

  if (A.isStringAttribute()) {
    StringRef Str = A.getValueAsString();
    if (Str.getAsInteger(0, Result)) {
      LLVMContext &Ctx = F.getContext();
      Ctx.emitError("can't parse integer attribute " + Name);
    }
  }

  return Result;
}

std::pair<int, int> getIntegerPairAttribute(const Function &F,
                                            StringRef Name,
                                            std::pair<int, int> Default,
                                            bool OnlyFirstRequired) {
  Attribute A = F.getFnAttribute(Name);
  if (!A.isStringAttribute())
    return Default;

  LLVMContext &Ctx = F.getContext();
  std::pair<int, int> Ints = Default;
  std::pair<StringRef, StringRef> Strs = A.getValueAsString().split(',');
  if (Strs.first.trim().getAsInteger(0, Ints.first)) {
    Ctx.emitError("can't parse first integer attribute " + Name);
    return Default;
  }
  if (Strs.second.trim().getAsInteger(0, Ints.second)) {
    if (!OnlyFirstRequired || !Strs.second.trim().empty()) {
      Ctx.emitError("can't parse second integer attribute " + Name);
      return Default;
    }
  }

  return Ints;
}

unsigned getVmcntBitMask(const IsaVersion &Version) {
  unsigned VmcntLo = (1 << getVmcntBitWidthLo()) - 1;
  if (Version.Major < 9)
    return VmcntLo;

  unsigned VmcntHi = ((1 << getVmcntBitWidthHi()) - 1) << getVmcntBitWidthLo();
  return VmcntLo | VmcntHi;
}

unsigned getExpcntBitMask(const IsaVersion &Version) {
  return (1 << getExpcntBitWidth()) - 1;
}

unsigned getLgkmcntBitMask(const IsaVersion &Version) {
  return (1 << getLgkmcntBitWidth()) - 1;
}

unsigned getWaitcntBitMask(const IsaVersion &Version) {
  unsigned VmcntLo = getBitMask(getVmcntBitShiftLo(), getVmcntBitWidthLo());
  unsigned Expcnt = getBitMask(getExpcntBitShift(), getExpcntBitWidth());
  unsigned Lgkmcnt = getBitMask(getLgkmcntBitShift(), getLgkmcntBitWidth());
  unsigned Waitcnt = VmcntLo | Expcnt | Lgkmcnt;
  if (Version.Major < 9)
    return Waitcnt;

  unsigned VmcntHi = getBitMask(getVmcntBitShiftHi(), getVmcntBitWidthHi());
  return Waitcnt | VmcntHi;
}

unsigned decodeVmcnt(const IsaVersion &Version, unsigned Waitcnt) {
  unsigned VmcntLo =
      unpackBits(Waitcnt, getVmcntBitShiftLo(), getVmcntBitWidthLo());
  if (Version.Major < 9)
    return VmcntLo;

  unsigned VmcntHi =
      unpackBits(Waitcnt, getVmcntBitShiftHi(), getVmcntBitWidthHi());
  VmcntHi <<= getVmcntBitWidthLo();
  return VmcntLo | VmcntHi;
}

unsigned decodeExpcnt(const IsaVersion &Version, unsigned Waitcnt) {
  return unpackBits(Waitcnt, getExpcntBitShift(), getExpcntBitWidth());
}

unsigned decodeLgkmcnt(const IsaVersion &Version, unsigned Waitcnt) {
  return unpackBits(Waitcnt, getLgkmcntBitShift(), getLgkmcntBitWidth());
}

void decodeWaitcnt(const IsaVersion &Version, unsigned Waitcnt,
                   unsigned &Vmcnt, unsigned &Expcnt, unsigned &Lgkmcnt) {
  Vmcnt = decodeVmcnt(Version, Waitcnt);
  Expcnt = decodeExpcnt(Version, Waitcnt);
  Lgkmcnt = decodeLgkmcnt(Version, Waitcnt);
}

unsigned encodeVmcnt(const IsaVersion &Version, unsigned Waitcnt,
                     unsigned Vmcnt) {
  Waitcnt =
      packBits(Vmcnt, Waitcnt, getVmcntBitShiftLo(), getVmcntBitWidthLo());
  if (Version.Major < 9)
    return Waitcnt;

  Vmcnt >>= getVmcntBitWidthLo();
  return packBits(Vmcnt, Waitcnt, getVmcntBitShiftHi(), getVmcntBitWidthHi());
}

unsigned encodeExpcnt(const IsaVersion &Version, unsigned Waitcnt,
                      unsigned Expcnt) {
  return packBits(Expcnt, Waitcnt, getExpcntBitShift(), getExpcntBitWidth());
}

unsigned encodeLgkmcnt(const IsaVersion &Version, unsigned Waitcnt,
                       unsigned Lgkmcnt) {
  return packBits(Lgkmcnt, Waitcnt, getLgkmcntBitShift(), getLgkmcntBitWidth());
}

unsigned encodeWaitcnt(const IsaVersion &Version,
                       unsigned Vmcnt, unsigned Expcnt, unsigned Lgkmcnt) {
  unsigned Waitcnt = getWaitcntBitMask(Version);
  Waitcnt = encodeVmcnt(Version, Waitcnt, Vmcnt);
  Waitcnt = encodeExpcnt(Version, Waitcnt, Expcnt);
  Waitcnt = encodeLgkmcnt(Version, Waitcnt, Lgkmcnt);
  return Waitcnt;
}

unsigned getInitialPSInputAddr(const Function &F) {
  return getIntegerAttribute(F, "InitialPSInputAddr", 0);
}

bool isShader(CallingConv::ID cc) {
  switch(cc) {
    case CallingConv::AMDGPU_VS:
    case CallingConv::AMDGPU_LS:
    case CallingConv::AMDGPU_HS:
    case CallingConv::AMDGPU_ES:
    case CallingConv::AMDGPU_GS:
    case CallingConv::AMDGPU_PS:
    case CallingConv::AMDGPU_CS:
      return true;
    default:
      return false;
  }
}

bool isCompute(CallingConv::ID cc) {
  return !isShader(cc) || cc == CallingConv::AMDGPU_CS;
}

bool isEntryFunctionCC(CallingConv::ID CC) {
  switch (CC) {
  case CallingConv::AMDGPU_KERNEL:
  case CallingConv::SPIR_KERNEL:
  case CallingConv::AMDGPU_VS:
  case CallingConv::AMDGPU_GS:
  case CallingConv::AMDGPU_PS:
  case CallingConv::AMDGPU_CS:
  case CallingConv::AMDGPU_ES:
  case CallingConv::AMDGPU_HS:
  case CallingConv::AMDGPU_LS:
    return true;
  default:
    return false;
  }
}

bool hasXNACK(const MCSubtargetInfo &STI) {
  return STI.getFeatureBits()[AMDGPU::FeatureXNACK];
}

bool hasSRAMECC(const MCSubtargetInfo &STI) {
  return STI.getFeatureBits()[AMDGPU::FeatureSRAMECC];
}

bool hasMIMG_R128(const MCSubtargetInfo &STI) {
  return STI.getFeatureBits()[AMDGPU::FeatureMIMG_R128];
}

bool hasPackedD16(const MCSubtargetInfo &STI) {
  return !STI.getFeatureBits()[AMDGPU::FeatureUnpackedD16VMem];
}

bool isSI(const MCSubtargetInfo &STI) {
  return STI.getFeatureBits()[AMDGPU::FeatureSouthernIslands];
}

bool isCI(const MCSubtargetInfo &STI) {
  return STI.getFeatureBits()[AMDGPU::FeatureSeaIslands];
}

bool isVI(const MCSubtargetInfo &STI) {
  return STI.getFeatureBits()[AMDGPU::FeatureVolcanicIslands];
}

bool isGFX9(const MCSubtargetInfo &STI) {
  return STI.getFeatureBits()[AMDGPU::FeatureGFX9];
}

bool isGCN3Encoding(const MCSubtargetInfo &STI) {
  return STI.getFeatureBits()[AMDGPU::FeatureGCN3Encoding];
}

bool isSGPR(unsigned Reg, const MCRegisterInfo* TRI) {
  const MCRegisterClass SGPRClass = TRI->getRegClass(AMDGPU::SReg_32RegClassID);
  const unsigned FirstSubReg = TRI->getSubReg(Reg, 1);
  return SGPRClass.contains(FirstSubReg != 0 ? FirstSubReg : Reg) ||
    Reg == AMDGPU::SCC;
}

bool isRegIntersect(unsigned Reg0, unsigned Reg1, const MCRegisterInfo* TRI) {
  for (MCRegAliasIterator R(Reg0, TRI, true); R.isValid(); ++R) {
    if (*R == Reg1) return true;
  }
  return false;
}

#define MAP_REG2REG \
  using namespace AMDGPU; \
  switch(Reg) { \
  default: return Reg; \
  CASE_CI_VI(FLAT_SCR) \
  CASE_CI_VI(FLAT_SCR_LO) \
  CASE_CI_VI(FLAT_SCR_HI) \
  CASE_VI_GFX9(TTMP0) \
  CASE_VI_GFX9(TTMP1) \
  CASE_VI_GFX9(TTMP2) \
  CASE_VI_GFX9(TTMP3) \
  CASE_VI_GFX9(TTMP4) \
  CASE_VI_GFX9(TTMP5) \
  CASE_VI_GFX9(TTMP6) \
  CASE_VI_GFX9(TTMP7) \
  CASE_VI_GFX9(TTMP8) \
  CASE_VI_GFX9(TTMP9) \
  CASE_VI_GFX9(TTMP10) \
  CASE_VI_GFX9(TTMP11) \
  CASE_VI_GFX9(TTMP12) \
  CASE_VI_GFX9(TTMP13) \
  CASE_VI_GFX9(TTMP14) \
  CASE_VI_GFX9(TTMP15) \
  CASE_VI_GFX9(TTMP0_TTMP1) \
  CASE_VI_GFX9(TTMP2_TTMP3) \
  CASE_VI_GFX9(TTMP4_TTMP5) \
  CASE_VI_GFX9(TTMP6_TTMP7) \
  CASE_VI_GFX9(TTMP8_TTMP9) \
  CASE_VI_GFX9(TTMP10_TTMP11) \
  CASE_VI_GFX9(TTMP12_TTMP13) \
  CASE_VI_GFX9(TTMP14_TTMP15) \
  CASE_VI_GFX9(TTMP0_TTMP1_TTMP2_TTMP3) \
  CASE_VI_GFX9(TTMP4_TTMP5_TTMP6_TTMP7) \
  CASE_VI_GFX9(TTMP8_TTMP9_TTMP10_TTMP11) \
  CASE_VI_GFX9(TTMP12_TTMP13_TTMP14_TTMP15) \
  CASE_VI_GFX9(TTMP0_TTMP1_TTMP2_TTMP3_TTMP4_TTMP5_TTMP6_TTMP7) \
  CASE_VI_GFX9(TTMP4_TTMP5_TTMP6_TTMP7_TTMP8_TTMP9_TTMP10_TTMP11) \
  CASE_VI_GFX9(TTMP8_TTMP9_TTMP10_TTMP11_TTMP12_TTMP13_TTMP14_TTMP15) \
  CASE_VI_GFX9(TTMP0_TTMP1_TTMP2_TTMP3_TTMP4_TTMP5_TTMP6_TTMP7_TTMP8_TTMP9_TTMP10_TTMP11_TTMP12_TTMP13_TTMP14_TTMP15) \
  }

#define CASE_CI_VI(node) \
  assert(!isSI(STI)); \
  case node: return isCI(STI) ? node##_ci : node##_vi;

#define CASE_VI_GFX9(node) \
  case node: return isGFX9(STI) ? node##_gfx9 : node##_vi;

unsigned getMCReg(unsigned Reg, const MCSubtargetInfo &STI) {
  if (STI.getTargetTriple().getArch() == Triple::r600)
    return Reg;
  MAP_REG2REG
}

#undef CASE_CI_VI
#undef CASE_VI_GFX9

#define CASE_CI_VI(node)   case node##_ci: case node##_vi:   return node;
#define CASE_VI_GFX9(node) case node##_vi: case node##_gfx9: return node;

unsigned mc2PseudoReg(unsigned Reg) {
  MAP_REG2REG
}

#undef CASE_CI_VI
#undef CASE_VI_GFX9
#undef MAP_REG2REG

bool isSISrcOperand(const MCInstrDesc &Desc, unsigned OpNo) {
  assert(OpNo < Desc.NumOperands);
  unsigned OpType = Desc.OpInfo[OpNo].OperandType;
  return OpType >= AMDGPU::OPERAND_SRC_FIRST &&
         OpType <= AMDGPU::OPERAND_SRC_LAST;
}

bool isSISrcFPOperand(const MCInstrDesc &Desc, unsigned OpNo) {
  assert(OpNo < Desc.NumOperands);
  unsigned OpType = Desc.OpInfo[OpNo].OperandType;
  switch (OpType) {
  case AMDGPU::OPERAND_REG_IMM_FP32:
  case AMDGPU::OPERAND_REG_IMM_FP64:
  case AMDGPU::OPERAND_REG_IMM_FP16:
  case AMDGPU::OPERAND_REG_INLINE_C_FP32:
  case AMDGPU::OPERAND_REG_INLINE_C_FP64:
  case AMDGPU::OPERAND_REG_INLINE_C_FP16:
  case AMDGPU::OPERAND_REG_INLINE_C_V2FP16:
    return true;
  default:
    return false;
  }
}

bool isSISrcInlinableOperand(const MCInstrDesc &Desc, unsigned OpNo) {
  assert(OpNo < Desc.NumOperands);
  unsigned OpType = Desc.OpInfo[OpNo].OperandType;
  return OpType >= AMDGPU::OPERAND_REG_INLINE_C_FIRST &&
         OpType <= AMDGPU::OPERAND_REG_INLINE_C_LAST;
}

// Avoid using MCRegisterClass::getSize, since that function will go away
// (move from MC* level to Target* level). Return size in bits.
unsigned getRegBitWidth(unsigned RCID) {
  switch (RCID) {
  case AMDGPU::SGPR_32RegClassID:
  case AMDGPU::VGPR_32RegClassID:
  case AMDGPU::VS_32RegClassID:
  case AMDGPU::SReg_32RegClassID:
  case AMDGPU::SReg_32_XM0RegClassID:
    return 32;
  case AMDGPU::SGPR_64RegClassID:
  case AMDGPU::VS_64RegClassID:
  case AMDGPU::SReg_64RegClassID:
  case AMDGPU::VReg_64RegClassID:
    return 64;
  case AMDGPU::VReg_96RegClassID:
    return 96;
  case AMDGPU::SGPR_128RegClassID:
  case AMDGPU::SReg_128RegClassID:
  case AMDGPU::VReg_128RegClassID:
    return 128;
  case AMDGPU::SReg_256RegClassID:
  case AMDGPU::VReg_256RegClassID:
    return 256;
  case AMDGPU::SReg_512RegClassID:
  case AMDGPU::VReg_512RegClassID:
    return 512;
  default:
    llvm_unreachable("Unexpected register class");
  }
}

unsigned getRegBitWidth(const MCRegisterClass &RC) {
  return getRegBitWidth(RC.getID());
}

unsigned getRegOperandSize(const MCRegisterInfo *MRI, const MCInstrDesc &Desc,
                           unsigned OpNo) {
  assert(OpNo < Desc.NumOperands);
  unsigned RCID = Desc.OpInfo[OpNo].RegClass;
  return getRegBitWidth(MRI->getRegClass(RCID)) / 8;
}

bool isInlinableLiteral64(int64_t Literal, bool HasInv2Pi) {
  if (Literal >= -16 && Literal <= 64)
    return true;

  uint64_t Val = static_cast<uint64_t>(Literal);
  return (Val == DoubleToBits(0.0)) ||
         (Val == DoubleToBits(1.0)) ||
         (Val == DoubleToBits(-1.0)) ||
         (Val == DoubleToBits(0.5)) ||
         (Val == DoubleToBits(-0.5)) ||
         (Val == DoubleToBits(2.0)) ||
         (Val == DoubleToBits(-2.0)) ||
         (Val == DoubleToBits(4.0)) ||
         (Val == DoubleToBits(-4.0)) ||
         (Val == 0x3fc45f306dc9c882 && HasInv2Pi);
}

bool isInlinableLiteral32(int32_t Literal, bool HasInv2Pi) {
  if (Literal >= -16 && Literal <= 64)
    return true;

  // The actual type of the operand does not seem to matter as long
  // as the bits match one of the inline immediate values.  For example:
  //
  // -nan has the hexadecimal encoding of 0xfffffffe which is -2 in decimal,
  // so it is a legal inline immediate.
  //
  // 1065353216 has the hexadecimal encoding 0x3f800000 which is 1.0f in
  // floating-point, so it is a legal inline immediate.

  uint32_t Val = static_cast<uint32_t>(Literal);
  return (Val == FloatToBits(0.0f)) ||
         (Val == FloatToBits(1.0f)) ||
         (Val == FloatToBits(-1.0f)) ||
         (Val == FloatToBits(0.5f)) ||
         (Val == FloatToBits(-0.5f)) ||
         (Val == FloatToBits(2.0f)) ||
         (Val == FloatToBits(-2.0f)) ||
         (Val == FloatToBits(4.0f)) ||
         (Val == FloatToBits(-4.0f)) ||
         (Val == 0x3e22f983 && HasInv2Pi);
}

bool isInlinableLiteral16(int16_t Literal, bool HasInv2Pi) {
  if (!HasInv2Pi)
    return false;

  if (Literal >= -16 && Literal <= 64)
    return true;

  uint16_t Val = static_cast<uint16_t>(Literal);
  return Val == 0x3C00 || // 1.0
         Val == 0xBC00 || // -1.0
         Val == 0x3800 || // 0.5
         Val == 0xB800 || // -0.5
         Val == 0x4000 || // 2.0
         Val == 0xC000 || // -2.0
         Val == 0x4400 || // 4.0
         Val == 0xC400 || // -4.0
         Val == 0x3118;   // 1/2pi
}

bool isInlinableLiteralV216(int32_t Literal, bool HasInv2Pi) {
  assert(HasInv2Pi);

  int16_t Lo16 = static_cast<int16_t>(Literal);
  int16_t Hi16 = static_cast<int16_t>(Literal >> 16);
  return Lo16 == Hi16 && isInlinableLiteral16(Lo16, HasInv2Pi);
}

bool isArgPassedInSGPR(const Argument *A) {
  const Function *F = A->getParent();

  // Arguments to compute shaders are never a source of divergence.
  CallingConv::ID CC = F->getCallingConv();
  switch (CC) {
  case CallingConv::AMDGPU_KERNEL:
  case CallingConv::SPIR_KERNEL:
    return true;
  case CallingConv::AMDGPU_VS:
  case CallingConv::AMDGPU_LS:
  case CallingConv::AMDGPU_HS:
  case CallingConv::AMDGPU_ES:
  case CallingConv::AMDGPU_GS:
  case CallingConv::AMDGPU_PS:
  case CallingConv::AMDGPU_CS:
    // For non-compute shaders, SGPR inputs are marked with either inreg or byval.
    // Everything else is in VGPRs.
    return F->getAttributes().hasParamAttribute(A->getArgNo(), Attribute::InReg) ||
           F->getAttributes().hasParamAttribute(A->getArgNo(), Attribute::ByVal);
  default:
    // TODO: Should calls support inreg for SGPR inputs?
    return false;
  }
}

int64_t getSMRDEncodedOffset(const MCSubtargetInfo &ST, int64_t ByteOffset) {
  if (isGCN3Encoding(ST))
    return ByteOffset;
  return ByteOffset >> 2;
}

bool isLegalSMRDImmOffset(const MCSubtargetInfo &ST, int64_t ByteOffset) {
  int64_t EncodedOffset = getSMRDEncodedOffset(ST, ByteOffset);
  return isGCN3Encoding(ST) ?
    isUInt<20>(EncodedOffset) : isUInt<8>(EncodedOffset);
}

// Given Imm, split it into the values to put into the SOffset and ImmOffset
// fields in an MUBUF instruction. Return false if it is not possible (due to a
// hardware bug needing a workaround).
bool splitMUBUFOffset(uint32_t Imm, uint32_t &SOffset, uint32_t &ImmOffset,
                      const GCNSubtarget *Subtarget) {
  const uint32_t Align = 4;
  const uint32_t MaxImm = alignDown(4095, Align);
  uint32_t Overflow = 0;

  if (Imm > MaxImm) {
    if (Imm <= MaxImm + 64) {
      // Use an SOffset inline constant for 4..64
      Overflow = Imm - MaxImm;
      Imm = MaxImm;
    } else {
      // Try to keep the same value in SOffset for adjacent loads, so that
      // the corresponding register contents can be re-used.
      //
      // Load values with all low-bits (except for alignment bits) set into
      // SOffset, so that a larger range of values can be covered using
      // s_movk_i32.
      //
      // Atomic operations fail to work correctly when individual address
      // components are unaligned, even if their sum is aligned.
      uint32_t High = (Imm + Align) & ~4095;
      uint32_t Low = (Imm + Align) & 4095;
      Imm = Low;
      Overflow = High - Align;
    }
  }

  // There is a hardware bug in SI and CI which prevents address clamping in
  // MUBUF instructions from working correctly with SOffsets. The immediate
  // offset is unaffected.
  if (Overflow > 0 &&
      Subtarget->getGeneration() <= AMDGPUSubtarget::SEA_ISLANDS)
    return false;

  ImmOffset = Imm;
  SOffset = Overflow;
  return true;
}

namespace {

struct SourceOfDivergence {
  unsigned Intr;
};
const SourceOfDivergence *lookupSourceOfDivergence(unsigned Intr);

#define GET_SourcesOfDivergence_IMPL
#include "AMDGPUGenSearchableTables.inc"

} // end anonymous namespace

bool isIntrinsicSourceOfDivergence(unsigned IntrID) {
  return lookupSourceOfDivergence(IntrID);
}
} // namespace AMDGPU
} // namespace llvm