llvm.org GIT mirror llvm / 67a8eaa lib / Transforms / Scalar / LoopStrengthReduce.cpp
67a8eaa

Tree @67a8eaa (Download .tar.gz)

LoopStrengthReduce.cpp @67a8eaaraw · history · blame

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
//===- LoopStrengthReduce.cpp - Strength Reduce GEPs in Loops -------------===//
//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This pass performs a strength reduction on array references inside loops that
// have as one or more of their components the loop induction variable.  This is
// accomplished by creating a new Value to hold the initial value of the array
// access for the first iteration, and then creating a new GEP instruction in
// the loop to increment the value by the appropriate amount.
//
//===----------------------------------------------------------------------===//

#define DEBUG_TYPE "loop-reduce"
#include "llvm/Transforms/Scalar.h"
#include "llvm/Constants.h"
#include "llvm/Instructions.h"
#include "llvm/IntrinsicInst.h"
#include "llvm/Type.h"
#include "llvm/DerivedTypes.h"
#include "llvm/Analysis/Dominators.h"
#include "llvm/Analysis/LoopInfo.h"
#include "llvm/Analysis/LoopPass.h"
#include "llvm/Analysis/ScalarEvolutionExpander.h"
#include "llvm/Support/CFG.h"
#include "llvm/Support/GetElementPtrTypeIterator.h"
#include "llvm/Transforms/Utils/BasicBlockUtils.h"
#include "llvm/Transforms/Utils/Local.h"
#include "llvm/Target/TargetData.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/Compiler.h"
#include "llvm/Target/TargetLowering.h"
#include <algorithm>
#include <set>
using namespace llvm;

STATISTIC(NumReduced ,    "Number of GEPs strength reduced");
STATISTIC(NumInserted,    "Number of PHIs inserted");
STATISTIC(NumVariable,    "Number of PHIs with variable strides");
STATISTIC(NumEliminated,  "Number of strides eliminated");
STATISTIC(NumShadow,      "Number of Shadow IVs optimized");

namespace {

  struct BasedUser;

  /// IVStrideUse - Keep track of one use of a strided induction variable, where
  /// the stride is stored externally.  The Offset member keeps track of the 
  /// offset from the IV, User is the actual user of the operand, and
  /// 'OperandValToReplace' is the operand of the User that is the use.
  struct VISIBILITY_HIDDEN IVStrideUse {
    SCEVHandle Offset;
    Instruction *User;
    Value *OperandValToReplace;

    // isUseOfPostIncrementedValue - True if this should use the
    // post-incremented version of this IV, not the preincremented version.
    // This can only be set in special cases, such as the terminating setcc
    // instruction for a loop or uses dominated by the loop.
    bool isUseOfPostIncrementedValue;
    
    IVStrideUse(const SCEVHandle &Offs, Instruction *U, Value *O)
      : Offset(Offs), User(U), OperandValToReplace(O),
        isUseOfPostIncrementedValue(false) {}
  };
  
  /// IVUsersOfOneStride - This structure keeps track of all instructions that
  /// have an operand that is based on the trip count multiplied by some stride.
  /// The stride for all of these users is common and kept external to this
  /// structure.
  struct VISIBILITY_HIDDEN IVUsersOfOneStride {
    /// Users - Keep track of all of the users of this stride as well as the
    /// initial value and the operand that uses the IV.
    std::vector<IVStrideUse> Users;
    
    void addUser(const SCEVHandle &Offset,Instruction *User, Value *Operand) {
      Users.push_back(IVStrideUse(Offset, User, Operand));
    }
  };

  /// IVInfo - This structure keeps track of one IV expression inserted during
  /// StrengthReduceStridedIVUsers. It contains the stride, the common base, as
  /// well as the PHI node and increment value created for rewrite.
  struct VISIBILITY_HIDDEN IVExpr {
    SCEVHandle  Stride;
    SCEVHandle  Base;
    PHINode    *PHI;
    Value      *IncV;

    IVExpr(const SCEVHandle &stride, const SCEVHandle &base, PHINode *phi,
           Value *incv)
      : Stride(stride), Base(base), PHI(phi), IncV(incv) {}
  };

  /// IVsOfOneStride - This structure keeps track of all IV expression inserted
  /// during StrengthReduceStridedIVUsers for a particular stride of the IV.
  struct VISIBILITY_HIDDEN IVsOfOneStride {
    std::vector<IVExpr> IVs;

    void addIV(const SCEVHandle &Stride, const SCEVHandle &Base, PHINode *PHI,
               Value *IncV) {
      IVs.push_back(IVExpr(Stride, Base, PHI, IncV));
    }
  };

  class VISIBILITY_HIDDEN LoopStrengthReduce : public LoopPass {
    LoopInfo *LI;
    DominatorTree *DT;
    ScalarEvolution *SE;
    const TargetData *TD;
    const Type *UIntPtrTy;
    bool Changed;

    /// IVUsesByStride - Keep track of all uses of induction variables that we
    /// are interested in.  The key of the map is the stride of the access.
    std::map<SCEVHandle, IVUsersOfOneStride> IVUsesByStride;

    /// IVsByStride - Keep track of all IVs that have been inserted for a
    /// particular stride.
    std::map<SCEVHandle, IVsOfOneStride> IVsByStride;

    /// StrideOrder - An ordering of the keys in IVUsesByStride that is stable:
    /// We use this to iterate over the IVUsesByStride collection without being
    /// dependent on random ordering of pointers in the process.
    SmallVector<SCEVHandle, 16> StrideOrder;

    /// GEPlist - A list of the GEP's that have been remembered in the SCEV
    /// data structures.  SCEV does not know to update these when the operands
    /// of the GEP are changed, which means we cannot leave them live across
    /// loops.
    SmallVector<GetElementPtrInst *, 16> GEPlist;

    /// CastedValues - As we need to cast values to uintptr_t, this keeps track
    /// of the casted version of each value.  This is accessed by
    /// getCastedVersionOf.
    DenseMap<Value*, Value*> CastedPointers;

    /// DeadInsts - Keep track of instructions we may have made dead, so that
    /// we can remove them after we are done working.
    SmallVector<Instruction*, 16> DeadInsts;

    /// TLI - Keep a pointer of a TargetLowering to consult for determining
    /// transformation profitability.
    const TargetLowering *TLI;

  public:
    static char ID; // Pass ID, replacement for typeid
    explicit LoopStrengthReduce(const TargetLowering *tli = NULL) : 
      LoopPass(&ID), TLI(tli) {
    }

    bool runOnLoop(Loop *L, LPPassManager &LPM);

    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
      // We split critical edges, so we change the CFG.  However, we do update
      // many analyses if they are around.
      AU.addPreservedID(LoopSimplifyID);
      AU.addPreserved<LoopInfo>();
      AU.addPreserved<DominanceFrontier>();
      AU.addPreserved<DominatorTree>();

      AU.addRequiredID(LoopSimplifyID);
      AU.addRequired<LoopInfo>();
      AU.addRequired<DominatorTree>();
      AU.addRequired<TargetData>();
      AU.addRequired<ScalarEvolution>();
      AU.addPreserved<ScalarEvolution>();
    }
    
    /// getCastedVersionOf - Return the specified value casted to uintptr_t.
    ///
    Value *getCastedVersionOf(Instruction::CastOps opcode, Value *V);
private:
    bool AddUsersIfInteresting(Instruction *I, Loop *L,
                               SmallPtrSet<Instruction*,16> &Processed);
    SCEVHandle GetExpressionSCEV(Instruction *E);
    ICmpInst *ChangeCompareStride(Loop *L, ICmpInst *Cond,
                                  IVStrideUse* &CondUse,
                                  const SCEVHandle* &CondStride);
    void OptimizeIndvars(Loop *L);

    /// OptimizeShadowIV - If IV is used in a int-to-float cast
    /// inside the loop then try to eliminate the cast opeation.
    void OptimizeShadowIV(Loop *L);

    /// OptimizeSMax - Rewrite the loop's terminating condition
    /// if it uses an smax computation.
    ICmpInst *OptimizeSMax(Loop *L, ICmpInst *Cond,
                           IVStrideUse* &CondUse);

    bool FindIVUserForCond(ICmpInst *Cond, IVStrideUse *&CondUse,
                           const SCEVHandle *&CondStride);
    bool RequiresTypeConversion(const Type *Ty, const Type *NewTy);
    SCEVHandle CheckForIVReuse(bool, bool, bool, const SCEVHandle&,
                             IVExpr&, const Type*,
                             const std::vector<BasedUser>& UsersToProcess);
    bool ValidStride(bool, int64_t,
                     const std::vector<BasedUser>& UsersToProcess);
    SCEVHandle CollectIVUsers(const SCEVHandle &Stride,
                              IVUsersOfOneStride &Uses,
                              Loop *L,
                              bool &AllUsesAreAddresses,
                              bool &AllUsesAreOutsideLoop,
                              std::vector<BasedUser> &UsersToProcess);
    void StrengthReduceStridedIVUsers(const SCEVHandle &Stride,
                                      IVUsersOfOneStride &Uses,
                                      Loop *L, bool isOnlyStride);
    void DeleteTriviallyDeadInstructions();
  };
}

char LoopStrengthReduce::ID = 0;
static RegisterPass<LoopStrengthReduce>
X("loop-reduce", "Loop Strength Reduction");

Pass *llvm::createLoopStrengthReducePass(const TargetLowering *TLI) {
  return new LoopStrengthReduce(TLI);
}

/// getCastedVersionOf - Return the specified value casted to uintptr_t. This
/// assumes that the Value* V is of integer or pointer type only.
///
Value *LoopStrengthReduce::getCastedVersionOf(Instruction::CastOps opcode, 
                                              Value *V) {
  if (V->getType() == UIntPtrTy) return V;
  if (Constant *CB = dyn_cast<Constant>(V))
    return ConstantExpr::getCast(opcode, CB, UIntPtrTy);

  Value *&New = CastedPointers[V];
  if (New) return New;
  
  New = SCEVExpander::InsertCastOfTo(opcode, V, UIntPtrTy);
  DeadInsts.push_back(cast<Instruction>(New));
  return New;
}


/// DeleteTriviallyDeadInstructions - If any of the instructions is the
/// specified set are trivially dead, delete them and see if this makes any of
/// their operands subsequently dead.
void LoopStrengthReduce::DeleteTriviallyDeadInstructions() {
  if (DeadInsts.empty()) return;
  
  // Sort the deadinsts list so that we can trivially eliminate duplicates as we
  // go.  The code below never adds a non-dead instruction to the worklist, but
  // callers may not be so careful.
  array_pod_sort(DeadInsts.begin(), DeadInsts.end());

  // Drop duplicate instructions and those with uses.
  for (unsigned i = 0, e = DeadInsts.size()-1; i < e; ++i) {
    Instruction *I = DeadInsts[i];
    if (!I->use_empty()) DeadInsts[i] = 0;
    while (i != e && DeadInsts[i+1] == I)
      DeadInsts[++i] = 0;
  }
  
  while (!DeadInsts.empty()) {
    Instruction *I = DeadInsts.back();
    DeadInsts.pop_back();
    
    if (I == 0 || !isInstructionTriviallyDead(I))
      continue;

    SE->deleteValueFromRecords(I);

    for (User::op_iterator OI = I->op_begin(), E = I->op_end(); OI != E; ++OI) {
      if (Instruction *U = dyn_cast<Instruction>(*OI)) {
        *OI = 0;
        if (U->use_empty())
          DeadInsts.push_back(U);
      }
    }
    
    I->eraseFromParent();
    Changed = true;
  }
}


/// GetExpressionSCEV - Compute and return the SCEV for the specified
/// instruction.
SCEVHandle LoopStrengthReduce::GetExpressionSCEV(Instruction *Exp) {
  // Pointer to pointer bitcast instructions return the same value as their
  // operand.
  if (BitCastInst *BCI = dyn_cast<BitCastInst>(Exp)) {
    if (SE->hasSCEV(BCI) || !isa<Instruction>(BCI->getOperand(0)))
      return SE->getSCEV(BCI);
    SCEVHandle R = GetExpressionSCEV(cast<Instruction>(BCI->getOperand(0)));
    SE->setSCEV(BCI, R);
    return R;
  }

  // Scalar Evolutions doesn't know how to compute SCEV's for GEP instructions.
  // If this is a GEP that SE doesn't know about, compute it now and insert it.
  // If this is not a GEP, or if we have already done this computation, just let
  // SE figure it out.
  GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Exp);
  if (!GEP || SE->hasSCEV(GEP))
    return SE->getSCEV(Exp);
    
  // Analyze all of the subscripts of this getelementptr instruction, looking
  // for uses that are determined by the trip count of the loop.  First, skip
  // all operands the are not dependent on the IV.

  // Build up the base expression.  Insert an LLVM cast of the pointer to
  // uintptr_t first.
  SCEVHandle GEPVal = SE->getUnknown(
      getCastedVersionOf(Instruction::PtrToInt, GEP->getOperand(0)));

  gep_type_iterator GTI = gep_type_begin(GEP);
  
  for (User::op_iterator i = GEP->op_begin() + 1, e = GEP->op_end();
       i != e; ++i, ++GTI) {
    // If this is a use of a recurrence that we can analyze, and it comes before
    // Op does in the GEP operand list, we will handle this when we process this
    // operand.
    if (const StructType *STy = dyn_cast<StructType>(*GTI)) {
      const StructLayout *SL = TD->getStructLayout(STy);
      unsigned Idx = cast<ConstantInt>(*i)->getZExtValue();
      uint64_t Offset = SL->getElementOffset(Idx);
      GEPVal = SE->getAddExpr(GEPVal,
                             SE->getIntegerSCEV(Offset, UIntPtrTy));
    } else {
      unsigned GEPOpiBits = 
        (*i)->getType()->getPrimitiveSizeInBits();
      unsigned IntPtrBits = UIntPtrTy->getPrimitiveSizeInBits();
      Instruction::CastOps opcode = (GEPOpiBits < IntPtrBits ? 
          Instruction::SExt : (GEPOpiBits > IntPtrBits ? Instruction::Trunc :
            Instruction::BitCast));
      Value *OpVal = getCastedVersionOf(opcode, *i);
      SCEVHandle Idx = SE->getSCEV(OpVal);

      uint64_t TypeSize = TD->getTypePaddedSize(GTI.getIndexedType());
      if (TypeSize != 1)
        Idx = SE->getMulExpr(Idx,
                            SE->getConstant(ConstantInt::get(UIntPtrTy,
                                                             TypeSize)));
      GEPVal = SE->getAddExpr(GEPVal, Idx);
    }
  }

  SE->setSCEV(GEP, GEPVal);
  GEPlist.push_back(GEP);
  return GEPVal;
}

/// containsAddRecFromDifferentLoop - Determine whether expression S involves a 
/// subexpression that is an AddRec from a loop other than L.  An outer loop 
/// of L is OK, but not an inner loop nor a disjoint loop.
static bool containsAddRecFromDifferentLoop(SCEVHandle S, Loop *L) {
  // This is very common, put it first.
  if (isa<SCEVConstant>(S))
    return false;
  if (SCEVCommutativeExpr *AE = dyn_cast<SCEVCommutativeExpr>(S)) {
    for (unsigned int i=0; i< AE->getNumOperands(); i++)
      if (containsAddRecFromDifferentLoop(AE->getOperand(i), L))
        return true;
    return false;
  }
  if (SCEVAddRecExpr *AE = dyn_cast<SCEVAddRecExpr>(S)) {
    if (const Loop *newLoop = AE->getLoop()) {
      if (newLoop == L)
        return false;
      // if newLoop is an outer loop of L, this is OK.
      if (!LoopInfoBase<BasicBlock>::isNotAlreadyContainedIn(L, newLoop))
        return false;
    }
    return true;
  }
  if (SCEVUDivExpr *DE = dyn_cast<SCEVUDivExpr>(S))
    return containsAddRecFromDifferentLoop(DE->getLHS(), L) ||
           containsAddRecFromDifferentLoop(DE->getRHS(), L);
#if 0
  // SCEVSDivExpr has been backed out temporarily, but will be back; we'll 
  // need this when it is.
  if (SCEVSDivExpr *DE = dyn_cast<SCEVSDivExpr>(S))
    return containsAddRecFromDifferentLoop(DE->getLHS(), L) ||
           containsAddRecFromDifferentLoop(DE->getRHS(), L);
#endif
  if (SCEVTruncateExpr *TE = dyn_cast<SCEVTruncateExpr>(S))
    return containsAddRecFromDifferentLoop(TE->getOperand(), L);
  if (SCEVZeroExtendExpr *ZE = dyn_cast<SCEVZeroExtendExpr>(S))
    return containsAddRecFromDifferentLoop(ZE->getOperand(), L);
  if (SCEVSignExtendExpr *SE = dyn_cast<SCEVSignExtendExpr>(S))
    return containsAddRecFromDifferentLoop(SE->getOperand(), L);
  return false;
}

/// getSCEVStartAndStride - Compute the start and stride of this expression,
/// returning false if the expression is not a start/stride pair, or true if it
/// is.  The stride must be a loop invariant expression, but the start may be
/// a mix of loop invariant and loop variant expressions.  The start cannot,
/// however, contain an AddRec from a different loop, unless that loop is an
/// outer loop of the current loop.
static bool getSCEVStartAndStride(const SCEVHandle &SH, Loop *L,
                                  SCEVHandle &Start, SCEVHandle &Stride,
                                  ScalarEvolution *SE) {
  SCEVHandle TheAddRec = Start;   // Initialize to zero.

  // If the outer level is an AddExpr, the operands are all start values except
  // for a nested AddRecExpr.
  if (SCEVAddExpr *AE = dyn_cast<SCEVAddExpr>(SH)) {
    for (unsigned i = 0, e = AE->getNumOperands(); i != e; ++i)
      if (SCEVAddRecExpr *AddRec =
             dyn_cast<SCEVAddRecExpr>(AE->getOperand(i))) {
        if (AddRec->getLoop() == L)
          TheAddRec = SE->getAddExpr(AddRec, TheAddRec);
        else
          return false;  // Nested IV of some sort?
      } else {
        Start = SE->getAddExpr(Start, AE->getOperand(i));
      }
        
  } else if (isa<SCEVAddRecExpr>(SH)) {
    TheAddRec = SH;
  } else {
    return false;  // not analyzable.
  }
  
  SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(TheAddRec);
  if (!AddRec || AddRec->getLoop() != L) return false;
  
  // FIXME: Generalize to non-affine IV's.
  if (!AddRec->isAffine()) return false;

  // If Start contains an SCEVAddRecExpr from a different loop, other than an
  // outer loop of the current loop, reject it.  SCEV has no concept of 
  // operating on one loop at a time so don't confuse it with such expressions.
  if (containsAddRecFromDifferentLoop(Start, L))
    return false;

  Start = SE->getAddExpr(Start, AddRec->getOperand(0));
  
  if (!isa<SCEVConstant>(AddRec->getOperand(1)))
    DOUT << "[" << L->getHeader()->getName()
         << "] Variable stride: " << *AddRec << "\n";

  Stride = AddRec->getOperand(1);
  return true;
}

/// IVUseShouldUsePostIncValue - We have discovered a "User" of an IV expression
/// and now we need to decide whether the user should use the preinc or post-inc
/// value.  If this user should use the post-inc version of the IV, return true.
///
/// Choosing wrong here can break dominance properties (if we choose to use the
/// post-inc value when we cannot) or it can end up adding extra live-ranges to
/// the loop, resulting in reg-reg copies (if we use the pre-inc value when we
/// should use the post-inc value).
static bool IVUseShouldUsePostIncValue(Instruction *User, Instruction *IV,
                                       Loop *L, DominatorTree *DT, Pass *P,
                                      SmallVectorImpl<Instruction*> &DeadInsts){
  // If the user is in the loop, use the preinc value.
  if (L->contains(User->getParent())) return false;
  
  BasicBlock *LatchBlock = L->getLoopLatch();
  
  // Ok, the user is outside of the loop.  If it is dominated by the latch
  // block, use the post-inc value.
  if (DT->dominates(LatchBlock, User->getParent()))
    return true;

  // There is one case we have to be careful of: PHI nodes.  These little guys
  // can live in blocks that do not dominate the latch block, but (since their
  // uses occur in the predecessor block, not the block the PHI lives in) should
  // still use the post-inc value.  Check for this case now.
  PHINode *PN = dyn_cast<PHINode>(User);
  if (!PN) return false;  // not a phi, not dominated by latch block.
  
  // Look at all of the uses of IV by the PHI node.  If any use corresponds to
  // a block that is not dominated by the latch block, give up and use the
  // preincremented value.
  unsigned NumUses = 0;
  for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
    if (PN->getIncomingValue(i) == IV) {
      ++NumUses;
      if (!DT->dominates(LatchBlock, PN->getIncomingBlock(i)))
        return false;
    }

  // Okay, all uses of IV by PN are in predecessor blocks that really are
  // dominated by the latch block.  Split the critical edges and use the
  // post-incremented value.
  for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
    if (PN->getIncomingValue(i) == IV) {
      SplitCriticalEdge(PN->getIncomingBlock(i), PN->getParent(), P, false);
      // Splitting the critical edge can reduce the number of entries in this
      // PHI.
      e = PN->getNumIncomingValues();
      if (--NumUses == 0) break;
    }

  // PHI node might have become a constant value after SplitCriticalEdge.
  DeadInsts.push_back(User);
  
  return true;
}

/// isAddress - Returns true if the specified instruction is using the
/// specified value as an address.
static bool isAddressUse(Instruction *Inst, Value *OperandVal) {
  bool isAddress = isa<LoadInst>(Inst);
  if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) {
    if (SI->getOperand(1) == OperandVal)
      isAddress = true;
  } else if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) {
    // Addressing modes can also be folded into prefetches and a variety
    // of intrinsics.
    switch (II->getIntrinsicID()) {
      default: break;
      case Intrinsic::prefetch:
      case Intrinsic::x86_sse2_loadu_dq:
      case Intrinsic::x86_sse2_loadu_pd:
      case Intrinsic::x86_sse_loadu_ps:
      case Intrinsic::x86_sse_storeu_ps:
      case Intrinsic::x86_sse2_storeu_pd:
      case Intrinsic::x86_sse2_storeu_dq:
      case Intrinsic::x86_sse2_storel_dq:
        if (II->getOperand(1) == OperandVal)
          isAddress = true;
        break;
    }
  }
  return isAddress;
}

/// AddUsersIfInteresting - Inspect the specified instruction.  If it is a
/// reducible SCEV, recursively add its users to the IVUsesByStride set and
/// return true.  Otherwise, return false.
bool LoopStrengthReduce::AddUsersIfInteresting(Instruction *I, Loop *L,
                                      SmallPtrSet<Instruction*,16> &Processed) {
  if (!I->getType()->isInteger() && !isa<PointerType>(I->getType()))
    return false;   // Void and FP expressions cannot be reduced.
  if (!Processed.insert(I))
    return true;    // Instruction already handled.
  
  // Get the symbolic expression for this instruction.
  SCEVHandle ISE = GetExpressionSCEV(I);
  if (isa<SCEVCouldNotCompute>(ISE)) return false;
  
  // Get the start and stride for this expression.
  SCEVHandle Start = SE->getIntegerSCEV(0, ISE->getType());
  SCEVHandle Stride = Start;
  if (!getSCEVStartAndStride(ISE, L, Start, Stride, SE))
    return false;  // Non-reducible symbolic expression, bail out.

  std::vector<Instruction *> IUsers;
  // Collect all I uses now because IVUseShouldUsePostIncValue may 
  // invalidate use_iterator.
  for (Value::use_iterator UI = I->use_begin(), E = I->use_end(); UI != E; ++UI)
    IUsers.push_back(cast<Instruction>(*UI));

  for (unsigned iused_index = 0, iused_size = IUsers.size(); 
       iused_index != iused_size; ++iused_index) {

    Instruction *User = IUsers[iused_index];

    // Do not infinitely recurse on PHI nodes.
    if (isa<PHINode>(User) && Processed.count(User))
      continue;

    // Descend recursively, but not into PHI nodes outside the current loop.
    // It's important to see the entire expression outside the loop to get
    // choices that depend on addressing mode use right, although we won't
    // consider references ouside the loop in all cases.
    // If User is already in Processed, we don't want to recurse into it again,
    // but do want to record a second reference in the same instruction.
    bool AddUserToIVUsers = false;
    if (LI->getLoopFor(User->getParent()) != L) {
      if (isa<PHINode>(User) || Processed.count(User) ||
          !AddUsersIfInteresting(User, L, Processed)) {
        DOUT << "FOUND USER in other loop: " << *User
             << "   OF SCEV: " << *ISE << "\n";
        AddUserToIVUsers = true;
      }
    } else if (Processed.count(User) || 
               !AddUsersIfInteresting(User, L, Processed)) {
      DOUT << "FOUND USER: " << *User
           << "   OF SCEV: " << *ISE << "\n";
      AddUserToIVUsers = true;
    }

    if (AddUserToIVUsers) {
      IVUsersOfOneStride &StrideUses = IVUsesByStride[Stride];
      if (StrideUses.Users.empty())     // First occurrence of this stride?
        StrideOrder.push_back(Stride);
      
      // Okay, we found a user that we cannot reduce.  Analyze the instruction
      // and decide what to do with it.  If we are a use inside of the loop, use
      // the value before incrementation, otherwise use it after incrementation.
      if (IVUseShouldUsePostIncValue(User, I, L, DT, this, DeadInsts)) {
        // The value used will be incremented by the stride more than we are
        // expecting, so subtract this off.
        SCEVHandle NewStart = SE->getMinusSCEV(Start, Stride);
        StrideUses.addUser(NewStart, User, I);
        StrideUses.Users.back().isUseOfPostIncrementedValue = true;
        DOUT << "   USING POSTINC SCEV, START=" << *NewStart<< "\n";
      } else {        
        StrideUses.addUser(Start, User, I);
      }
    }
  }
  return true;
}

namespace {
  /// BasedUser - For a particular base value, keep information about how we've
  /// partitioned the expression so far.
  struct BasedUser {
    /// SE - The current ScalarEvolution object.
    ScalarEvolution *SE;

    /// Base - The Base value for the PHI node that needs to be inserted for
    /// this use.  As the use is processed, information gets moved from this
    /// field to the Imm field (below).  BasedUser values are sorted by this
    /// field.
    SCEVHandle Base;
    
    /// Inst - The instruction using the induction variable.
    Instruction *Inst;

    /// OperandValToReplace - The operand value of Inst to replace with the
    /// EmittedBase.
    Value *OperandValToReplace;

    /// Imm - The immediate value that should be added to the base immediately
    /// before Inst, because it will be folded into the imm field of the
    /// instruction.
    SCEVHandle Imm;

    // isUseOfPostIncrementedValue - True if this should use the
    // post-incremented version of this IV, not the preincremented version.
    // This can only be set in special cases, such as the terminating setcc
    // instruction for a loop and uses outside the loop that are dominated by
    // the loop.
    bool isUseOfPostIncrementedValue;
    
    BasedUser(IVStrideUse &IVSU, ScalarEvolution *se)
      : SE(se), Base(IVSU.Offset), Inst(IVSU.User), 
        OperandValToReplace(IVSU.OperandValToReplace), 
        Imm(SE->getIntegerSCEV(0, Base->getType())), 
        isUseOfPostIncrementedValue(IVSU.isUseOfPostIncrementedValue) {}

    // Once we rewrite the code to insert the new IVs we want, update the
    // operands of Inst to use the new expression 'NewBase', with 'Imm' added
    // to it.
    void RewriteInstructionToUseNewBase(const SCEVHandle &NewBase,
                                        Instruction *InsertPt,
                                       SCEVExpander &Rewriter, Loop *L, Pass *P,
                                      SmallVectorImpl<Instruction*> &DeadInsts);
    
    Value *InsertCodeForBaseAtPosition(const SCEVHandle &NewBase, 
                                       SCEVExpander &Rewriter,
                                       Instruction *IP, Loop *L);
    void dump() const;
  };
}

void BasedUser::dump() const {
  cerr << " Base=" << *Base;
  cerr << " Imm=" << *Imm;
  cerr << "   Inst: " << *Inst;
}

Value *BasedUser::InsertCodeForBaseAtPosition(const SCEVHandle &NewBase, 
                                              SCEVExpander &Rewriter,
                                              Instruction *IP, Loop *L) {
  // Figure out where we *really* want to insert this code.  In particular, if
  // the user is inside of a loop that is nested inside of L, we really don't
  // want to insert this expression before the user, we'd rather pull it out as
  // many loops as possible.
  LoopInfo &LI = Rewriter.getLoopInfo();
  Instruction *BaseInsertPt = IP;
  
  // Figure out the most-nested loop that IP is in.
  Loop *InsertLoop = LI.getLoopFor(IP->getParent());
  
  // If InsertLoop is not L, and InsertLoop is nested inside of L, figure out
  // the preheader of the outer-most loop where NewBase is not loop invariant.
  if (L->contains(IP->getParent()))
    while (InsertLoop && NewBase->isLoopInvariant(InsertLoop)) {
      BaseInsertPt = InsertLoop->getLoopPreheader()->getTerminator();
      InsertLoop = InsertLoop->getParentLoop();
    }
  
  // If there is no immediate value, skip the next part.
  if (Imm->isZero())
    return Rewriter.expandCodeFor(NewBase, BaseInsertPt);

  Value *Base = Rewriter.expandCodeFor(NewBase, BaseInsertPt);

  // If we are inserting the base and imm values in the same block, make sure to
  // adjust the IP position if insertion reused a result.
  if (IP == BaseInsertPt)
    IP = Rewriter.getInsertionPoint();
  
  // Always emit the immediate (if non-zero) into the same block as the user.
  SCEVHandle NewValSCEV = SE->getAddExpr(SE->getUnknown(Base), Imm);
  return Rewriter.expandCodeFor(NewValSCEV, IP);
  
}


// Once we rewrite the code to insert the new IVs we want, update the
// operands of Inst to use the new expression 'NewBase', with 'Imm' added
// to it. NewBasePt is the last instruction which contributes to the
// value of NewBase in the case that it's a diffferent instruction from
// the PHI that NewBase is computed from, or null otherwise.
//
void BasedUser::RewriteInstructionToUseNewBase(const SCEVHandle &NewBase,
                                               Instruction *NewBasePt,
                                      SCEVExpander &Rewriter, Loop *L, Pass *P,
                                      SmallVectorImpl<Instruction*> &DeadInsts){
  if (!isa<PHINode>(Inst)) {
    // By default, insert code at the user instruction.
    BasicBlock::iterator InsertPt = Inst;
    
    // However, if the Operand is itself an instruction, the (potentially
    // complex) inserted code may be shared by many users.  Because of this, we
    // want to emit code for the computation of the operand right before its old
    // computation.  This is usually safe, because we obviously used to use the
    // computation when it was computed in its current block.  However, in some
    // cases (e.g. use of a post-incremented induction variable) the NewBase
    // value will be pinned to live somewhere after the original computation.
    // In this case, we have to back off.
    //
    // If this is a use outside the loop (which means after, since it is based
    // on a loop indvar) we use the post-incremented value, so that we don't
    // artificially make the preinc value live out the bottom of the loop. 
    if (!isUseOfPostIncrementedValue && L->contains(Inst->getParent())) {
      if (NewBasePt && isa<PHINode>(OperandValToReplace)) {
        InsertPt = NewBasePt;
        ++InsertPt;
      } else if (Instruction *OpInst
                 = dyn_cast<Instruction>(OperandValToReplace)) {
        InsertPt = OpInst;
        while (isa<PHINode>(InsertPt)) ++InsertPt;
      }
    }
    Value *NewVal = InsertCodeForBaseAtPosition(NewBase, Rewriter, InsertPt, L);
    // Adjust the type back to match the Inst. Note that we can't use InsertPt
    // here because the SCEVExpander may have inserted the instructions after
    // that point, in its efforts to avoid inserting redundant expressions.
    if (isa<PointerType>(OperandValToReplace->getType())) {
      NewVal = SCEVExpander::InsertCastOfTo(Instruction::IntToPtr,
                                            NewVal,
                                            OperandValToReplace->getType());
    }
    // Replace the use of the operand Value with the new Phi we just created.
    Inst->replaceUsesOfWith(OperandValToReplace, NewVal);
    DOUT << "    CHANGED: IMM =" << *Imm;
    DOUT << "  \tNEWBASE =" << *NewBase;
    DOUT << "  \tInst = " << *Inst;
    return;
  }
  
  // PHI nodes are more complex.  We have to insert one copy of the NewBase+Imm
  // expression into each operand block that uses it.  Note that PHI nodes can
  // have multiple entries for the same predecessor.  We use a map to make sure
  // that a PHI node only has a single Value* for each predecessor (which also
  // prevents us from inserting duplicate code in some blocks).
  DenseMap<BasicBlock*, Value*> InsertedCode;
  PHINode *PN = cast<PHINode>(Inst);
  for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
    if (PN->getIncomingValue(i) == OperandValToReplace) {
      // If the original expression is outside the loop, put the replacement
      // code in the same place as the original expression,
      // which need not be an immediate predecessor of this PHI.  This way we 
      // need only one copy of it even if it is referenced multiple times in
      // the PHI.  We don't do this when the original expression is inside the
      // loop because multiple copies sometimes do useful sinking of code in
      // that case(?).
      Instruction *OldLoc = dyn_cast<Instruction>(OperandValToReplace);
      if (L->contains(OldLoc->getParent())) {
        // If this is a critical edge, split the edge so that we do not insert
        // the code on all predecessor/successor paths.  We do this unless this
        // is the canonical backedge for this loop, as this can make some
        // inserted code be in an illegal position.
        BasicBlock *PHIPred = PN->getIncomingBlock(i);
        if (e != 1 && PHIPred->getTerminator()->getNumSuccessors() > 1 &&
            (PN->getParent() != L->getHeader() || !L->contains(PHIPred))) {

          // First step, split the critical edge.
          SplitCriticalEdge(PHIPred, PN->getParent(), P, false);

          // Next step: move the basic block.  In particular, if the PHI node
          // is outside of the loop, and PredTI is in the loop, we want to
          // move the block to be immediately before the PHI block, not
          // immediately after PredTI.
          if (L->contains(PHIPred) && !L->contains(PN->getParent())) {
            BasicBlock *NewBB = PN->getIncomingBlock(i);
            NewBB->moveBefore(PN->getParent());
          }

          // Splitting the edge can reduce the number of PHI entries we have.
          e = PN->getNumIncomingValues();
        }
      }
      Value *&Code = InsertedCode[PN->getIncomingBlock(i)];
      if (!Code) {
        // Insert the code into the end of the predecessor block.
        Instruction *InsertPt = (L->contains(OldLoc->getParent())) ?
                                PN->getIncomingBlock(i)->getTerminator() :
                                OldLoc->getParent()->getTerminator();
        Code = InsertCodeForBaseAtPosition(NewBase, Rewriter, InsertPt, L);

        // Adjust the type back to match the PHI. Note that we can't use
        // InsertPt here because the SCEVExpander may have inserted its
        // instructions after that point, in its efforts to avoid inserting
        // redundant expressions.
        if (isa<PointerType>(PN->getType())) {
          Code = SCEVExpander::InsertCastOfTo(Instruction::IntToPtr,
                                              Code,
                                              PN->getType());
        }
      }
      
      // Replace the use of the operand Value with the new Phi we just created.
      PN->setIncomingValue(i, Code);
      Rewriter.clear();
    }
  }

  // PHI node might have become a constant value after SplitCriticalEdge.
  DeadInsts.push_back(Inst);

  DOUT << "    CHANGED: IMM =" << *Imm << "  Inst = " << *Inst;
}


/// fitsInAddressMode - Return true if V can be subsumed within an addressing
/// mode, and does not need to be put in a register first.
static bool fitsInAddressMode(const SCEVHandle &V, const Type *UseTy,
                             const TargetLowering *TLI, bool HasBaseReg) {
  if (SCEVConstant *SC = dyn_cast<SCEVConstant>(V)) {
    int64_t VC = SC->getValue()->getSExtValue();
    if (TLI) {
      TargetLowering::AddrMode AM;
      AM.BaseOffs = VC;
      AM.HasBaseReg = HasBaseReg;
      return TLI->isLegalAddressingMode(AM, UseTy);
    } else {
      // Defaults to PPC. PPC allows a sign-extended 16-bit immediate field.
      return (VC > -(1 << 16) && VC < (1 << 16)-1);
    }
  }

  if (SCEVUnknown *SU = dyn_cast<SCEVUnknown>(V))
    if (ConstantExpr *CE = dyn_cast<ConstantExpr>(SU->getValue()))
      if (TLI && CE->getOpcode() == Instruction::PtrToInt) {
        Constant *Op0 = CE->getOperand(0);
        if (GlobalValue *GV = dyn_cast<GlobalValue>(Op0)) {
          TargetLowering::AddrMode AM;
          AM.BaseGV = GV;
          AM.HasBaseReg = HasBaseReg;
          return TLI->isLegalAddressingMode(AM, UseTy);
        }
      }
  return false;
}

/// MoveLoopVariantsToImmediateField - Move any subexpressions from Val that are
/// loop varying to the Imm operand.
static void MoveLoopVariantsToImmediateField(SCEVHandle &Val, SCEVHandle &Imm,
                                            Loop *L, ScalarEvolution *SE) {
  if (Val->isLoopInvariant(L)) return;  // Nothing to do.
  
  if (SCEVAddExpr *SAE = dyn_cast<SCEVAddExpr>(Val)) {
    std::vector<SCEVHandle> NewOps;
    NewOps.reserve(SAE->getNumOperands());
    
    for (unsigned i = 0; i != SAE->getNumOperands(); ++i)
      if (!SAE->getOperand(i)->isLoopInvariant(L)) {
        // If this is a loop-variant expression, it must stay in the immediate
        // field of the expression.
        Imm = SE->getAddExpr(Imm, SAE->getOperand(i));
      } else {
        NewOps.push_back(SAE->getOperand(i));
      }

    if (NewOps.empty())
      Val = SE->getIntegerSCEV(0, Val->getType());
    else
      Val = SE->getAddExpr(NewOps);
  } else if (SCEVAddRecExpr *SARE = dyn_cast<SCEVAddRecExpr>(Val)) {
    // Try to pull immediates out of the start value of nested addrec's.
    SCEVHandle Start = SARE->getStart();
    MoveLoopVariantsToImmediateField(Start, Imm, L, SE);
    
    std::vector<SCEVHandle> Ops(SARE->op_begin(), SARE->op_end());
    Ops[0] = Start;
    Val = SE->getAddRecExpr(Ops, SARE->getLoop());
  } else {
    // Otherwise, all of Val is variant, move the whole thing over.
    Imm = SE->getAddExpr(Imm, Val);
    Val = SE->getIntegerSCEV(0, Val->getType());
  }
}


/// MoveImmediateValues - Look at Val, and pull out any additions of constants
/// that can fit into the immediate field of instructions in the target.
/// Accumulate these immediate values into the Imm value.
static void MoveImmediateValues(const TargetLowering *TLI,
                                Instruction *User,
                                SCEVHandle &Val, SCEVHandle &Imm,
                                bool isAddress, Loop *L,
                                ScalarEvolution *SE) {
  const Type *UseTy = User->getType();
  if (StoreInst *SI = dyn_cast<StoreInst>(User))
    UseTy = SI->getOperand(0)->getType();

  if (SCEVAddExpr *SAE = dyn_cast<SCEVAddExpr>(Val)) {
    std::vector<SCEVHandle> NewOps;
    NewOps.reserve(SAE->getNumOperands());
    
    for (unsigned i = 0; i != SAE->getNumOperands(); ++i) {
      SCEVHandle NewOp = SAE->getOperand(i);
      MoveImmediateValues(TLI, User, NewOp, Imm, isAddress, L, SE);
      
      if (!NewOp->isLoopInvariant(L)) {
        // If this is a loop-variant expression, it must stay in the immediate
        // field of the expression.
        Imm = SE->getAddExpr(Imm, NewOp);
      } else {
        NewOps.push_back(NewOp);
      }
    }

    if (NewOps.empty())
      Val = SE->getIntegerSCEV(0, Val->getType());
    else
      Val = SE->getAddExpr(NewOps);
    return;
  } else if (SCEVAddRecExpr *SARE = dyn_cast<SCEVAddRecExpr>(Val)) {
    // Try to pull immediates out of the start value of nested addrec's.
    SCEVHandle Start = SARE->getStart();
    MoveImmediateValues(TLI, User, Start, Imm, isAddress, L, SE);
    
    if (Start != SARE->getStart()) {
      std::vector<SCEVHandle> Ops(SARE->op_begin(), SARE->op_end());
      Ops[0] = Start;
      Val = SE->getAddRecExpr(Ops, SARE->getLoop());
    }
    return;
  } else if (SCEVMulExpr *SME = dyn_cast<SCEVMulExpr>(Val)) {
    // Transform "8 * (4 + v)" -> "32 + 8*V" if "32" fits in the immed field.
    if (isAddress && fitsInAddressMode(SME->getOperand(0), UseTy, TLI, false) &&
        SME->getNumOperands() == 2 && SME->isLoopInvariant(L)) {

      SCEVHandle SubImm = SE->getIntegerSCEV(0, Val->getType());
      SCEVHandle NewOp = SME->getOperand(1);
      MoveImmediateValues(TLI, User, NewOp, SubImm, isAddress, L, SE);
      
      // If we extracted something out of the subexpressions, see if we can 
      // simplify this!
      if (NewOp != SME->getOperand(1)) {
        // Scale SubImm up by "8".  If the result is a target constant, we are
        // good.
        SubImm = SE->getMulExpr(SubImm, SME->getOperand(0));
        if (fitsInAddressMode(SubImm, UseTy, TLI, false)) {
          // Accumulate the immediate.
          Imm = SE->getAddExpr(Imm, SubImm);
          
          // Update what is left of 'Val'.
          Val = SE->getMulExpr(SME->getOperand(0), NewOp);
          return;
        }
      }
    }
  }

  // Loop-variant expressions must stay in the immediate field of the
  // expression.
  if ((isAddress && fitsInAddressMode(Val, UseTy, TLI, false)) ||
      !Val->isLoopInvariant(L)) {
    Imm = SE->getAddExpr(Imm, Val);
    Val = SE->getIntegerSCEV(0, Val->getType());
    return;
  }

  // Otherwise, no immediates to move.
}


/// SeparateSubExprs - Decompose Expr into all of the subexpressions that are
/// added together.  This is used to reassociate common addition subexprs
/// together for maximal sharing when rewriting bases.
static void SeparateSubExprs(std::vector<SCEVHandle> &SubExprs,
                             SCEVHandle Expr,
                             ScalarEvolution *SE) {
  if (SCEVAddExpr *AE = dyn_cast<SCEVAddExpr>(Expr)) {
    for (unsigned j = 0, e = AE->getNumOperands(); j != e; ++j)
      SeparateSubExprs(SubExprs, AE->getOperand(j), SE);
  } else if (SCEVAddRecExpr *SARE = dyn_cast<SCEVAddRecExpr>(Expr)) {
    SCEVHandle Zero = SE->getIntegerSCEV(0, Expr->getType());
    if (SARE->getOperand(0) == Zero) {
      SubExprs.push_back(Expr);
    } else {
      // Compute the addrec with zero as its base.
      std::vector<SCEVHandle> Ops(SARE->op_begin(), SARE->op_end());
      Ops[0] = Zero;   // Start with zero base.
      SubExprs.push_back(SE->getAddRecExpr(Ops, SARE->getLoop()));
      

      SeparateSubExprs(SubExprs, SARE->getOperand(0), SE);
    }
  } else if (!Expr->isZero()) {
    // Do not add zero.
    SubExprs.push_back(Expr);
  }
}

// This is logically local to the following function, but C++ says we have 
// to make it file scope.
struct SubExprUseData { unsigned Count; bool notAllUsesAreFree; };

/// RemoveCommonExpressionsFromUseBases - Look through all of the Bases of all
/// the Uses, removing any common subexpressions, except that if all such
/// subexpressions can be folded into an addressing mode for all uses inside
/// the loop (this case is referred to as "free" in comments herein) we do
/// not remove anything.  This looks for things like (a+b+c) and
/// (a+c+d) and computes the common (a+c) subexpression.  The common expression
/// is *removed* from the Bases and returned.
static SCEVHandle 
RemoveCommonExpressionsFromUseBases(std::vector<BasedUser> &Uses,
                                    ScalarEvolution *SE, Loop *L,
                                    const TargetLowering *TLI) {
  unsigned NumUses = Uses.size();

  // Only one use?  This is a very common case, so we handle it specially and
  // cheaply.
  SCEVHandle Zero = SE->getIntegerSCEV(0, Uses[0].Base->getType());
  SCEVHandle Result = Zero;
  SCEVHandle FreeResult = Zero;
  if (NumUses == 1) {
    // If the use is inside the loop, use its base, regardless of what it is:
    // it is clearly shared across all the IV's.  If the use is outside the loop
    // (which means after it) we don't want to factor anything *into* the loop,
    // so just use 0 as the base.
    if (L->contains(Uses[0].Inst->getParent()))
      std::swap(Result, Uses[0].Base);
    return Result;
  }

  // To find common subexpressions, count how many of Uses use each expression.
  // If any subexpressions are used Uses.size() times, they are common.
  // Also track whether all uses of each expression can be moved into an
  // an addressing mode "for free"; such expressions are left within the loop.
  // struct SubExprUseData { unsigned Count; bool notAllUsesAreFree; };
  std::map<SCEVHandle, SubExprUseData> SubExpressionUseData;
  
  // UniqueSubExprs - Keep track of all of the subexpressions we see in the
  // order we see them.
  std::vector<SCEVHandle> UniqueSubExprs;

  std::vector<SCEVHandle> SubExprs;
  unsigned NumUsesInsideLoop = 0;
  for (unsigned i = 0; i != NumUses; ++i) {
    // If the user is outside the loop, just ignore it for base computation.
    // Since the user is outside the loop, it must be *after* the loop (if it
    // were before, it could not be based on the loop IV).  We don't want users
    // after the loop to affect base computation of values *inside* the loop,
    // because we can always add their offsets to the result IV after the loop
    // is done, ensuring we get good code inside the loop.
    if (!L->contains(Uses[i].Inst->getParent()))
      continue;
    NumUsesInsideLoop++;
    
    // If the base is zero (which is common), return zero now, there are no
    // CSEs we can find.
    if (Uses[i].Base == Zero) return Zero;

    // If this use is as an address we may be able to put CSEs in the addressing
    // mode rather than hoisting them.
    bool isAddrUse = isAddressUse(Uses[i].Inst, Uses[i].OperandValToReplace);
    // We may need the UseTy below, but only when isAddrUse, so compute it
    // only in that case.
    const Type *UseTy = 0;
    if (isAddrUse) {
      UseTy  = Uses[i].Inst->getType();
      if (StoreInst *SI = dyn_cast<StoreInst>(Uses[i].Inst))
        UseTy = SI->getOperand(0)->getType();
    }

    // Split the expression into subexprs.
    SeparateSubExprs(SubExprs, Uses[i].Base, SE);
    // Add one to SubExpressionUseData.Count for each subexpr present, and
    // if the subexpr is not a valid immediate within an addressing mode use,
    // set SubExpressionUseData.notAllUsesAreFree.  We definitely want to
    // hoist these out of the loop (if they are common to all uses).
    for (unsigned j = 0, e = SubExprs.size(); j != e; ++j) {
      if (++SubExpressionUseData[SubExprs[j]].Count == 1)
        UniqueSubExprs.push_back(SubExprs[j]);
      if (!isAddrUse || !fitsInAddressMode(SubExprs[j], UseTy, TLI, false))
        SubExpressionUseData[SubExprs[j]].notAllUsesAreFree = true;
    }
    SubExprs.clear();
  }

  // Now that we know how many times each is used, build Result.  Iterate over
  // UniqueSubexprs so that we have a stable ordering.
  for (unsigned i = 0, e = UniqueSubExprs.size(); i != e; ++i) {
    std::map<SCEVHandle, SubExprUseData>::iterator I = 
       SubExpressionUseData.find(UniqueSubExprs[i]);
    assert(I != SubExpressionUseData.end() && "Entry not found?");
    if (I->second.Count == NumUsesInsideLoop) { // Found CSE! 
      if (I->second.notAllUsesAreFree)
        Result = SE->getAddExpr(Result, I->first);
      else 
        FreeResult = SE->getAddExpr(FreeResult, I->first);
    } else
      // Remove non-cse's from SubExpressionUseData.
      SubExpressionUseData.erase(I);
  }

  if (FreeResult != Zero) {
    // We have some subexpressions that can be subsumed into addressing
    // modes in every use inside the loop.  However, it's possible that
    // there are so many of them that the combined FreeResult cannot
    // be subsumed, or that the target cannot handle both a FreeResult
    // and a Result in the same instruction (for example because it would
    // require too many registers).  Check this.
    for (unsigned i=0; i<NumUses; ++i) {
      if (!L->contains(Uses[i].Inst->getParent()))
        continue;
      // We know this is an addressing mode use; if there are any uses that
      // are not, FreeResult would be Zero.
      const Type *UseTy = Uses[i].Inst->getType();
      if (StoreInst *SI = dyn_cast<StoreInst>(Uses[i].Inst))
        UseTy = SI->getOperand(0)->getType();
      if (!fitsInAddressMode(FreeResult, UseTy, TLI, Result!=Zero)) {
        // FIXME:  could split up FreeResult into pieces here, some hoisted
        // and some not.  There is no obvious advantage to this.
        Result = SE->getAddExpr(Result, FreeResult);
        FreeResult = Zero;
        break;
      }
    }
  }

  // If we found no CSE's, return now.
  if (Result == Zero) return Result;
  
  // If we still have a FreeResult, remove its subexpressions from
  // SubExpressionUseData.  This means they will remain in the use Bases.
  if (FreeResult != Zero) {
    SeparateSubExprs(SubExprs, FreeResult, SE);
    for (unsigned j = 0, e = SubExprs.size(); j != e; ++j) {
      std::map<SCEVHandle, SubExprUseData>::iterator I = 
         SubExpressionUseData.find(SubExprs[j]);
      SubExpressionUseData.erase(I);
    }
    SubExprs.clear();
  }

  // Otherwise, remove all of the CSE's we found from each of the base values.
  for (unsigned i = 0; i != NumUses; ++i) {
    // Uses outside the loop don't necessarily include the common base, but
    // the final IV value coming into those uses does.  Instead of trying to
    // remove the pieces of the common base, which might not be there,
    // subtract off the base to compensate for this.
    if (!L->contains(Uses[i].Inst->getParent())) {
      Uses[i].Base = SE->getMinusSCEV(Uses[i].Base, Result);
      continue;
    }

    // Split the expression into subexprs.
    SeparateSubExprs(SubExprs, Uses[i].Base, SE);

    // Remove any common subexpressions.
    for (unsigned j = 0, e = SubExprs.size(); j != e; ++j)
      if (SubExpressionUseData.count(SubExprs[j])) {
        SubExprs.erase(SubExprs.begin()+j);
        --j; --e;
      }
    
    // Finally, add the non-shared expressions together.
    if (SubExprs.empty())
      Uses[i].Base = Zero;
    else
      Uses[i].Base = SE->getAddExpr(SubExprs);
    SubExprs.clear();
  }
 
  return Result;
}

/// ValidStride - Check whether the given Scale is valid for all loads and 
/// stores in UsersToProcess.
///
bool LoopStrengthReduce::ValidStride(bool HasBaseReg,
                               int64_t Scale, 
                               const std::vector<BasedUser>& UsersToProcess) {
  if (!TLI)
    return true;

  for (unsigned i=0, e = UsersToProcess.size(); i!=e; ++i) {
    // If this is a load or other access, pass the type of the access in.
    const Type *AccessTy = Type::VoidTy;
    if (StoreInst *SI = dyn_cast<StoreInst>(UsersToProcess[i].Inst))
      AccessTy = SI->getOperand(0)->getType();
    else if (LoadInst *LI = dyn_cast<LoadInst>(UsersToProcess[i].Inst))
      AccessTy = LI->getType();
    else if (isa<PHINode>(UsersToProcess[i].Inst))
      continue;
    
    TargetLowering::AddrMode AM;
    if (SCEVConstant *SC = dyn_cast<SCEVConstant>(UsersToProcess[i].Imm))
      AM.BaseOffs = SC->getValue()->getSExtValue();
    AM.HasBaseReg = HasBaseReg || !UsersToProcess[i].Base->isZero();
    AM.Scale = Scale;

    // If load[imm+r*scale] is illegal, bail out.
    if (!TLI->isLegalAddressingMode(AM, AccessTy))
      return false;
  }
  return true;
}

/// RequiresTypeConversion - Returns true if converting Ty1 to Ty2 is not
/// a nop.
bool LoopStrengthReduce::RequiresTypeConversion(const Type *Ty1,
                                                const Type *Ty2) {
  if (Ty1 == Ty2)
    return false;
  if (Ty1->canLosslesslyBitCastTo(Ty2))
    return false;
  if (TLI && TLI->isTruncateFree(Ty1, Ty2))
    return false;
  if (isa<PointerType>(Ty2) && Ty1->canLosslesslyBitCastTo(UIntPtrTy))
    return false;
  if (isa<PointerType>(Ty1) && Ty2->canLosslesslyBitCastTo(UIntPtrTy))
    return false;
  return true;
}

/// CheckForIVReuse - Returns the multiple if the stride is the multiple
/// of a previous stride and it is a legal value for the target addressing
/// mode scale component and optional base reg. This allows the users of
/// this stride to be rewritten as prev iv * factor. It returns 0 if no
/// reuse is possible.  Factors can be negative on same targets, e.g. ARM.
///
/// If all uses are outside the loop, we don't require that all multiplies
/// be folded into the addressing mode, nor even that the factor be constant; 
/// a multiply (executed once) outside the loop is better than another IV 
/// within.  Well, usually.
SCEVHandle LoopStrengthReduce::CheckForIVReuse(bool HasBaseReg,
                                bool AllUsesAreAddresses,
                                bool AllUsesAreOutsideLoop,
                                const SCEVHandle &Stride, 
                                IVExpr &IV, const Type *Ty,
                                const std::vector<BasedUser>& UsersToProcess) {
  if (SCEVConstant *SC = dyn_cast<SCEVConstant>(Stride)) {
    int64_t SInt = SC->getValue()->getSExtValue();
    for (unsigned NewStride = 0, e = StrideOrder.size(); NewStride != e;
         ++NewStride) {
      std::map<SCEVHandle, IVsOfOneStride>::iterator SI = 
                IVsByStride.find(StrideOrder[NewStride]);
      if (SI == IVsByStride.end() || !isa<SCEVConstant>(SI->first))
        continue;
      int64_t SSInt = cast<SCEVConstant>(SI->first)->getValue()->getSExtValue();
      if (SI->first != Stride &&
          (unsigned(abs(SInt)) < SSInt || (SInt % SSInt) != 0))
        continue;
      int64_t Scale = SInt / SSInt;
      // Check that this stride is valid for all the types used for loads and
      // stores; if it can be used for some and not others, we might as well use
      // the original stride everywhere, since we have to create the IV for it
      // anyway. If the scale is 1, then we don't need to worry about folding
      // multiplications.
      if (Scale == 1 ||
          (AllUsesAreAddresses &&
           ValidStride(HasBaseReg, Scale, UsersToProcess)))
        for (std::vector<IVExpr>::iterator II = SI->second.IVs.begin(),
               IE = SI->second.IVs.end(); II != IE; ++II)
          // FIXME: Only handle base == 0 for now.
          // Only reuse previous IV if it would not require a type conversion.
          if (II->Base->isZero() &&
              !RequiresTypeConversion(II->Base->getType(), Ty)) {
            IV = *II;
            return SE->getIntegerSCEV(Scale, Stride->getType());
          }
    }
  } else if (AllUsesAreOutsideLoop) {
    // Accept nonconstant strides here; it is really really right to substitute
    // an existing IV if we can.
    for (unsigned NewStride = 0, e = StrideOrder.size(); NewStride != e;
         ++NewStride) {
      std::map<SCEVHandle, IVsOfOneStride>::iterator SI = 
                IVsByStride.find(StrideOrder[NewStride]);
      if (SI == IVsByStride.end() || !isa<SCEVConstant>(SI->first))
        continue;
      int64_t SSInt = cast<SCEVConstant>(SI->first)->getValue()->getSExtValue();
      if (SI->first != Stride && SSInt != 1)
        continue;
      for (std::vector<IVExpr>::iterator II = SI->second.IVs.begin(),
             IE = SI->second.IVs.end(); II != IE; ++II)
        // Accept nonzero base here.
        // Only reuse previous IV if it would not require a type conversion.
        if (!RequiresTypeConversion(II->Base->getType(), Ty)) {
          IV = *II;
          return Stride;
        }
    }
    // Special case, old IV is -1*x and this one is x.  Can treat this one as
    // -1*old.
    for (unsigned NewStride = 0, e = StrideOrder.size(); NewStride != e;
         ++NewStride) {
      std::map<SCEVHandle, IVsOfOneStride>::iterator SI = 
                IVsByStride.find(StrideOrder[NewStride]);
      if (SI == IVsByStride.end()) 
        continue;
      if (SCEVMulExpr *ME = dyn_cast<SCEVMulExpr>(SI->first))
        if (SCEVConstant *SC = dyn_cast<SCEVConstant>(ME->getOperand(0)))
          if (Stride == ME->getOperand(1) &&
              SC->getValue()->getSExtValue() == -1LL)
            for (std::vector<IVExpr>::iterator II = SI->second.IVs.begin(),
                   IE = SI->second.IVs.end(); II != IE; ++II)
              // Accept nonzero base here.
              // Only reuse previous IV if it would not require type conversion.
              if (!RequiresTypeConversion(II->Base->getType(), Ty)) {
                IV = *II;
                return SE->getIntegerSCEV(-1LL, Stride->getType());
              }
    }
  }
  return SE->getIntegerSCEV(0, Stride->getType());
}

/// PartitionByIsUseOfPostIncrementedValue - Simple boolean predicate that
/// returns true if Val's isUseOfPostIncrementedValue is true.
static bool PartitionByIsUseOfPostIncrementedValue(const BasedUser &Val) {
  return Val.isUseOfPostIncrementedValue;
}

/// isNonConstantNegative - Return true if the specified scev is negated, but
/// not a constant.
static bool isNonConstantNegative(const SCEVHandle &Expr) {
  SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Expr);
  if (!Mul) return false;
  
  // If there is a constant factor, it will be first.
  SCEVConstant *SC = dyn_cast<SCEVConstant>(Mul->getOperand(0));
  if (!SC) return false;
  
  // Return true if the value is negative, this matches things like (-42 * V).
  return SC->getValue()->getValue().isNegative();
}

// CollectIVUsers - Transform our list of users and offsets to a bit more
// complex table. In this new vector, each 'BasedUser' contains 'Base', the base
// of the strided accesses, as well as the old information from Uses. We
// progressively move information from the Base field to the Imm field, until
// we eventually have the full access expression to rewrite the use.
SCEVHandle LoopStrengthReduce::CollectIVUsers(const SCEVHandle &Stride,
                                              IVUsersOfOneStride &Uses,
                                              Loop *L,
                                              bool &AllUsesAreAddresses,
                                              bool &AllUsesAreOutsideLoop,
                                       std::vector<BasedUser> &UsersToProcess) {
  UsersToProcess.reserve(Uses.Users.size());
  for (unsigned i = 0, e = Uses.Users.size(); i != e; ++i) {
    UsersToProcess.push_back(BasedUser(Uses.Users[i], SE));
    
    // Move any loop variant operands from the offset field to the immediate
    // field of the use, so that we don't try to use something before it is
    // computed.
    MoveLoopVariantsToImmediateField(UsersToProcess.back().Base,
                                    UsersToProcess.back().Imm, L, SE);
    assert(UsersToProcess.back().Base->isLoopInvariant(L) &&
           "Base value is not loop invariant!");
  }

  // We now have a whole bunch of uses of like-strided induction variables, but
  // they might all have different bases.  We want to emit one PHI node for this
  // stride which we fold as many common expressions (between the IVs) into as
  // possible.  Start by identifying the common expressions in the base values 
  // for the strides (e.g. if we have "A+C+B" and "A+B+D" as our bases, find
  // "A+B"), emit it to the preheader, then remove the expression from the
  // UsersToProcess base values.
  SCEVHandle CommonExprs =
    RemoveCommonExpressionsFromUseBases(UsersToProcess, SE, L, TLI);

  // Next, figure out what we can represent in the immediate fields of
  // instructions.  If we can represent anything there, move it to the imm
  // fields of the BasedUsers.  We do this so that it increases the commonality
  // of the remaining uses.
  unsigned NumPHI = 0;
  for (unsigned i = 0, e = UsersToProcess.size(); i != e; ++i) {
    // If the user is not in the current loop, this means it is using the exit
    // value of the IV.  Do not put anything in the base, make sure it's all in
    // the immediate field to allow as much factoring as possible.
    if (!L->contains(UsersToProcess[i].Inst->getParent())) {
      UsersToProcess[i].Imm = SE->getAddExpr(UsersToProcess[i].Imm,
                                             UsersToProcess[i].Base);
      UsersToProcess[i].Base = 
        SE->getIntegerSCEV(0, UsersToProcess[i].Base->getType());
    } else {

      // Addressing modes can be folded into loads and stores.  Be careful that
      // the store is through the expression, not of the expression though.
      bool isPHI = false;
      bool isAddress = isAddressUse(UsersToProcess[i].Inst,
                                    UsersToProcess[i].OperandValToReplace);
      if (isa<PHINode>(UsersToProcess[i].Inst)) {
        isPHI = true;
        ++NumPHI;
      }

      // Not all uses are outside the loop.
      AllUsesAreOutsideLoop = false; 
     
      // If this use isn't an address, then not all uses are addresses.
      if (!isAddress && !isPHI)
        AllUsesAreAddresses = false;
      
      MoveImmediateValues(TLI, UsersToProcess[i].Inst, UsersToProcess[i].Base,
                          UsersToProcess[i].Imm, isAddress, L, SE);
    }
  }

  // If one of the use if a PHI node and all other uses are addresses, still
  // allow iv reuse. Essentially we are trading one constant multiplication
  // for one fewer iv.
  if (NumPHI > 1)
    AllUsesAreAddresses = false;

  return CommonExprs;
}

/// StrengthReduceStridedIVUsers - Strength reduce all of the users of a single
/// stride of IV.  All of the users may have different starting values, and this
/// may not be the only stride (we know it is if isOnlyStride is true).
void LoopStrengthReduce::StrengthReduceStridedIVUsers(const SCEVHandle &Stride,
                                                      IVUsersOfOneStride &Uses,
                                                      Loop *L,
                                                      bool isOnlyStride) {
  // If all the users are moved to another stride, then there is nothing to do.
  if (Uses.Users.empty())
    return;

  // Keep track if every use in UsersToProcess is an address. If they all are,
  // we may be able to rewrite the entire collection of them in terms of a
  // smaller-stride IV.
  bool AllUsesAreAddresses = true;

  // Keep track if every use of a single stride is outside the loop.  If so,
  // we want to be more aggressive about reusing a smaller-stride IV; a
  // multiply outside the loop is better than another IV inside.  Well, usually.
  bool AllUsesAreOutsideLoop = true;

  // Transform our list of users and offsets to a bit more complex table.  In
  // this new vector, each 'BasedUser' contains 'Base' the base of the
  // strided accessas well as the old information from Uses.  We progressively
  // move information from the Base field to the Imm field, until we eventually
  // have the full access expression to rewrite the use.
  std::vector<BasedUser> UsersToProcess;
  SCEVHandle CommonExprs = CollectIVUsers(Stride, Uses, L, AllUsesAreAddresses,
                                          AllUsesAreOutsideLoop,
                                          UsersToProcess);

  // If we managed to find some expressions in common, we'll need to carry
  // their value in a register and add it in for each use. This will take up
  // a register operand, which potentially restricts what stride values are
  // valid.
  bool HaveCommonExprs = !CommonExprs->isZero();
  
  // If all uses are addresses, check if it is possible to reuse an IV with a
  // stride that is a factor of this stride. And that the multiple is a number
  // that can be encoded in the scale field of the target addressing mode. And
  // that we will have a valid instruction after this substition, including the
  // immediate field, if any.
  PHINode *NewPHI = NULL;
  Value   *IncV   = NULL;
  IVExpr   ReuseIV(SE->getIntegerSCEV(0, Type::Int32Ty),
                   SE->getIntegerSCEV(0, Type::Int32Ty),
                   0, 0);
  SCEVHandle RewriteFactor = 
                  CheckForIVReuse(HaveCommonExprs, AllUsesAreAddresses,
                                  AllUsesAreOutsideLoop,
                                  Stride, ReuseIV, CommonExprs->getType(),
                                  UsersToProcess);
  if (!isa<SCEVConstant>(RewriteFactor) || 
      !cast<SCEVConstant>(RewriteFactor)->isZero()) {
    DOUT << "BASED ON IV of STRIDE " << *ReuseIV.Stride
         << " and BASE " << *ReuseIV.Base << " :\n";
    NewPHI = ReuseIV.PHI;
    IncV   = ReuseIV.IncV;
  }

  const Type *ReplacedTy = CommonExprs->getType();
  
  // Now that we know what we need to do, insert the PHI node itself.
  //
  DOUT << "INSERTING IV of TYPE " << *ReplacedTy << " of STRIDE "
       << *Stride << " and BASE " << *CommonExprs << ": ";

  SCEVExpander Rewriter(*SE, *LI);
  SCEVExpander PreheaderRewriter(*SE, *LI);
  
  BasicBlock  *Preheader = L->getLoopPreheader();
  Instruction *PreInsertPt = Preheader->getTerminator();
  Instruction *PhiInsertBefore = L->getHeader()->begin();
  
  BasicBlock *LatchBlock = L->getLoopLatch();


  // Emit the initial base value into the loop preheader.
  Value *CommonBaseV
    = PreheaderRewriter.expandCodeFor(CommonExprs, PreInsertPt);

  if (isa<SCEVConstant>(RewriteFactor) &&
      cast<SCEVConstant>(RewriteFactor)->isZero()) {
    // Create a new Phi for this base, and stick it in the loop header.
    NewPHI = PHINode::Create(ReplacedTy, "iv.", PhiInsertBefore);
    ++NumInserted;
  
    // Add common base to the new Phi node.
    NewPHI->addIncoming(CommonBaseV, Preheader);

    // If the stride is negative, insert a sub instead of an add for the
    // increment.
    bool isNegative = isNonConstantNegative(Stride);
    SCEVHandle IncAmount = Stride;
    if (isNegative)
      IncAmount = SE->getNegativeSCEV(Stride);
    
    // Insert the stride into the preheader.
    Value *StrideV = PreheaderRewriter.expandCodeFor(IncAmount, PreInsertPt);
    if (!isa<ConstantInt>(StrideV)) ++NumVariable;

    // Emit the increment of the base value before the terminator of the loop
    // latch block, and add it to the Phi node.
    SCEVHandle IncExp = SE->getUnknown(StrideV);
    if (isNegative)
      IncExp = SE->getNegativeSCEV(IncExp);
    IncExp = SE->getAddExpr(SE->getUnknown(NewPHI), IncExp);
  
    IncV = Rewriter.expandCodeFor(IncExp, LatchBlock->getTerminator());
    IncV->setName(NewPHI->getName()+".inc");
    NewPHI->addIncoming(IncV, LatchBlock);

    // Remember this in case a later stride is multiple of this.
    IVsByStride[Stride].addIV(Stride, CommonExprs, NewPHI, IncV);
    
    DOUT << " IV=%" << NewPHI->getNameStr() << " INC=%" << IncV->getNameStr();
  } else {
    Constant *C = dyn_cast<Constant>(CommonBaseV);
    if (!C ||
        (!C->isNullValue() &&
         !fitsInAddressMode(SE->getUnknown(CommonBaseV), ReplacedTy, 
                           TLI, false)))
      // We want the common base emitted into the preheader! This is just
      // using cast as a copy so BitCast (no-op cast) is appropriate
      CommonBaseV = new BitCastInst(CommonBaseV, CommonBaseV->getType(), 
                                    "commonbase", PreInsertPt);
  }
  DOUT << "\n";

  // We want to emit code for users inside the loop first.  To do this, we
  // rearrange BasedUser so that the entries at the end have
  // isUseOfPostIncrementedValue = false, because we pop off the end of the
  // vector (so we handle them first).
  std::partition(UsersToProcess.begin(), UsersToProcess.end(),
                 PartitionByIsUseOfPostIncrementedValue);
  
  // Sort this by base, so that things with the same base are handled
  // together.  By partitioning first and stable-sorting later, we are
  // guaranteed that within each base we will pop off users from within the
  // loop before users outside of the loop with a particular base.
  //
  // We would like to use stable_sort here, but we can't.  The problem is that
  // SCEVHandle's don't have a deterministic ordering w.r.t to each other, so
  // we don't have anything to do a '<' comparison on.  Because we think the
  // number of uses is small, do a horrible bubble sort which just relies on
  // ==.
  for (unsigned i = 0, e = UsersToProcess.size(); i != e; ++i) {
    // Get a base value.
    SCEVHandle Base = UsersToProcess[i].Base;
    
    // Compact everything with this base to be consecutive with this one.
    for (unsigned j = i+1; j != e; ++j) {
      if (UsersToProcess[j].Base == Base) {
        std::swap(UsersToProcess[i+1], UsersToProcess[j]);
        ++i;
      }
    }
  }

  // Process all the users now.  This outer loop handles all bases, the inner
  // loop handles all users of a particular base.
  while (!UsersToProcess.empty()) {
    SCEVHandle Base = UsersToProcess.back().Base;

    // Emit the code for Base into the preheader.
    Value *BaseV = PreheaderRewriter.expandCodeFor(Base, PreInsertPt);

    DOUT << "  INSERTING code for BASE = " << *Base << ":";
    if (BaseV->hasName())
      DOUT << " Result value name = %" << BaseV->getNameStr();
    DOUT << "\n";

    // If BaseV is a constant other than 0, make sure that it gets inserted into
    // the preheader, instead of being forward substituted into the uses.  We do
    // this by forcing a BitCast (noop cast) to be inserted into the preheader 
    // in this case.
    if (Constant *C = dyn_cast<Constant>(BaseV)) {
      if (!C->isNullValue() && !fitsInAddressMode(Base, ReplacedTy, 
                                                 TLI, false)) {
        // We want this constant emitted into the preheader! This is just
        // using cast as a copy so BitCast (no-op cast) is appropriate
        BaseV = new BitCastInst(BaseV, BaseV->getType(), "preheaderinsert",
                                PreInsertPt);       
      }
    }

    // Emit the code to add the immediate offset to the Phi value, just before
    // the instructions that we identified as using this stride and base.
    do {
      // FIXME: Use emitted users to emit other users.
      BasedUser &User = UsersToProcess.back();

      // If this instruction wants to use the post-incremented value, move it
      // after the post-inc and use its value instead of the PHI.
      Value *RewriteOp = NewPHI;
      if (User.isUseOfPostIncrementedValue) {
        RewriteOp = IncV;

        // If this user is in the loop, make sure it is the last thing in the
        // loop to ensure it is dominated by the increment.
        if (L->contains(User.Inst->getParent()))
          User.Inst->moveBefore(LatchBlock->getTerminator());
      }
      if (RewriteOp->getType() != ReplacedTy) {
        Instruction::CastOps opcode = Instruction::Trunc;
        if (ReplacedTy->getPrimitiveSizeInBits() ==
            RewriteOp->getType()->getPrimitiveSizeInBits())
          opcode = Instruction::BitCast;
        RewriteOp = SCEVExpander::InsertCastOfTo(opcode, RewriteOp, ReplacedTy);
      }

      SCEVHandle RewriteExpr = SE->getUnknown(RewriteOp);

      // If we had to insert new instructions for RewriteOp, we have to
      // consider that they may not have been able to end up immediately
      // next to RewriteOp, because non-PHI instructions may never precede
      // PHI instructions in a block. In this case, remember where the last
      // instruction was inserted so that if we're replacing a different
      // PHI node, we can use the later point to expand the final
      // RewriteExpr.
      Instruction *NewBasePt = dyn_cast<Instruction>(RewriteOp);
      if (RewriteOp == NewPHI) NewBasePt = 0;

      // Clear the SCEVExpander's expression map so that we are guaranteed
      // to have the code emitted where we expect it.
      Rewriter.clear();

      // If we are reusing the iv, then it must be multiplied by a constant
      // factor to take advantage of the addressing mode scale component.
      if (!isa<SCEVConstant>(RewriteFactor) ||
          !cast<SCEVConstant>(RewriteFactor)->isZero()) {
        // If we're reusing an IV with a nonzero base (currently this happens
        // only when all reuses are outside the loop) subtract that base here.
        // The base has been used to initialize the PHI node but we don't want
        // it here.
        if (!ReuseIV.Base->isZero()) {
          SCEVHandle typedBase = ReuseIV.Base;
          if (RewriteExpr->getType()->getPrimitiveSizeInBits() !=
              ReuseIV.Base->getType()->getPrimitiveSizeInBits()) {
            // It's possible the original IV is a larger type than the new IV,
            // in which case we have to truncate the Base.  We checked in
            // RequiresTypeConversion that this is valid.
            assert (RewriteExpr->getType()->getPrimitiveSizeInBits() <
                    ReuseIV.Base->getType()->getPrimitiveSizeInBits() &&
                    "Unexpected lengthening conversion!");
            typedBase = SE->getTruncateExpr(ReuseIV.Base, 
                                            RewriteExpr->getType());
          }
          RewriteExpr = SE->getMinusSCEV(RewriteExpr, typedBase);
        }

        // Multiply old variable, with base removed, by new scale factor.
        RewriteExpr = SE->getMulExpr(RewriteFactor,
                                     RewriteExpr);

        // The common base is emitted in the loop preheader. But since we
        // are reusing an IV, it has not been used to initialize the PHI node.
        // Add it to the expression used to rewrite the uses.
        // When this use is outside the loop, we earlier subtracted the
        // common base, and are adding it back here.  Use the same expression
        // as before, rather than CommonBaseV, so DAGCombiner will zap it.
        if (!isa<ConstantInt>(CommonBaseV) ||
            !cast<ConstantInt>(CommonBaseV)->isZero()) {
          if (L->contains(User.Inst->getParent()))
            RewriteExpr = SE->getAddExpr(RewriteExpr,
                                       SE->getUnknown(CommonBaseV));
          else
            RewriteExpr = SE->getAddExpr(RewriteExpr, CommonExprs);
        }
      }

      // Now that we know what we need to do, insert code before User for the
      // immediate and any loop-variant expressions.
      if (!isa<ConstantInt>(BaseV) || !cast<ConstantInt>(BaseV)->isZero())
        // Add BaseV to the PHI value if needed.
        RewriteExpr = SE->getAddExpr(RewriteExpr, SE->getUnknown(BaseV));

      User.RewriteInstructionToUseNewBase(RewriteExpr, NewBasePt,
                                          Rewriter, L, this,
                                          DeadInsts);

      // Mark old value we replaced as possibly dead, so that it is eliminated
      // if we just replaced the last use of that value.
      DeadInsts.push_back(cast<Instruction>(User.OperandValToReplace));

      UsersToProcess.pop_back();
      ++NumReduced;

      // If there are any more users to process with the same base, process them
      // now.  We sorted by base above, so we just have to check the last elt.
    } while (!UsersToProcess.empty() && UsersToProcess.back().Base == Base);
    // TODO: Next, find out which base index is the most common, pull it out.
  }

  // IMPORTANT TODO: Figure out how to partition the IV's with this stride, but
  // different starting values, into different PHIs.
}

/// FindIVUserForCond - If Cond has an operand that is an expression of an IV,
/// set the IV user and stride information and return true, otherwise return
/// false.
bool LoopStrengthReduce::FindIVUserForCond(ICmpInst *Cond, IVStrideUse *&CondUse,
                                       const SCEVHandle *&CondStride) {
  for (unsigned Stride = 0, e = StrideOrder.size(); Stride != e && !CondUse;
       ++Stride) {
    std::map<SCEVHandle, IVUsersOfOneStride>::iterator SI = 
    IVUsesByStride.find(StrideOrder[Stride]);
    assert(SI != IVUsesByStride.end() && "Stride doesn't exist!");
    
    for (std::vector<IVStrideUse>::iterator UI = SI->second.Users.begin(),
         E = SI->second.Users.end(); UI != E; ++UI)
      if (UI->User == Cond) {
        // NOTE: we could handle setcc instructions with multiple uses here, but
        // InstCombine does it as well for simple uses, it's not clear that it
        // occurs enough in real life to handle.
        CondUse = &*UI;
        CondStride = &SI->first;
        return true;
      }
  }
  return false;
}    

namespace {
  // Constant strides come first which in turns are sorted by their absolute
  // values. If absolute values are the same, then positive strides comes first.
  // e.g.
  // 4, -1, X, 1, 2 ==> 1, -1, 2, 4, X
  struct StrideCompare {
    bool operator()(const SCEVHandle &LHS, const SCEVHandle &RHS) {
      SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS);
      SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS);
      if (LHSC && RHSC) {
        int64_t  LV = LHSC->getValue()->getSExtValue();
        int64_t  RV = RHSC->getValue()->getSExtValue();
        uint64_t ALV = (LV < 0) ? -LV : LV;
        uint64_t ARV = (RV < 0) ? -RV : RV;
        if (ALV == ARV)
          return LV > RV;
        else
          return ALV < ARV;
      }
      return (LHSC && !RHSC);
    }
  };
}

/// ChangeCompareStride - If a loop termination compare instruction is the
/// only use of its stride, and the compaison is against a constant value,
/// try eliminate the stride by moving the compare instruction to another
/// stride and change its constant operand accordingly. e.g.
///
/// loop:
/// ...
/// v1 = v1 + 3
/// v2 = v2 + 1
/// if (v2 < 10) goto loop
/// =>
/// loop:
/// ...
/// v1 = v1 + 3
/// if (v1 < 30) goto loop
ICmpInst *LoopStrengthReduce::ChangeCompareStride(Loop *L, ICmpInst *Cond,
                                                IVStrideUse* &CondUse,
                                                const SCEVHandle* &CondStride) {
  if (StrideOrder.size() < 2 ||
      IVUsesByStride[*CondStride].Users.size() != 1)
    return Cond;
  const SCEVConstant *SC = dyn_cast<SCEVConstant>(*CondStride);
  if (!SC) return Cond;
  ConstantInt *C = dyn_cast<ConstantInt>(Cond->getOperand(1));
  if (!C) return Cond;

  ICmpInst::Predicate Predicate = Cond->getPredicate();
  int64_t CmpSSInt = SC->getValue()->getSExtValue();
  int64_t CmpVal = C->getValue().getSExtValue();
  unsigned BitWidth = C->getValue().getBitWidth();
  uint64_t SignBit = 1ULL << (BitWidth-1);
  const Type *CmpTy = C->getType();
  const Type *NewCmpTy = NULL;
  unsigned TyBits = CmpTy->getPrimitiveSizeInBits();
  unsigned NewTyBits = 0;
  int64_t NewCmpVal = CmpVal;
  SCEVHandle *NewStride = NULL;
  Value *NewIncV = NULL;
  int64_t Scale = 1;

  // Check stride constant and the comparision constant signs to detect
  // overflow.
  if ((CmpVal & SignBit) != (CmpSSInt & SignBit))
    return Cond;

  // Look for a suitable stride / iv as replacement.
  std::stable_sort(StrideOrder.begin(), StrideOrder.end(), StrideCompare());
  for (unsigned i = 0, e = StrideOrder.size(); i != e; ++i) {
    std::map<SCEVHandle, IVUsersOfOneStride>::iterator SI = 
      IVUsesByStride.find(StrideOrder[i]);
    if (!isa<SCEVConstant>(SI->first))
      continue;
    int64_t SSInt = cast<SCEVConstant>(SI->first)->getValue()->getSExtValue();
    if (abs(SSInt) <= abs(CmpSSInt) || (SSInt % CmpSSInt) != 0)
      continue;

    Scale = SSInt / CmpSSInt;
    NewCmpVal = CmpVal * Scale;
    APInt Mul = APInt(BitWidth, NewCmpVal);
    // Check for overflow.
    if (Mul.getSExtValue() != NewCmpVal) {
      NewCmpVal = CmpVal;
      continue;
    }

    // Watch out for overflow.
    if (ICmpInst::isSignedPredicate(Predicate) &&
        (CmpVal & SignBit) != (NewCmpVal & SignBit))
      NewCmpVal = CmpVal;

    if (NewCmpVal != CmpVal) {
      // Pick the best iv to use trying to avoid a cast.
      NewIncV = NULL;
      for (std::vector<IVStrideUse>::iterator UI = SI->second.Users.begin(),
             E = SI->second.Users.end(); UI != E; ++UI) {
        NewIncV = UI->OperandValToReplace;
        if (NewIncV->getType() == CmpTy)
          break;
      }
      if (!NewIncV) {
        NewCmpVal = CmpVal;
        continue;
      }

      NewCmpTy = NewIncV->getType();
      NewTyBits = isa<PointerType>(NewCmpTy)
        ? UIntPtrTy->getPrimitiveSizeInBits()
        : NewCmpTy->getPrimitiveSizeInBits();
      if (RequiresTypeConversion(NewCmpTy, CmpTy)) {
        // Check if it is possible to rewrite it using
        // an iv / stride of a smaller integer type.
        bool TruncOk = false;
        if (NewCmpTy->isInteger()) {
          unsigned Bits = NewTyBits;
          if (ICmpInst::isSignedPredicate(Predicate))
            --Bits;
          uint64_t Mask = (1ULL << Bits) - 1;
          if (((uint64_t)NewCmpVal & Mask) == (uint64_t)NewCmpVal)
            TruncOk = true;
        }
        if (!TruncOk) {
          NewCmpVal = CmpVal;
          continue;
        }
      }

      // Don't rewrite if use offset is non-constant and the new type is
      // of a different type.
      // FIXME: too conservative?
      if (NewTyBits != TyBits && !isa<SCEVConstant>(CondUse->Offset)) {
        NewCmpVal = CmpVal;
        continue;
      }

      bool AllUsesAreAddresses = true;
      bool AllUsesAreOutsideLoop = true;
      std::vector<BasedUser> UsersToProcess;
      SCEVHandle CommonExprs = CollectIVUsers(SI->first, SI->second, L,
                                              AllUsesAreAddresses,
                                              AllUsesAreOutsideLoop,
                                              UsersToProcess);
      // Avoid rewriting the compare instruction with an iv of new stride
      // if it's likely the new stride uses will be rewritten using the
      if (AllUsesAreAddresses &&
          ValidStride(!CommonExprs->isZero(), Scale, UsersToProcess)) {
        NewCmpVal = CmpVal;
        continue;
      }

      // If scale is negative, use swapped predicate unless it's testing
      // for equality.
      if (Scale < 0 && !Cond->isEquality())
        Predicate = ICmpInst::getSwappedPredicate(Predicate);

      NewStride = &StrideOrder[i];
      break;
    }
  }

  // Forgo this transformation if it the increment happens to be
  // unfortunately positioned after the condition, and the condition
  // has multiple uses which prevent it from being moved immediately
  // before the branch. See
  // test/Transforms/LoopStrengthReduce/change-compare-stride-trickiness-*.ll
  // for an example of this situation.
  if (!Cond->hasOneUse()) {
    for (BasicBlock::iterator I = Cond, E = Cond->getParent()->end();
         I != E; ++I)
      if (I == NewIncV)
        return Cond;
  }

  if (NewCmpVal != CmpVal) {
    // Create a new compare instruction using new stride / iv.
    ICmpInst *OldCond = Cond;
    Value *RHS;
    if (!isa<PointerType>(NewCmpTy))
      RHS = ConstantInt::get(NewCmpTy, NewCmpVal);
    else {
      RHS = ConstantInt::get(UIntPtrTy, NewCmpVal);
      RHS = SCEVExpander::InsertCastOfTo(Instruction::IntToPtr, RHS, NewCmpTy);
    }
    // Insert new compare instruction.
    Cond = new ICmpInst(Predicate, NewIncV, RHS,
                        L->getHeader()->getName() + ".termcond",
                        OldCond);

    // Remove the old compare instruction. The old indvar is probably dead too.
    DeadInsts.push_back(cast<Instruction>(CondUse->OperandValToReplace));
    SE->deleteValueFromRecords(OldCond);
    OldCond->replaceAllUsesWith(Cond);
    OldCond->eraseFromParent();

    IVUsesByStride[*CondStride].Users.pop_back();
    SCEVHandle NewOffset = TyBits == NewTyBits
      ? SE->getMulExpr(CondUse->Offset,
                       SE->getConstant(ConstantInt::get(CmpTy, Scale)))
      : SE->getConstant(ConstantInt::get(NewCmpTy,
        cast<SCEVConstant>(CondUse->Offset)->getValue()->getSExtValue()*Scale));
    IVUsesByStride[*NewStride].addUser(NewOffset, Cond, NewIncV);
    CondUse = &IVUsesByStride[*NewStride].Users.back();
    CondStride = NewStride;
    ++NumEliminated;
  }

  return Cond;
}

/// OptimizeSMax - Rewrite the loop's terminating condition if it uses
/// an smax computation.
///
/// This is a narrow solution to a specific, but acute, problem. For loops
/// like this:
///
///   i = 0;
///   do {
///     p[i] = 0.0;
///   } while (++i < n);
///
/// where the comparison is signed, the trip count isn't just 'n', because
/// 'n' could be negative. And unfortunately this can come up even for loops
/// where the user didn't use a C do-while loop. For example, seemingly
/// well-behaved top-test loops will commonly be lowered like this:
//
///   if (n > 0) {
///     i = 0;
///     do {
///       p[i] = 0.0;
///     } while (++i < n);
///   }
///
/// and then it's possible for subsequent optimization to obscure the if
/// test in such a way that indvars can't find it.
///
/// When indvars can't find the if test in loops like this, it creates a
/// signed-max expression, which allows it to give the loop a canonical
/// induction variable:
///
///   i = 0;
///   smax = n < 1 ? 1 : n;
///   do {
///     p[i] = 0.0;
///   } while (++i != smax);
///
/// Canonical induction variables are necessary because the loop passes
/// are designed around them. The most obvious example of this is the
/// LoopInfo analysis, which doesn't remember trip count values. It
/// expects to be able to rediscover the trip count each time it is
/// needed, and it does this using a simple analyis that only succeeds if
/// the loop has a canonical induction variable.
///
/// However, when it comes time to generate code, the maximum operation
/// can be quite costly, especially if it's inside of an outer loop.
///
/// This function solves this problem by detecting this type of loop and
/// rewriting their conditions from ICMP_NE back to ICMP_SLT, and deleting
/// the instructions for the maximum computation.
///
ICmpInst *LoopStrengthReduce::OptimizeSMax(Loop *L, ICmpInst *Cond,
                                           IVStrideUse* &CondUse) {
  // Check that the loop matches the pattern we're looking for.
  if (Cond->getPredicate() != CmpInst::ICMP_EQ &&
      Cond->getPredicate() != CmpInst::ICMP_NE)
    return Cond;

  SelectInst *Sel = dyn_cast<SelectInst>(Cond->getOperand(1));
  if (!Sel || !Sel->hasOneUse()) return Cond;

  SCEVHandle IterationCount = SE->getIterationCount(L);
  if (isa<SCEVCouldNotCompute>(IterationCount))
    return Cond;
  SCEVHandle One = SE->getIntegerSCEV(1, IterationCount->getType());

  // Adjust for an annoying getIterationCount quirk.
  IterationCount = SE->getAddExpr(IterationCount, One);

  // Check for a max calculation that matches the pattern.
  SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(IterationCount);
  if (!SMax || SMax != SE->getSCEV(Sel)) return Cond;

  SCEVHandle SMaxLHS = SMax->getOperand(0);
  SCEVHandle SMaxRHS = SMax->getOperand(1);
  if (!SMaxLHS || SMaxLHS != One) return Cond;

  // Check the relevant induction variable for conformance to
  // the pattern.
  SCEVHandle IV = SE->getSCEV(Cond->getOperand(0));
  SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(IV);
  if (!AR || !AR->isAffine() ||
      AR->getStart() != One ||
      AR->getStepRecurrence(*SE) != One)
    return Cond;

  // Check the right operand of the select, and remember it, as it will
  // be used in the new comparison instruction.
  Value *NewRHS = 0;
  if (SE->getSCEV(Sel->getOperand(1)) == SMaxRHS)
    NewRHS = Sel->getOperand(1);
  else if (SE->getSCEV(Sel->getOperand(2)) == SMaxRHS)
    NewRHS = Sel->getOperand(2);
  if (!NewRHS) return Cond;

  // Ok, everything looks ok to change the condition into an SLT or SGE and
  // delete the max calculation.
  ICmpInst *NewCond =
    new ICmpInst(Cond->getPredicate() == CmpInst::ICMP_NE ?
                   CmpInst::ICMP_SLT :
                   CmpInst::ICMP_SGE,
                 Cond->getOperand(0), NewRHS, "scmp", Cond);

  // Delete the max calculation instructions.
  SE->deleteValueFromRecords(Cond);
  Cond->replaceAllUsesWith(NewCond);
  Cond->eraseFromParent();
  Instruction *Cmp = cast<Instruction>(Sel->getOperand(0));
  SE->deleteValueFromRecords(Sel);
  Sel->eraseFromParent();
  if (Cmp->use_empty()) {
    SE->deleteValueFromRecords(Cmp);
    Cmp->eraseFromParent();
  }
  CondUse->User = NewCond;
  return NewCond;
}

/// OptimizeShadowIV - If IV is used in a int-to-float cast
/// inside the loop then try to eliminate the cast opeation.
void LoopStrengthReduce::OptimizeShadowIV(Loop *L) {

  SCEVHandle IterationCount = SE->getIterationCount(L);
  if (isa<SCEVCouldNotCompute>(IterationCount))
    return;

  for (unsigned Stride = 0, e = StrideOrder.size(); Stride != e;
       ++Stride) {
    std::map<SCEVHandle, IVUsersOfOneStride>::iterator SI = 
      IVUsesByStride.find(StrideOrder[Stride]);
    assert(SI != IVUsesByStride.end() && "Stride doesn't exist!");
    if (!isa<SCEVConstant>(SI->first))
      continue;

    for (std::vector<IVStrideUse>::iterator UI = SI->second.Users.begin(),
           E = SI->second.Users.end(); UI != E; /* empty */) {
      std::vector<IVStrideUse>::iterator CandidateUI = UI;
      ++UI;
      Instruction *ShadowUse = CandidateUI->User;
      const Type *DestTy = NULL;

      /* If shadow use is a int->float cast then insert a second IV
         to eliminate this cast.

           for (unsigned i = 0; i < n; ++i) 
             foo((double)i);

         is transformed into

           double d = 0.0;
           for (unsigned i = 0; i < n; ++i, ++d) 
             foo(d);
      */
      if (UIToFPInst *UCast = dyn_cast<UIToFPInst>(CandidateUI->User))
        DestTy = UCast->getDestTy();
      else if (SIToFPInst *SCast = dyn_cast<SIToFPInst>(CandidateUI->User))
        DestTy = SCast->getDestTy();
      if (!DestTy) continue;

      if (TLI) {
        /* If target does not support DestTy natively then do not apply
           this transformation. */
        MVT DVT = TLI->getValueType(DestTy);
        if (!TLI->isTypeLegal(DVT)) continue;
      }

      PHINode *PH = dyn_cast<PHINode>(ShadowUse->getOperand(0));
      if (!PH) continue;
      if (PH->getNumIncomingValues() != 2) continue;

      const Type *SrcTy = PH->getType();
      int Mantissa = DestTy->getFPMantissaWidth();
      if (Mantissa == -1) continue; 
      if ((int)TD->getTypeSizeInBits(SrcTy) > Mantissa)
        continue;

      unsigned Entry, Latch;
      if (PH->getIncomingBlock(0) == L->getLoopPreheader()) {
        Entry = 0;
        Latch = 1;
      } else {
        Entry = 1;
        Latch = 0;
      }
        
      ConstantInt *Init = dyn_cast<ConstantInt>(PH->getIncomingValue(Entry));
      if (!Init) continue;
      ConstantFP *NewInit = ConstantFP::get(DestTy, Init->getZExtValue());

      BinaryOperator *Incr = 
        dyn_cast<BinaryOperator>(PH->getIncomingValue(Latch));
      if (!Incr) continue;
      if (Incr->getOpcode() != Instruction::Add
          && Incr->getOpcode() != Instruction::Sub)
        continue;

      /* Initialize new IV, double d = 0.0 in above example. */
      ConstantInt *C = NULL;
      if (Incr->getOperand(0) == PH)
        C = dyn_cast<ConstantInt>(Incr->getOperand(1));
      else if (Incr->getOperand(1) == PH)
        C = dyn_cast<ConstantInt>(Incr->getOperand(0));
      else
        continue;

      if (!C) continue;

      /* Add new PHINode. */
      PHINode *NewPH = PHINode::Create(DestTy, "IV.S.", PH);

      /* create new increment. '++d' in above example. */
      ConstantFP *CFP = ConstantFP::get(DestTy, C->getZExtValue());
      BinaryOperator *NewIncr = 
        BinaryOperator::Create(Incr->getOpcode(),
                               NewPH, CFP, "IV.S.next.", Incr);

      NewPH->addIncoming(NewInit, PH->getIncomingBlock(Entry));
      NewPH->addIncoming(NewIncr, PH->getIncomingBlock(Latch));

      /* Remove cast operation */
      SE->deleteValueFromRecords(ShadowUse);
      ShadowUse->replaceAllUsesWith(NewPH);
      ShadowUse->eraseFromParent();
      SI->second.Users.erase(CandidateUI);
      NumShadow++;
      break;
    }
  }
}

// OptimizeIndvars - Now that IVUsesByStride is set up with all of the indvar
// uses in the loop, look to see if we can eliminate some, in favor of using
// common indvars for the different uses.
void LoopStrengthReduce::OptimizeIndvars(Loop *L) {
  // TODO: implement optzns here.

  OptimizeShadowIV(L);

  // Finally, get the terminating condition for the loop if possible.  If we
  // can, we want to change it to use a post-incremented version of its
  // induction variable, to allow coalescing the live ranges for the IV into
  // one register value.
  PHINode *SomePHI = cast<PHINode>(L->getHeader()->begin());
  BasicBlock  *Preheader = L->getLoopPreheader();
  BasicBlock *LatchBlock =
   SomePHI->getIncomingBlock(SomePHI->getIncomingBlock(0) == Preheader);
  BranchInst *TermBr = dyn_cast<BranchInst>(LatchBlock->getTerminator());
  if (!TermBr || TermBr->isUnconditional() || 
      !isa<ICmpInst>(TermBr->getCondition()))
    return;
  ICmpInst *Cond = cast<ICmpInst>(TermBr->getCondition());

  // Search IVUsesByStride to find Cond's IVUse if there is one.
  IVStrideUse *CondUse = 0;
  const SCEVHandle *CondStride = 0;

  if (!FindIVUserForCond(Cond, CondUse, CondStride))
    return; // setcc doesn't use the IV.

  // If the trip count is computed in terms of an smax (due to ScalarEvolution
  // being unable to find a sufficient guard, for example), change the loop
  // comparison to use SLT instead of NE.
  Cond = OptimizeSMax(L, Cond, CondUse);

  // If possible, change stride and operands of the compare instruction to
  // eliminate one stride.
  Cond = ChangeCompareStride(L, Cond, CondUse, CondStride);

  // It's possible for the setcc instruction to be anywhere in the loop, and
  // possible for it to have multiple users.  If it is not immediately before
  // the latch block branch, move it.
  if (&*++BasicBlock::iterator(Cond) != (Instruction*)TermBr) {
    if (Cond->hasOneUse()) {   // Condition has a single use, just move it.
      Cond->moveBefore(TermBr);
    } else {
      // Otherwise, clone the terminating condition and insert into the loopend.
      Cond = cast<ICmpInst>(Cond->clone());
      Cond->setName(L->getHeader()->getName() + ".termcond");
      LatchBlock->getInstList().insert(TermBr, Cond);
      
      // Clone the IVUse, as the old use still exists!
      IVUsesByStride[*CondStride].addUser(CondUse->Offset, Cond,
                                         CondUse->OperandValToReplace);
      CondUse = &IVUsesByStride[*CondStride].Users.back();
    }
  }

  // If we get to here, we know that we can transform the setcc instruction to
  // use the post-incremented version of the IV, allowing us to coalesce the
  // live ranges for the IV correctly.
  CondUse->Offset = SE->getMinusSCEV(CondUse->Offset, *CondStride);
  CondUse->isUseOfPostIncrementedValue = true;
  Changed = true;
}

bool LoopStrengthReduce::runOnLoop(Loop *L, LPPassManager &LPM) {

  LI = &getAnalysis<LoopInfo>();
  DT = &getAnalysis<DominatorTree>();
  SE = &getAnalysis<ScalarEvolution>();
  TD = &getAnalysis<TargetData>();
  UIntPtrTy = TD->getIntPtrType();
  Changed = false;

  // Find all uses of induction variables in this loop, and categorize
  // them by stride.  Start by finding all of the PHI nodes in the header for
  // this loop.  If they are induction variables, inspect their uses.
  SmallPtrSet<Instruction*,16> Processed;   // Don't reprocess instructions.
  for (BasicBlock::iterator I = L->getHeader()->begin(); isa<PHINode>(I); ++I)
    AddUsersIfInteresting(I, L, Processed);

  if (!IVUsesByStride.empty()) {
    // Optimize induction variables.  Some indvar uses can be transformed to use
    // strides that will be needed for other purposes.  A common example of this
    // is the exit test for the loop, which can often be rewritten to use the
    // computation of some other indvar to decide when to terminate the loop.
    OptimizeIndvars(L);

    // FIXME: We can widen subreg IV's here for RISC targets.  e.g. instead of
    // doing computation in byte values, promote to 32-bit values if safe.

    // FIXME: Attempt to reuse values across multiple IV's.  In particular, we
    // could have something like "for(i) { foo(i*8); bar(i*16) }", which should
    // be codegened as "for (j = 0;; j+=8) { foo(j); bar(j+j); }" on X86/PPC.
    // Need to be careful that IV's are all the same type.  Only works for
    // intptr_t indvars.

    // If we only have one stride, we can more aggressively eliminate some
    // things.
    bool HasOneStride = IVUsesByStride.size() == 1;

#ifndef NDEBUG
    DOUT << "\nLSR on ";
    DEBUG(L->dump());
#endif

    // IVsByStride keeps IVs for one particular loop.
    assert(IVsByStride.empty() && "Stale entries in IVsByStride?");

    // Sort the StrideOrder so we process larger strides first.
    std::stable_sort(StrideOrder.begin(), StrideOrder.end(), StrideCompare());

    // Note: this processes each stride/type pair individually.  All users
    // passed into StrengthReduceStridedIVUsers have the same type AND stride.
    // Also, note that we iterate over IVUsesByStride indirectly by using
    // StrideOrder. This extra layer of indirection makes the ordering of
    // strides deterministic - not dependent on map order.
    for (unsigned Stride = 0, e = StrideOrder.size(); Stride != e; ++Stride) {
      std::map<SCEVHandle, IVUsersOfOneStride>::iterator SI = 
        IVUsesByStride.find(StrideOrder[Stride]);
      assert(SI != IVUsesByStride.end() && "Stride doesn't exist!");
      StrengthReduceStridedIVUsers(SI->first, SI->second, L, HasOneStride);
    }
  }

  // We're done analyzing this loop; release all the state we built up for it.
  CastedPointers.clear();
  IVUsesByStride.clear();
  IVsByStride.clear();
  StrideOrder.clear();
  for (unsigned i=0; i<GEPlist.size(); i++)
    SE->deleteValueFromRecords(GEPlist[i]);
  GEPlist.clear();  

  // Clean up after ourselves
  if (!DeadInsts.empty()) {
    DeleteTriviallyDeadInstructions();

    BasicBlock::iterator I = L->getHeader()->begin();
    while (PHINode *PN = dyn_cast<PHINode>(I++)) {
      // At this point, we know that we have killed one or more IV users.
      // It is worth checking to see if the cannonical indvar is also
      // dead, so that we can remove it as well.
      //
      // We can remove a PHI if it is on a cycle in the def-use graph
      // where each node in the cycle has degree one, i.e. only one use,
      // and is an instruction with no side effects.
      //
      // FIXME: this needs to eliminate an induction variable even if it's being
      // compared against some value to decide loop termination.
      if (!PN->hasOneUse())
        continue;
      
      SmallPtrSet<PHINode *, 4> PHIs;
      for (Instruction *J = dyn_cast<Instruction>(*PN->use_begin());
           J && J->hasOneUse() && !J->mayWriteToMemory();
           J = dyn_cast<Instruction>(*J->use_begin())) {
        // If we find the original PHI, we've discovered a cycle.
        if (J == PN) {
          // Break the cycle and mark the PHI for deletion.
          SE->deleteValueFromRecords(PN);
          PN->replaceAllUsesWith(UndefValue::get(PN->getType()));
          DeadInsts.push_back(PN);
          Changed = true;
          break;
        }
        // If we find a PHI more than once, we're on a cycle that
        // won't prove fruitful.
        if (isa<PHINode>(J) && !PHIs.insert(cast<PHINode>(J)))
          break;
      }
    }
    DeleteTriviallyDeadInstructions();
  }
  return Changed;
}