llvm.org GIT mirror llvm / 66c5fd6 tools / bugpoint / CrashDebugger.cpp
66c5fd6

Tree @66c5fd6 (Download .tar.gz)

CrashDebugger.cpp @66c5fd6raw · history · blame

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
//===- CrashDebugger.cpp - Debug compilation crashes ----------------------===//
//
//                     The LLVM Compiler Infrastructure
//
// This file was developed by the LLVM research group and is distributed under
// the University of Illinois Open Source License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file defines the bugpoint internals that narrow down compilation crashes
//
//===----------------------------------------------------------------------===//

#include "BugDriver.h"
#include "ListReducer.h"
#include "llvm/Constant.h"
#include "llvm/Instructions.h"
#include "llvm/Module.h"
#include "llvm/Pass.h"
#include "llvm/PassManager.h"
#include "llvm/SymbolTable.h"
#include "llvm/Type.h"
#include "llvm/Analysis/Verifier.h"
#include "llvm/Bytecode/Writer.h"
#include "llvm/Support/CFG.h"
#include "llvm/Support/ToolRunner.h"
#include "llvm/Transforms/Scalar.h"
#include "llvm/Transforms/Utils/Cloning.h"
#include "llvm/Support/FileUtilities.h"
#include <fstream>
#include <set>
using namespace llvm;

namespace llvm {
  class ReducePassList : public ListReducer<const PassInfo*> {
    BugDriver &BD;
  public:
    ReducePassList(BugDriver &bd) : BD(bd) {}

    // doTest - Return true iff running the "removed" passes succeeds, and
    // running the "Kept" passes fail when run on the output of the "removed"
    // passes.  If we return true, we update the current module of bugpoint.
    //
    virtual TestResult doTest(std::vector<const PassInfo*> &Removed,
                              std::vector<const PassInfo*> &Kept);
  };
}

ReducePassList::TestResult
ReducePassList::doTest(std::vector<const PassInfo*> &Prefix,
                       std::vector<const PassInfo*> &Suffix) {
  sys::Path PrefixOutput;
  Module *OrigProgram = 0;
  if (!Prefix.empty()) {
    std::cout << "Checking to see if these passes crash: "
              << getPassesString(Prefix) << ": ";
    std::string PfxOutput;
    if (BD.runPasses(Prefix, PfxOutput))
      return KeepPrefix;

    PrefixOutput.set(PfxOutput);
    OrigProgram = BD.Program;

    BD.Program = ParseInputFile(PrefixOutput.toString());
    if (BD.Program == 0) {
      std::cerr << BD.getToolName() << ": Error reading bytecode file '"
                << PrefixOutput << "'!\n";
      exit(1);
    }
    PrefixOutput.eraseFromDisk();
  }

  std::cout << "Checking to see if these passes crash: "
            << getPassesString(Suffix) << ": ";

  if (BD.runPasses(Suffix)) {
    delete OrigProgram;            // The suffix crashes alone...
    return KeepSuffix;
  }

  // Nothing failed, restore state...
  if (OrigProgram) {
    delete BD.Program;
    BD.Program = OrigProgram;
  }
  return NoFailure;
}

namespace llvm {
  class ReduceCrashingFunctions : public ListReducer<Function*> {
    BugDriver &BD;
    bool (*TestFn)(BugDriver &, Module *);
  public:
    ReduceCrashingFunctions(BugDriver &bd,
                            bool (*testFn)(BugDriver &, Module *))
      : BD(bd), TestFn(testFn) {}

    virtual TestResult doTest(std::vector<Function*> &Prefix,
                              std::vector<Function*> &Kept) {
      if (!Kept.empty() && TestFuncs(Kept))
        return KeepSuffix;
      if (!Prefix.empty() && TestFuncs(Prefix))
        return KeepPrefix;
      return NoFailure;
    }

    bool TestFuncs(std::vector<Function*> &Prefix);
  };
}

bool ReduceCrashingFunctions::TestFuncs(std::vector<Function*> &Funcs) {
  // Clone the program to try hacking it apart...
  Module *M = CloneModule(BD.getProgram());

  // Convert list to set for fast lookup...
  std::set<Function*> Functions;
  for (unsigned i = 0, e = Funcs.size(); i != e; ++i) {
    Function *CMF = M->getFunction(Funcs[i]->getName(),
                                   Funcs[i]->getFunctionType());
    assert(CMF && "Function not in module?!");
    Functions.insert(CMF);
  }

  std::cout << "Checking for crash with only these functions: ";
  PrintFunctionList(Funcs);
  std::cout << ": ";

  // Loop over and delete any functions which we aren't supposed to be playing
  // with...
  for (Module::iterator I = M->begin(), E = M->end(); I != E; ++I)
    if (!I->isExternal() && !Functions.count(I))
      DeleteFunctionBody(I);

  // Try running the hacked up program...
  if (TestFn(BD, M)) {
    BD.setNewProgram(M);        // It crashed, keep the trimmed version...

    // Make sure to use function pointers that point into the now-current
    // module.
    Funcs.assign(Functions.begin(), Functions.end());
    return true;
  }
  delete M;
  return false;
}


namespace {
  /// ReduceCrashingBlocks reducer - This works by setting the terminators of
  /// all terminators except the specified basic blocks to a 'ret' instruction,
  /// then running the simplify-cfg pass.  This has the effect of chopping up
  /// the CFG really fast which can reduce large functions quickly.
  ///
  class ReduceCrashingBlocks : public ListReducer<const BasicBlock*> {
    BugDriver &BD;
    bool (*TestFn)(BugDriver &, Module *);
  public:
    ReduceCrashingBlocks(BugDriver &bd, bool (*testFn)(BugDriver &, Module *))
      : BD(bd), TestFn(testFn) {}

    virtual TestResult doTest(std::vector<const BasicBlock*> &Prefix,
                              std::vector<const BasicBlock*> &Kept) {
      if (!Kept.empty() && TestBlocks(Kept))
        return KeepSuffix;
      if (!Prefix.empty() && TestBlocks(Prefix))
        return KeepPrefix;
      return NoFailure;
    }

    bool TestBlocks(std::vector<const BasicBlock*> &Prefix);
  };
}

bool ReduceCrashingBlocks::TestBlocks(std::vector<const BasicBlock*> &BBs) {
  // Clone the program to try hacking it apart...
  Module *M = CloneModule(BD.getProgram());

  // Convert list to set for fast lookup...
  std::set<BasicBlock*> Blocks;
  for (unsigned i = 0, e = BBs.size(); i != e; ++i) {
    // Convert the basic block from the original module to the new module...
    const Function *F = BBs[i]->getParent();
    Function *CMF = M->getFunction(F->getName(), F->getFunctionType());
    assert(CMF && "Function not in module?!");

    // Get the mapped basic block...
    Function::iterator CBI = CMF->begin();
    std::advance(CBI, std::distance(F->begin(),
                                    Function::const_iterator(BBs[i])));
    Blocks.insert(CBI);
  }

  std::cout << "Checking for crash with only these blocks:";
  unsigned NumPrint = Blocks.size();
  if (NumPrint > 10) NumPrint = 10;
  for (unsigned i = 0, e = NumPrint; i != e; ++i)
    std::cout << " " << BBs[i]->getName();
  if (NumPrint < Blocks.size())
    std::cout << "... <" << Blocks.size() << " total>";
  std::cout << ": ";

  // Loop over and delete any hack up any blocks that are not listed...
  for (Module::iterator I = M->begin(), E = M->end(); I != E; ++I)
    for (Function::iterator BB = I->begin(), E = I->end(); BB != E; ++BB)
      if (!Blocks.count(BB) && BB->getTerminator()->getNumSuccessors()) {
        // Loop over all of the successors of this block, deleting any PHI nodes
        // that might include it.
        for (succ_iterator SI = succ_begin(BB), E = succ_end(BB); SI != E; ++SI)
          (*SI)->removePredecessor(BB);

        if (BB->getTerminator()->getType() != Type::VoidTy)
          BB->getTerminator()->replaceAllUsesWith(
                      Constant::getNullValue(BB->getTerminator()->getType()));

        // Delete the old terminator instruction...
        BB->getInstList().pop_back();

        // Add a new return instruction of the appropriate type...
        const Type *RetTy = BB->getParent()->getReturnType();
        new ReturnInst(RetTy == Type::VoidTy ? 0 :
                       Constant::getNullValue(RetTy), BB);
      }

  // The CFG Simplifier pass may delete one of the basic blocks we are
  // interested in.  If it does we need to take the block out of the list.  Make
  // a "persistent mapping" by turning basic blocks into <function, name> pairs.
  // This won't work well if blocks are unnamed, but that is just the risk we
  // have to take.
  std::vector<std::pair<Function*, std::string> > BlockInfo;

  for (std::set<BasicBlock*>::iterator I = Blocks.begin(), E = Blocks.end();
       I != E; ++I)
    BlockInfo.push_back(std::make_pair((*I)->getParent(), (*I)->getName()));

  // Now run the CFG simplify pass on the function...
  PassManager Passes;
  Passes.add(createCFGSimplificationPass());
  Passes.add(createVerifierPass());
  Passes.run(*M);

  // Try running on the hacked up program...
  if (TestFn(BD, M)) {
    BD.setNewProgram(M);      // It crashed, keep the trimmed version...

    // Make sure to use basic block pointers that point into the now-current
    // module, and that they don't include any deleted blocks.
    BBs.clear();
    for (unsigned i = 0, e = BlockInfo.size(); i != e; ++i) {
      SymbolTable &ST = BlockInfo[i].first->getSymbolTable();
      SymbolTable::plane_iterator PI = ST.find(Type::LabelTy);
      if (PI != ST.plane_end() && PI->second.count(BlockInfo[i].second))
        BBs.push_back(cast<BasicBlock>(PI->second[BlockInfo[i].second]));
    }
    return true;
  }
  delete M;  // It didn't crash, try something else.
  return false;
}

/// DebugACrash - Given a predicate that determines whether a component crashes
/// on a program, try to destructively reduce the program while still keeping
/// the predicate true.
static bool DebugACrash(BugDriver &BD,  bool (*TestFn)(BugDriver &, Module *)) {
  // See if we can get away with nuking all of the global variable initializers
  // in the program...
  if (BD.getProgram()->global_begin() != BD.getProgram()->global_end()) {
    Module *M = CloneModule(BD.getProgram());
    bool DeletedInit = false;
    for (Module::global_iterator I = M->global_begin(), E = M->global_end(); I != E; ++I)
      if (I->hasInitializer()) {
        I->setInitializer(0);
        I->setLinkage(GlobalValue::ExternalLinkage);
        DeletedInit = true;
      }

    if (!DeletedInit) {
      delete M;  // No change made...
    } else {
      // See if the program still causes a crash...
      std::cout << "\nChecking to see if we can delete global inits: ";
      if (TestFn(BD, M)) {  // Still crashes?
        BD.setNewProgram(M);
        std::cout << "\n*** Able to remove all global initializers!\n";
      } else {                       // No longer crashes?
        std::cout << "  - Removing all global inits hides problem!\n";
        delete M;
      }
    }
  }

  // Now try to reduce the number of functions in the module to something small.
  std::vector<Function*> Functions;
  for (Module::iterator I = BD.getProgram()->begin(),
         E = BD.getProgram()->end(); I != E; ++I)
    if (!I->isExternal())
      Functions.push_back(I);

  if (Functions.size() > 1 && !BugpointIsInterrupted) {
    std::cout << "\n*** Attempting to reduce the number of functions "
      "in the testcase\n";

    unsigned OldSize = Functions.size();
    ReduceCrashingFunctions(BD, TestFn).reduceList(Functions);

    if (Functions.size() < OldSize)
      BD.EmitProgressBytecode("reduced-function");
  }

  // Attempt to delete entire basic blocks at a time to speed up
  // convergence... this actually works by setting the terminator of the blocks
  // to a return instruction then running simplifycfg, which can potentially
  // shrinks the code dramatically quickly
  //
  if (!DisableSimplifyCFG && !BugpointIsInterrupted) {
    std::vector<const BasicBlock*> Blocks;
    for (Module::const_iterator I = BD.getProgram()->begin(),
           E = BD.getProgram()->end(); I != E; ++I)
      for (Function::const_iterator FI = I->begin(), E = I->end(); FI !=E; ++FI)
        Blocks.push_back(FI);
    ReduceCrashingBlocks(BD, TestFn).reduceList(Blocks);
  }

  // FIXME: This should use the list reducer to converge faster by deleting
  // larger chunks of instructions at a time!
  unsigned Simplification = 2;
  do {
    if (BugpointIsInterrupted) break;
    --Simplification;
    std::cout << "\n*** Attempting to reduce testcase by deleting instruc"
              << "tions: Simplification Level #" << Simplification << '\n';

    // Now that we have deleted the functions that are unnecessary for the
    // program, try to remove instructions that are not necessary to cause the
    // crash.  To do this, we loop through all of the instructions in the
    // remaining functions, deleting them (replacing any values produced with
    // nulls), and then running ADCE and SimplifyCFG.  If the transformed input
    // still triggers failure, keep deleting until we cannot trigger failure
    // anymore.
    //
    unsigned InstructionsToSkipBeforeDeleting = 0;
  TryAgain:

    // Loop over all of the (non-terminator) instructions remaining in the
    // function, attempting to delete them.
    unsigned CurInstructionNum = 0;
    for (Module::const_iterator FI = BD.getProgram()->begin(),
           E = BD.getProgram()->end(); FI != E; ++FI)
      if (!FI->isExternal())
        for (Function::const_iterator BI = FI->begin(), E = FI->end(); BI != E;
             ++BI)
          for (BasicBlock::const_iterator I = BI->begin(), E = --BI->end();
               I != E; ++I, ++CurInstructionNum)
            if (InstructionsToSkipBeforeDeleting) {
              --InstructionsToSkipBeforeDeleting;
            } else {
              if (BugpointIsInterrupted) goto ExitLoops;

              std::cout << "Checking instruction '" << I->getName() << "': ";
              Module *M = BD.deleteInstructionFromProgram(I, Simplification);

              // Find out if the pass still crashes on this pass...
              if (TestFn(BD, M)) {
                // Yup, it does, we delete the old module, and continue trying
                // to reduce the testcase...
                BD.setNewProgram(M);
                InstructionsToSkipBeforeDeleting = CurInstructionNum;
                goto TryAgain;  // I wish I had a multi-level break here!
              }

              // This pass didn't crash without this instruction, try the next
              // one.
              delete M;
            }

    if (InstructionsToSkipBeforeDeleting) {
      InstructionsToSkipBeforeDeleting = 0;
      goto TryAgain;
    }

  } while (Simplification);
ExitLoops:

  // Try to clean up the testcase by running funcresolve and globaldce...
  if (!BugpointIsInterrupted) {
    std::cout << "\n*** Attempting to perform final cleanups: ";
    Module *M = CloneModule(BD.getProgram());
    M = BD.performFinalCleanups(M, true);

    // Find out if the pass still crashes on the cleaned up program...
    if (TestFn(BD, M)) {
      BD.setNewProgram(M);     // Yup, it does, keep the reduced version...
    } else {
      delete M;
    }
  }

  BD.EmitProgressBytecode("reduced-simplified");

  return false;
}

static bool TestForOptimizerCrash(BugDriver &BD, Module *M) {
  return BD.runPasses(M);
}

/// debugOptimizerCrash - This method is called when some pass crashes on input.
/// It attempts to prune down the testcase to something reasonable, and figure
/// out exactly which pass is crashing.
///
bool BugDriver::debugOptimizerCrash() {
  std::cout << "\n*** Debugging optimizer crash!\n";

  // Reduce the list of passes which causes the optimizer to crash...
  unsigned OldSize = PassesToRun.size();
  if (!BugpointIsInterrupted)
    ReducePassList(*this).reduceList(PassesToRun);

  std::cout << "\n*** Found crashing pass"
            << (PassesToRun.size() == 1 ? ": " : "es: ")
            << getPassesString(PassesToRun) << '\n';

  EmitProgressBytecode("passinput");

  return DebugACrash(*this, TestForOptimizerCrash);
}

static bool TestForCodeGenCrash(BugDriver &BD, Module *M) {
  try {
    std::cerr << '\n';
    BD.compileProgram(M);
    std::cerr << '\n';
    return false;
  } catch (ToolExecutionError &) {
    std::cerr << "<crash>\n";
    return true;  // Tool is still crashing.
  }
}

/// debugCodeGeneratorCrash - This method is called when the code generator
/// crashes on an input.  It attempts to reduce the input as much as possible
/// while still causing the code generator to crash.
bool BugDriver::debugCodeGeneratorCrash() {
  std::cerr << "*** Debugging code generator crash!\n";

  return DebugACrash(*this, TestForCodeGenCrash);
}