llvm.org GIT mirror llvm / 66c5fd6 lib / Transforms / Scalar / Reassociate.cpp
66c5fd6

Tree @66c5fd6 (Download .tar.gz)

Reassociate.cpp @66c5fd6raw · history · blame

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
//===- Reassociate.cpp - Reassociate binary expressions -------------------===//
//
//                     The LLVM Compiler Infrastructure
//
// This file was developed by the LLVM research group and is distributed under
// the University of Illinois Open Source License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This pass reassociates commutative expressions in an order that is designed
// to promote better constant propagation, GCSE, LICM, PRE...
//
// For example: 4 + (x + 5) -> x + (4 + 5)
//
// In the implementation of this algorithm, constants are assigned rank = 0,
// function arguments are rank = 1, and other values are assigned ranks
// corresponding to the reverse post order traversal of current function
// (starting at 2), which effectively gives values in deep loops higher rank
// than values not in loops.
//
//===----------------------------------------------------------------------===//

#define DEBUG_TYPE "reassociate"
#include "llvm/Transforms/Scalar.h"
#include "llvm/Constants.h"
#include "llvm/Function.h"
#include "llvm/Instructions.h"
#include "llvm/Pass.h"
#include "llvm/Type.h"
#include "llvm/Assembly/Writer.h"
#include "llvm/Support/CFG.h"
#include "llvm/Support/Debug.h"
#include "llvm/ADT/PostOrderIterator.h"
#include "llvm/ADT/Statistic.h"
#include <algorithm>
using namespace llvm;

namespace {
  Statistic<> NumLinear ("reassociate","Number of insts linearized");
  Statistic<> NumChanged("reassociate","Number of insts reassociated");
  Statistic<> NumSwapped("reassociate","Number of insts with operands swapped");
  Statistic<> NumAnnihil("reassociate","Number of expr tree annihilated");

  struct ValueEntry {
    unsigned Rank;
    Value *Op;
    ValueEntry(unsigned R, Value *O) : Rank(R), Op(O) {}
  };
  inline bool operator<(const ValueEntry &LHS, const ValueEntry &RHS) {
    return LHS.Rank > RHS.Rank;   // Sort so that highest rank goes to start.
  }

  class Reassociate : public FunctionPass {
    std::map<BasicBlock*, unsigned> RankMap;
    std::map<Value*, unsigned> ValueRankMap;
    bool MadeChange;
  public:
    bool runOnFunction(Function &F);

    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
      AU.setPreservesCFG();
    }
  private:
    void BuildRankMap(Function &F);
    unsigned getRank(Value *V);
    void RewriteExprTree(BinaryOperator *I, unsigned Idx,
                         std::vector<ValueEntry> &Ops);
    void OptimizeExpression(unsigned Opcode, std::vector<ValueEntry> &Ops);
    void LinearizeExprTree(BinaryOperator *I, std::vector<ValueEntry> &Ops);
    void LinearizeExpr(BinaryOperator *I);
    void ReassociateBB(BasicBlock *BB);
  };

  RegisterOpt<Reassociate> X("reassociate", "Reassociate expressions");
}

// Public interface to the Reassociate pass
FunctionPass *llvm::createReassociatePass() { return new Reassociate(); }


static bool isUnmovableInstruction(Instruction *I) {
  if (I->getOpcode() == Instruction::PHI ||
      I->getOpcode() == Instruction::Alloca ||
      I->getOpcode() == Instruction::Load ||
      I->getOpcode() == Instruction::Malloc ||
      I->getOpcode() == Instruction::Invoke ||
      I->getOpcode() == Instruction::Call ||
      I->getOpcode() == Instruction::Div ||
      I->getOpcode() == Instruction::Rem)
    return true;
  return false;
}

void Reassociate::BuildRankMap(Function &F) {
  unsigned i = 2;

  // Assign distinct ranks to function arguments
  for (Function::arg_iterator I = F.arg_begin(), E = F.arg_end(); I != E; ++I)
    ValueRankMap[I] = ++i;

  ReversePostOrderTraversal<Function*> RPOT(&F);
  for (ReversePostOrderTraversal<Function*>::rpo_iterator I = RPOT.begin(),
         E = RPOT.end(); I != E; ++I) {
    BasicBlock *BB = *I;
    unsigned BBRank = RankMap[BB] = ++i << 16;

    // Walk the basic block, adding precomputed ranks for any instructions that
    // we cannot move.  This ensures that the ranks for these instructions are
    // all different in the block.
    for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I)
      if (isUnmovableInstruction(I))
        ValueRankMap[I] = ++BBRank;
  }
}

unsigned Reassociate::getRank(Value *V) {
  if (isa<Argument>(V)) return ValueRankMap[V];   // Function argument...

  Instruction *I = dyn_cast<Instruction>(V);
  if (I == 0) return 0;  // Otherwise it's a global or constant, rank 0.

  unsigned &CachedRank = ValueRankMap[I];
  if (CachedRank) return CachedRank;    // Rank already known?

  // If this is an expression, return the 1+MAX(rank(LHS), rank(RHS)) so that
  // we can reassociate expressions for code motion!  Since we do not recurse
  // for PHI nodes, we cannot have infinite recursion here, because there
  // cannot be loops in the value graph that do not go through PHI nodes.
  unsigned Rank = 0, MaxRank = RankMap[I->getParent()];
  for (unsigned i = 0, e = I->getNumOperands();
       i != e && Rank != MaxRank; ++i)
    Rank = std::max(Rank, getRank(I->getOperand(i)));

  // If this is a not or neg instruction, do not count it for rank.  This
  // assures us that X and ~X will have the same rank.
  if (!I->getType()->isIntegral() ||
      (!BinaryOperator::isNot(I) && !BinaryOperator::isNeg(I)))
    ++Rank;

  //DEBUG(std::cerr << "Calculated Rank[" << V->getName() << "] = "
  //<< Rank << "\n");

  return CachedRank = Rank;
}

/// isReassociableOp - Return true if V is an instruction of the specified
/// opcode and if it only has one use.
static BinaryOperator *isReassociableOp(Value *V, unsigned Opcode) {
  if (V->hasOneUse() && isa<Instruction>(V) &&
      cast<Instruction>(V)->getOpcode() == Opcode)
    return cast<BinaryOperator>(V);
  return 0;
}

/// LowerNegateToMultiply - Replace 0-X with X*-1.
///
static Instruction *LowerNegateToMultiply(Instruction *Neg) {
  Constant *Cst;
  if (Neg->getType()->isFloatingPoint())
    Cst = ConstantFP::get(Neg->getType(), -1);
  else
    Cst = ConstantInt::getAllOnesValue(Neg->getType());

  std::string NegName = Neg->getName(); Neg->setName("");
  Instruction *Res = BinaryOperator::createMul(Neg->getOperand(1), Cst, NegName,
                                               Neg);
  Neg->replaceAllUsesWith(Res);
  Neg->eraseFromParent();
  return Res;
}

// Given an expression of the form '(A+B)+(D+C)', turn it into '(((A+B)+C)+D)'.
// Note that if D is also part of the expression tree that we recurse to
// linearize it as well.  Besides that case, this does not recurse into A,B, or
// C.
void Reassociate::LinearizeExpr(BinaryOperator *I) {
  BinaryOperator *LHS = cast<BinaryOperator>(I->getOperand(0));
  BinaryOperator *RHS = cast<BinaryOperator>(I->getOperand(1));
  assert(isReassociableOp(LHS, I->getOpcode()) &&
         isReassociableOp(RHS, I->getOpcode()) &&
         "Not an expression that needs linearization?");

  DEBUG(std::cerr << "Linear" << *LHS << *RHS << *I);

  // Move the RHS instruction to live immediately before I, avoiding breaking
  // dominator properties.
  RHS->moveBefore(I);

  // Move operands around to do the linearization.
  I->setOperand(1, RHS->getOperand(0));
  RHS->setOperand(0, LHS);
  I->setOperand(0, RHS);

  ++NumLinear;
  MadeChange = true;
  DEBUG(std::cerr << "Linearized: " << *I);

  // If D is part of this expression tree, tail recurse.
  if (isReassociableOp(I->getOperand(1), I->getOpcode()))
    LinearizeExpr(I);
}


/// LinearizeExprTree - Given an associative binary expression tree, traverse
/// all of the uses putting it into canonical form.  This forces a left-linear
/// form of the the expression (((a+b)+c)+d), and collects information about the
/// rank of the non-tree operands.
///
/// This returns the rank of the RHS operand, which is known to be the highest
/// rank value in the expression tree.
///
void Reassociate::LinearizeExprTree(BinaryOperator *I,
                                    std::vector<ValueEntry> &Ops) {
  Value *LHS = I->getOperand(0), *RHS = I->getOperand(1);
  unsigned Opcode = I->getOpcode();

  // First step, linearize the expression if it is in ((A+B)+(C+D)) form.
  BinaryOperator *LHSBO = isReassociableOp(LHS, Opcode);
  BinaryOperator *RHSBO = isReassociableOp(RHS, Opcode);

  // If this is a multiply expression tree and it contains internal negations,
  // transform them into multiplies by -1 so they can be reassociated.
  if (I->getOpcode() == Instruction::Mul) {
    if (!LHSBO && LHS->hasOneUse() && BinaryOperator::isNeg(LHS)) {
      LHS = LowerNegateToMultiply(cast<Instruction>(LHS));
      LHSBO = isReassociableOp(LHS, Opcode);
    }
    if (!RHSBO && RHS->hasOneUse() && BinaryOperator::isNeg(RHS)) {
      RHS = LowerNegateToMultiply(cast<Instruction>(RHS));
      RHSBO = isReassociableOp(RHS, Opcode);
    }
  }

  if (!LHSBO) {
    if (!RHSBO) {
      // Neither the LHS or RHS as part of the tree, thus this is a leaf.  As
      // such, just remember these operands and their rank.
      Ops.push_back(ValueEntry(getRank(LHS), LHS));
      Ops.push_back(ValueEntry(getRank(RHS), RHS));
      return;
    } else {
      // Turn X+(Y+Z) -> (Y+Z)+X
      std::swap(LHSBO, RHSBO);
      std::swap(LHS, RHS);
      bool Success = !I->swapOperands();
      assert(Success && "swapOperands failed");
      MadeChange = true;
    }
  } else if (RHSBO) {
    // Turn (A+B)+(C+D) -> (((A+B)+C)+D).  This guarantees the the RHS is not
    // part of the expression tree.
    LinearizeExpr(I);
    LHS = LHSBO = cast<BinaryOperator>(I->getOperand(0));
    RHS = I->getOperand(1);
    RHSBO = 0;
  }

  // Okay, now we know that the LHS is a nested expression and that the RHS is
  // not.  Perform reassociation.
  assert(!isReassociableOp(RHS, Opcode) && "LinearizeExpr failed!");

  // Move LHS right before I to make sure that the tree expression dominates all
  // values.
  LHSBO->moveBefore(I);

  // Linearize the expression tree on the LHS.
  LinearizeExprTree(LHSBO, Ops);

  // Remember the RHS operand and its rank.
  Ops.push_back(ValueEntry(getRank(RHS), RHS));
}

// RewriteExprTree - Now that the operands for this expression tree are
// linearized and optimized, emit them in-order.  This function is written to be
// tail recursive.
void Reassociate::RewriteExprTree(BinaryOperator *I, unsigned i,
                                  std::vector<ValueEntry> &Ops) {
  if (i+2 == Ops.size()) {
    if (I->getOperand(0) != Ops[i].Op ||
        I->getOperand(1) != Ops[i+1].Op) {
      DEBUG(std::cerr << "RA: " << *I);
      I->setOperand(0, Ops[i].Op);
      I->setOperand(1, Ops[i+1].Op);
      DEBUG(std::cerr << "TO: " << *I);
      MadeChange = true;
      ++NumChanged;
    }
    return;
  }
  assert(i+2 < Ops.size() && "Ops index out of range!");

  if (I->getOperand(1) != Ops[i].Op) {
    DEBUG(std::cerr << "RA: " << *I);
    I->setOperand(1, Ops[i].Op);
    DEBUG(std::cerr << "TO: " << *I);
    MadeChange = true;
    ++NumChanged;
  }
  RewriteExprTree(cast<BinaryOperator>(I->getOperand(0)), i+1, Ops);
}



// NegateValue - Insert instructions before the instruction pointed to by BI,
// that computes the negative version of the value specified.  The negative
// version of the value is returned, and BI is left pointing at the instruction
// that should be processed next by the reassociation pass.
//
static Value *NegateValue(Value *V, Instruction *BI) {
  // We are trying to expose opportunity for reassociation.  One of the things
  // that we want to do to achieve this is to push a negation as deep into an
  // expression chain as possible, to expose the add instructions.  In practice,
  // this means that we turn this:
  //   X = -(A+12+C+D)   into    X = -A + -12 + -C + -D = -12 + -A + -C + -D
  // so that later, a: Y = 12+X could get reassociated with the -12 to eliminate
  // the constants.  We assume that instcombine will clean up the mess later if
  // we introduce tons of unnecessary negation instructions...
  //
  if (Instruction *I = dyn_cast<Instruction>(V))
    if (I->getOpcode() == Instruction::Add && I->hasOneUse()) {
      // Push the negates through the add.
      I->setOperand(0, NegateValue(I->getOperand(0), BI));
      I->setOperand(1, NegateValue(I->getOperand(1), BI));

      // We must move the add instruction here, because the neg instructions do
      // not dominate the old add instruction in general.  By moving it, we are
      // assured that the neg instructions we just inserted dominate the 
      // instruction we are about to insert after them.
      //
      I->moveBefore(BI);
      I->setName(I->getName()+".neg");
      return I;
    }

  // Insert a 'neg' instruction that subtracts the value from zero to get the
  // negation.
  //
  return BinaryOperator::createNeg(V, V->getName() + ".neg", BI);
}

/// BreakUpSubtract - If we have (X-Y), and if either X is an add, or if this is
/// only used by an add, transform this into (X+(0-Y)) to promote better
/// reassociation.
static Instruction *BreakUpSubtract(Instruction *Sub) {
  // Don't bother to break this up unless either the LHS is an associable add or
  // if this is only used by one.
  if (!isReassociableOp(Sub->getOperand(0), Instruction::Add) &&
      !isReassociableOp(Sub->getOperand(1), Instruction::Add) &&
      !(Sub->hasOneUse() &&isReassociableOp(Sub->use_back(), Instruction::Add)))
    return 0;

  // Convert a subtract into an add and a neg instruction... so that sub
  // instructions can be commuted with other add instructions...
  //
  // Calculate the negative value of Operand 1 of the sub instruction...
  // and set it as the RHS of the add instruction we just made...
  //
  std::string Name = Sub->getName();
  Sub->setName("");
  Value *NegVal = NegateValue(Sub->getOperand(1), Sub);
  Instruction *New =
    BinaryOperator::createAdd(Sub->getOperand(0), NegVal, Name, Sub);

  // Everyone now refers to the add instruction.
  Sub->replaceAllUsesWith(New);
  Sub->eraseFromParent();

  DEBUG(std::cerr << "Negated: " << *New);
  return New;
}

/// ConvertShiftToMul - If this is a shift of a reassociable multiply or is used
/// by one, change this into a multiply by a constant to assist with further
/// reassociation.
static Instruction *ConvertShiftToMul(Instruction *Shl) {
  if (!isReassociableOp(Shl->getOperand(0), Instruction::Mul) &&
      !(Shl->hasOneUse() && isReassociableOp(Shl->use_back(),Instruction::Mul)))
    return 0;

  Constant *MulCst = ConstantInt::get(Shl->getType(), 1);
  MulCst = ConstantExpr::getShl(MulCst, cast<Constant>(Shl->getOperand(1)));

  std::string Name = Shl->getName();  Shl->setName("");
  Instruction *Mul = BinaryOperator::createMul(Shl->getOperand(0), MulCst,
                                               Name, Shl);
  Shl->replaceAllUsesWith(Mul);
  Shl->eraseFromParent();
  return Mul;
}

// Scan backwards and forwards among values with the same rank as element i to
// see if X exists.  If X does not exist, return i.
static unsigned FindInOperandList(std::vector<ValueEntry> &Ops, unsigned i,
                                  Value *X) {
  unsigned XRank = Ops[i].Rank;
  unsigned e = Ops.size();
  for (unsigned j = i+1; j != e && Ops[j].Rank == XRank; ++j)
    if (Ops[j].Op == X)
      return j;
  // Scan backwards
  for (unsigned j = i-1; j != ~0U && Ops[j].Rank == XRank; --j)
    if (Ops[j].Op == X)
      return j;
  return i;
}

void Reassociate::OptimizeExpression(unsigned Opcode,
                                     std::vector<ValueEntry> &Ops) {
  // Now that we have the linearized expression tree, try to optimize it.
  // Start by folding any constants that we found.
  bool IterateOptimization = false;
  if (Ops.size() == 1) return;

  if (Constant *V1 = dyn_cast<Constant>(Ops[Ops.size()-2].Op))
    if (Constant *V2 = dyn_cast<Constant>(Ops.back().Op)) {
      Ops.pop_back();
      Ops.back().Op = ConstantExpr::get(Opcode, V1, V2);
      OptimizeExpression(Opcode, Ops);
      return;
    }

  // Check for destructive annihilation due to a constant being used.
  if (ConstantIntegral *CstVal = dyn_cast<ConstantIntegral>(Ops.back().Op))
    switch (Opcode) {
    default: break;
    case Instruction::And:
      if (CstVal->isNullValue()) {           // ... & 0 -> 0
        Ops[0].Op = CstVal;
        Ops.erase(Ops.begin()+1, Ops.end());
        ++NumAnnihil;
        return;
      } else if (CstVal->isAllOnesValue()) { // ... & -1 -> ...
        Ops.pop_back();
      }
      break;
    case Instruction::Mul:
      if (CstVal->isNullValue()) {           // ... * 0 -> 0
        Ops[0].Op = CstVal;
        Ops.erase(Ops.begin()+1, Ops.end());
        ++NumAnnihil;
        return;
      } else if (cast<ConstantInt>(CstVal)->getRawValue() == 1) {
        Ops.pop_back();                      // ... * 1 -> ...
      }
      break;
    case Instruction::Or:
      if (CstVal->isAllOnesValue()) {        // ... | -1 -> -1
        Ops[0].Op = CstVal;
        Ops.erase(Ops.begin()+1, Ops.end());
        ++NumAnnihil;
        return;
      }
      // FALLTHROUGH!
    case Instruction::Add:
    case Instruction::Xor:
      if (CstVal->isNullValue())             // ... [|^+] 0 -> ...
        Ops.pop_back();
      break;
    }
  if (Ops.size() == 1) return;

  // Handle destructive annihilation do to identities between elements in the
  // argument list here.
  switch (Opcode) {
  default: break;
  case Instruction::And:
  case Instruction::Or:
  case Instruction::Xor:
    // Scan the operand lists looking for X and ~X pairs, along with X,X pairs.
    // If we find any, we can simplify the expression. X&~X == 0, X|~X == -1.
    for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
      // First, check for X and ~X in the operand list.
      assert(i < Ops.size());
      if (BinaryOperator::isNot(Ops[i].Op)) {    // Cannot occur for ^.
        Value *X = BinaryOperator::getNotArgument(Ops[i].Op);
        unsigned FoundX = FindInOperandList(Ops, i, X);
        if (FoundX != i) {
          if (Opcode == Instruction::And) {   // ...&X&~X = 0
            Ops[0].Op = Constant::getNullValue(X->getType());
            Ops.erase(Ops.begin()+1, Ops.end());
            ++NumAnnihil;
            return;
          } else if (Opcode == Instruction::Or) {   // ...|X|~X = -1
            Ops[0].Op = ConstantIntegral::getAllOnesValue(X->getType());
            Ops.erase(Ops.begin()+1, Ops.end());
            ++NumAnnihil;
            return;
          }
        }
      }

      // Next, check for duplicate pairs of values, which we assume are next to
      // each other, due to our sorting criteria.
      assert(i < Ops.size());
      if (i+1 != Ops.size() && Ops[i+1].Op == Ops[i].Op) {
        if (Opcode == Instruction::And || Opcode == Instruction::Or) {
          // Drop duplicate values.
          Ops.erase(Ops.begin()+i);
          --i; --e;
          IterateOptimization = true;
          ++NumAnnihil;
        } else {
          assert(Opcode == Instruction::Xor);
          if (e == 2) {
            Ops[0].Op = Constant::getNullValue(Ops[0].Op->getType());
            Ops.erase(Ops.begin()+1, Ops.end());
            ++NumAnnihil;
            return;
          }
          // ... X^X -> ...
          Ops.erase(Ops.begin()+i, Ops.begin()+i+2);
          i -= 1; e -= 2;
          IterateOptimization = true;
          ++NumAnnihil;
        }
      }
    }
    break;

  case Instruction::Add:
    // Scan the operand lists looking for X and -X pairs.  If we find any, we
    // can simplify the expression. X+-X == 0
    for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
      assert(i < Ops.size());
      // Check for X and -X in the operand list.
      if (BinaryOperator::isNeg(Ops[i].Op)) {
        Value *X = BinaryOperator::getNegArgument(Ops[i].Op);
        unsigned FoundX = FindInOperandList(Ops, i, X);
        if (FoundX != i) {
          // Remove X and -X from the operand list.
          if (Ops.size() == 2) {
            Ops[0].Op = Constant::getNullValue(X->getType());
            Ops.pop_back();
            ++NumAnnihil;
            return;
          } else {
            Ops.erase(Ops.begin()+i);
            if (i < FoundX)
              --FoundX;
            else
              --i;   // Need to back up an extra one.
            Ops.erase(Ops.begin()+FoundX);
            IterateOptimization = true;
            ++NumAnnihil;
            --i;     // Revisit element.
            e -= 2;  // Removed two elements.
          }
        }
      }
    }
    break;
  //case Instruction::Mul:
  }

  if (IterateOptimization)
    OptimizeExpression(Opcode, Ops);
}

/// PrintOps - Print out the expression identified in the Ops list.
///
static void PrintOps(unsigned Opcode, const std::vector<ValueEntry> &Ops,
                     BasicBlock *BB) {
  Module *M = BB->getParent()->getParent();
  std::cerr << Instruction::getOpcodeName(Opcode) << " "
            << *Ops[0].Op->getType();
  for (unsigned i = 0, e = Ops.size(); i != e; ++i)
    WriteAsOperand(std::cerr << " ", Ops[i].Op, false, true, M)
      << "," << Ops[i].Rank;
}

/// ReassociateBB - Inspect all of the instructions in this basic block,
/// reassociating them as we go.
void Reassociate::ReassociateBB(BasicBlock *BB) {
  for (BasicBlock::iterator BI = BB->begin(); BI != BB->end(); ++BI) {
    if (BI->getOpcode() == Instruction::Shl &&
        isa<ConstantInt>(BI->getOperand(1)))
      if (Instruction *NI = ConvertShiftToMul(BI)) {
        MadeChange = true;
        BI = NI;
      }

    // Reject cases where it is pointless to do this.
    if (!isa<BinaryOperator>(BI) || BI->getType()->isFloatingPoint())
      continue;  // Floating point ops are not associative.

    // If this is a subtract instruction which is not already in negate form,
    // see if we can convert it to X+-Y.
    if (BI->getOpcode() == Instruction::Sub) {
      if (!BinaryOperator::isNeg(BI)) {
        if (Instruction *NI = BreakUpSubtract(BI)) {
          MadeChange = true;
          BI = NI;
        }
      } else {
        // Otherwise, this is a negation.  See if the operand is a multiply tree
        // and if this is not an inner node of a multiply tree.
        if (isReassociableOp(BI->getOperand(1), Instruction::Mul) &&
            (!BI->hasOneUse() ||
             !isReassociableOp(BI->use_back(), Instruction::Mul))) {
          BI = LowerNegateToMultiply(BI);
          MadeChange = true;
        }
      }
    }

    // If this instruction is a commutative binary operator, process it.
    if (!BI->isAssociative()) continue;
    BinaryOperator *I = cast<BinaryOperator>(BI);

    // If this is an interior node of a reassociable tree, ignore it until we
    // get to the root of the tree, to avoid N^2 analysis.
    if (I->hasOneUse() && isReassociableOp(I->use_back(), I->getOpcode()))
      continue;

    // If this is an add tree that is used by a sub instruction, ignore it 
    // until we process the subtract.
    if (I->hasOneUse() && I->getOpcode() == Instruction::Add &&
        cast<Instruction>(I->use_back())->getOpcode() == Instruction::Sub)
      continue;

    // First, walk the expression tree, linearizing the tree, collecting
    std::vector<ValueEntry> Ops;
    LinearizeExprTree(I, Ops);

    DEBUG(std::cerr << "RAIn:\t"; PrintOps(I->getOpcode(), Ops, BB);
          std::cerr << "\n");

    // Now that we have linearized the tree to a list and have gathered all of
    // the operands and their ranks, sort the operands by their rank.  Use a
    // stable_sort so that values with equal ranks will have their relative
    // positions maintained (and so the compiler is deterministic).  Note that
    // this sorts so that the highest ranking values end up at the beginning of
    // the vector.
    std::stable_sort(Ops.begin(), Ops.end());

    // OptimizeExpression - Now that we have the expression tree in a convenient
    // sorted form, optimize it globally if possible.
    OptimizeExpression(I->getOpcode(), Ops);

    // We want to sink immediates as deeply as possible except in the case where
    // this is a multiply tree used only by an add, and the immediate is a -1.
    // In this case we reassociate to put the negation on the outside so that we
    // can fold the negation into the add: (-X)*Y + Z -> Z-X*Y
    if (I->getOpcode() == Instruction::Mul && I->hasOneUse() &&
        cast<Instruction>(I->use_back())->getOpcode() == Instruction::Add &&
        isa<ConstantInt>(Ops.back().Op) &&
        cast<ConstantInt>(Ops.back().Op)->isAllOnesValue()) {
      Ops.insert(Ops.begin(), Ops.back());
      Ops.pop_back();
    }

    DEBUG(std::cerr << "RAOut:\t"; PrintOps(I->getOpcode(), Ops, BB);
          std::cerr << "\n");

    if (Ops.size() == 1) {
      // This expression tree simplified to something that isn't a tree,
      // eliminate it.
      I->replaceAllUsesWith(Ops[0].Op);
    } else {
      // Now that we ordered and optimized the expressions, splat them back into
      // the expression tree, removing any unneeded nodes.
      RewriteExprTree(I, 0, Ops);
    }
  }
}


bool Reassociate::runOnFunction(Function &F) {
  // Recalculate the rank map for F
  BuildRankMap(F);

  MadeChange = false;
  for (Function::iterator FI = F.begin(), FE = F.end(); FI != FE; ++FI)
    ReassociateBB(FI);

  // We are done with the rank map...
  RankMap.clear();
  ValueRankMap.clear();
  return MadeChange;
}