llvm.org GIT mirror llvm / 66c5fd6 lib / Transforms / Scalar / ADCE.cpp
66c5fd6

Tree @66c5fd6 (Download .tar.gz)

ADCE.cpp @66c5fd6raw · history · blame

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
//===- ADCE.cpp - Code to perform aggressive dead code elimination --------===//
//
//                     The LLVM Compiler Infrastructure
//
// This file was developed by the LLVM research group and is distributed under
// the University of Illinois Open Source License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements "aggressive" dead code elimination.  ADCE is DCe where
// values are assumed to be dead until proven otherwise.  This is similar to
// SCCP, except applied to the liveness of values.
//
//===----------------------------------------------------------------------===//

#include "llvm/Transforms/Scalar.h"
#include "llvm/Constants.h"
#include "llvm/Instructions.h"
#include "llvm/Analysis/AliasAnalysis.h"
#include "llvm/Analysis/PostDominators.h"
#include "llvm/Support/CFG.h"
#include "llvm/Transforms/Utils/BasicBlockUtils.h"
#include "llvm/Transforms/Utils/Local.h"
#include "llvm/Transforms/Utils/UnifyFunctionExitNodes.h"
#include "llvm/Support/Debug.h"
#include "llvm/ADT/DepthFirstIterator.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/ADT/STLExtras.h"
#include <algorithm>
using namespace llvm;

namespace {
  Statistic<> NumBlockRemoved("adce", "Number of basic blocks removed");
  Statistic<> NumInstRemoved ("adce", "Number of instructions removed");
  Statistic<> NumCallRemoved ("adce", "Number of calls and invokes removed");

//===----------------------------------------------------------------------===//
// ADCE Class
//
// This class does all of the work of Aggressive Dead Code Elimination.
// It's public interface consists of a constructor and a doADCE() method.
//
class ADCE : public FunctionPass {
  Function *Func;                       // The function that we are working on
  std::vector<Instruction*> WorkList;   // Instructions that just became live
  std::set<Instruction*>    LiveSet;    // The set of live instructions

  //===--------------------------------------------------------------------===//
  // The public interface for this class
  //
public:
  // Execute the Aggressive Dead Code Elimination Algorithm
  //
  virtual bool runOnFunction(Function &F) {
    Func = &F;
    bool Changed = doADCE();
    assert(WorkList.empty());
    LiveSet.clear();
    return Changed;
  }
  // getAnalysisUsage - We require post dominance frontiers (aka Control
  // Dependence Graph)
  virtual void getAnalysisUsage(AnalysisUsage &AU) const {
    // We require that all function nodes are unified, because otherwise code
    // can be marked live that wouldn't necessarily be otherwise.
    AU.addRequired<UnifyFunctionExitNodes>();
    AU.addRequired<AliasAnalysis>();
    AU.addRequired<PostDominatorTree>();
    AU.addRequired<PostDominanceFrontier>();
  }


  //===--------------------------------------------------------------------===//
  // The implementation of this class
  //
private:
  // doADCE() - Run the Aggressive Dead Code Elimination algorithm, returning
  // true if the function was modified.
  //
  bool doADCE();

  void markBlockAlive(BasicBlock *BB);


  // deleteDeadInstructionsInLiveBlock - Loop over all of the instructions in
  // the specified basic block, deleting ones that are dead according to
  // LiveSet.
  bool deleteDeadInstructionsInLiveBlock(BasicBlock *BB);

  TerminatorInst *convertToUnconditionalBranch(TerminatorInst *TI);

  inline void markInstructionLive(Instruction *I) {
    if (!LiveSet.insert(I).second) return;
    DEBUG(std::cerr << "Insn Live: " << *I);
    WorkList.push_back(I);
  }

  inline void markTerminatorLive(const BasicBlock *BB) {
    DEBUG(std::cerr << "Terminator Live: " << *BB->getTerminator());
    markInstructionLive(const_cast<TerminatorInst*>(BB->getTerminator()));
  }
};

  RegisterOpt<ADCE> X("adce", "Aggressive Dead Code Elimination");
} // End of anonymous namespace

FunctionPass *llvm::createAggressiveDCEPass() { return new ADCE(); }

void ADCE::markBlockAlive(BasicBlock *BB) {
  // Mark the basic block as being newly ALIVE... and mark all branches that
  // this block is control dependent on as being alive also...
  //
  PostDominanceFrontier &CDG = getAnalysis<PostDominanceFrontier>();

  PostDominanceFrontier::const_iterator It = CDG.find(BB);
  if (It != CDG.end()) {
    // Get the blocks that this node is control dependent on...
    const PostDominanceFrontier::DomSetType &CDB = It->second;
    for (PostDominanceFrontier::DomSetType::const_iterator I =
           CDB.begin(), E = CDB.end(); I != E; ++I)
      markTerminatorLive(*I);   // Mark all their terminators as live
  }

  // If this basic block is live, and it ends in an unconditional branch, then
  // the branch is alive as well...
  if (BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator()))
    if (BI->isUnconditional())
      markTerminatorLive(BB);
}

// deleteDeadInstructionsInLiveBlock - Loop over all of the instructions in the
// specified basic block, deleting ones that are dead according to LiveSet.
bool ADCE::deleteDeadInstructionsInLiveBlock(BasicBlock *BB) {
  bool Changed = false;
  for (BasicBlock::iterator II = BB->begin(), E = --BB->end(); II != E; ) {
    Instruction *I = II++;
    if (!LiveSet.count(I)) {              // Is this instruction alive?
      if (!I->use_empty())
        I->replaceAllUsesWith(UndefValue::get(I->getType()));

      // Nope... remove the instruction from it's basic block...
      if (isa<CallInst>(I))
        ++NumCallRemoved;
      else
        ++NumInstRemoved;
      BB->getInstList().erase(I);
      Changed = true;
    }
  }
  return Changed;
}


/// convertToUnconditionalBranch - Transform this conditional terminator
/// instruction into an unconditional branch because we don't care which of the
/// successors it goes to.  This eliminate a use of the condition as well.
///
TerminatorInst *ADCE::convertToUnconditionalBranch(TerminatorInst *TI) {
  BranchInst *NB = new BranchInst(TI->getSuccessor(0), TI);
  BasicBlock *BB = TI->getParent();

  // Remove entries from PHI nodes to avoid confusing ourself later...
  for (unsigned i = 1, e = TI->getNumSuccessors(); i != e; ++i)
    TI->getSuccessor(i)->removePredecessor(BB);

  // Delete the old branch itself...
  BB->getInstList().erase(TI);
  return NB;
}


// doADCE() - Run the Aggressive Dead Code Elimination algorithm, returning
// true if the function was modified.
//
bool ADCE::doADCE() {
  bool MadeChanges = false;

  AliasAnalysis &AA = getAnalysis<AliasAnalysis>();


  // Iterate over all invokes in the function, turning invokes into calls if
  // they cannot throw.
  for (Function::iterator BB = Func->begin(), E = Func->end(); BB != E; ++BB)
    if (InvokeInst *II = dyn_cast<InvokeInst>(BB->getTerminator()))
      if (Function *F = II->getCalledFunction())
        if (AA.onlyReadsMemory(F)) {
          // The function cannot unwind.  Convert it to a call with a branch
          // after it to the normal destination.
          std::vector<Value*> Args(II->op_begin()+3, II->op_end());
          std::string Name = II->getName(); II->setName("");
          CallInst *NewCall = new CallInst(F, Args, Name, II);
          NewCall->setCallingConv(II->getCallingConv());
          II->replaceAllUsesWith(NewCall);
          new BranchInst(II->getNormalDest(), II);

          // Update PHI nodes in the unwind destination
          II->getUnwindDest()->removePredecessor(BB);
          BB->getInstList().erase(II);

          if (NewCall->use_empty()) {
            BB->getInstList().erase(NewCall);
            ++NumCallRemoved;
          }
        }

  // Iterate over all of the instructions in the function, eliminating trivially
  // dead instructions, and marking instructions live that are known to be
  // needed.  Perform the walk in depth first order so that we avoid marking any
  // instructions live in basic blocks that are unreachable.  These blocks will
  // be eliminated later, along with the instructions inside.
  //
  std::set<BasicBlock*> ReachableBBs;
  for (df_ext_iterator<BasicBlock*>
         BBI = df_ext_begin(&Func->front(), ReachableBBs),
         BBE = df_ext_end(&Func->front(), ReachableBBs); BBI != BBE; ++BBI) {
    BasicBlock *BB = *BBI;
    for (BasicBlock::iterator II = BB->begin(), EI = BB->end(); II != EI; ) {
      Instruction *I = II++;
      if (CallInst *CI = dyn_cast<CallInst>(I)) {
        Function *F = CI->getCalledFunction();
        if (F && AA.onlyReadsMemory(F)) {
          if (CI->use_empty()) {
            BB->getInstList().erase(CI);
            ++NumCallRemoved;
          }
        } else {
          markInstructionLive(I);
        }
      } else if (I->mayWriteToMemory() || isa<ReturnInst>(I) ||
                 isa<UnwindInst>(I) || isa<UnreachableInst>(I)) {
        // FIXME: Unreachable instructions should not be marked intrinsically
        // live here.
        markInstructionLive(I);
      } else if (isInstructionTriviallyDead(I)) {
        // Remove the instruction from it's basic block...
        BB->getInstList().erase(I);
        ++NumInstRemoved;
      }
    }
  }

  // Check to ensure we have an exit node for this CFG.  If we don't, we won't
  // have any post-dominance information, thus we cannot perform our
  // transformations safely.
  //
  PostDominatorTree &DT = getAnalysis<PostDominatorTree>();
  if (DT[&Func->getEntryBlock()] == 0) {
    WorkList.clear();
    return MadeChanges;
  }

  // Scan the function marking blocks without post-dominance information as
  // live.  Blocks without post-dominance information occur when there is an
  // infinite loop in the program.  Because the infinite loop could contain a
  // function which unwinds, exits or has side-effects, we don't want to delete
  // the infinite loop or those blocks leading up to it.
  for (Function::iterator I = Func->begin(), E = Func->end(); I != E; ++I)
    if (DT[I] == 0 && ReachableBBs.count(I))
      for (pred_iterator PI = pred_begin(I), E = pred_end(I); PI != E; ++PI)
        markInstructionLive((*PI)->getTerminator());

  DEBUG(std::cerr << "Processing work list\n");

  // AliveBlocks - Set of basic blocks that we know have instructions that are
  // alive in them...
  //
  std::set<BasicBlock*> AliveBlocks;

  // Process the work list of instructions that just became live... if they
  // became live, then that means that all of their operands are necessary as
  // well... make them live as well.
  //
  while (!WorkList.empty()) {
    Instruction *I = WorkList.back(); // Get an instruction that became live...
    WorkList.pop_back();

    BasicBlock *BB = I->getParent();
    if (!ReachableBBs.count(BB)) continue;
    if (AliveBlocks.insert(BB).second)     // Basic block not alive yet.
      markBlockAlive(BB);             // Make it so now!

    // PHI nodes are a special case, because the incoming values are actually
    // defined in the predecessor nodes of this block, meaning that the PHI
    // makes the predecessors alive.
    //
    if (PHINode *PN = dyn_cast<PHINode>(I)) {
      for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
        // If the incoming edge is clearly dead, it won't have control
        // dependence information.  Do not mark it live.
        BasicBlock *PredBB = PN->getIncomingBlock(i);
        if (ReachableBBs.count(PredBB)) {
          // FIXME: This should mark the control dependent edge as live, not
          // necessarily the predecessor itself!
          if (AliveBlocks.insert(PredBB).second)
            markBlockAlive(PN->getIncomingBlock(i));   // Block is newly ALIVE!
          if (Instruction *Op = dyn_cast<Instruction>(PN->getIncomingValue(i)))
            markInstructionLive(Op);
        }
      }
    } else {
      // Loop over all of the operands of the live instruction, making sure that
      // they are known to be alive as well.
      //
      for (unsigned op = 0, End = I->getNumOperands(); op != End; ++op)
        if (Instruction *Operand = dyn_cast<Instruction>(I->getOperand(op)))
          markInstructionLive(Operand);
    }
  }

  DEBUG(
    std::cerr << "Current Function: X = Live\n";
    for (Function::iterator I = Func->begin(), E = Func->end(); I != E; ++I){
      std::cerr << I->getName() << ":\t"
                << (AliveBlocks.count(I) ? "LIVE\n" : "DEAD\n");
      for (BasicBlock::iterator BI = I->begin(), BE = I->end(); BI != BE; ++BI){
        if (LiveSet.count(BI)) std::cerr << "X ";
        std::cerr << *BI;
      }
    });

  // All blocks being live is a common case, handle it specially.
  if (AliveBlocks.size() == Func->size()) {  // No dead blocks?
    for (Function::iterator I = Func->begin(), E = Func->end(); I != E; ++I) {
      // Loop over all of the instructions in the function deleting instructions
      // to drop their references.
      deleteDeadInstructionsInLiveBlock(I);

      // Check to make sure the terminator instruction is live.  If it isn't,
      // this means that the condition that it branches on (we know it is not an
      // unconditional branch), is not needed to make the decision of where to
      // go to, because all outgoing edges go to the same place.  We must remove
      // the use of the condition (because it's probably dead), so we convert
      // the terminator to an unconditional branch.
      //
      TerminatorInst *TI = I->getTerminator();
      if (!LiveSet.count(TI))
        convertToUnconditionalBranch(TI);
    }

    return MadeChanges;
  }


  // If the entry node is dead, insert a new entry node to eliminate the entry
  // node as a special case.
  //
  if (!AliveBlocks.count(&Func->front())) {
    BasicBlock *NewEntry = new BasicBlock();
    new BranchInst(&Func->front(), NewEntry);
    Func->getBasicBlockList().push_front(NewEntry);
    AliveBlocks.insert(NewEntry);    // This block is always alive!
    LiveSet.insert(NewEntry->getTerminator());  // The branch is live
  }

  // Loop over all of the alive blocks in the function.  If any successor
  // blocks are not alive, we adjust the outgoing branches to branch to the
  // first live postdominator of the live block, adjusting any PHI nodes in
  // the block to reflect this.
  //
  for (Function::iterator I = Func->begin(), E = Func->end(); I != E; ++I)
    if (AliveBlocks.count(I)) {
      BasicBlock *BB = I;
      TerminatorInst *TI = BB->getTerminator();

      // If the terminator instruction is alive, but the block it is contained
      // in IS alive, this means that this terminator is a conditional branch on
      // a condition that doesn't matter.  Make it an unconditional branch to
      // ONE of the successors.  This has the side effect of dropping a use of
      // the conditional value, which may also be dead.
      if (!LiveSet.count(TI))
        TI = convertToUnconditionalBranch(TI);

      // Loop over all of the successors, looking for ones that are not alive.
      // We cannot save the number of successors in the terminator instruction
      // here because we may remove them if we don't have a postdominator.
      //
      for (unsigned i = 0; i != TI->getNumSuccessors(); ++i)
        if (!AliveBlocks.count(TI->getSuccessor(i))) {
          // Scan up the postdominator tree, looking for the first
          // postdominator that is alive, and the last postdominator that is
          // dead...
          //
          PostDominatorTree::Node *LastNode = DT[TI->getSuccessor(i)];
          PostDominatorTree::Node *NextNode = 0;

          if (LastNode) {
            NextNode = LastNode->getIDom();
            while (!AliveBlocks.count(NextNode->getBlock())) {
              LastNode = NextNode;
              NextNode = NextNode->getIDom();
              if (NextNode == 0) {
                LastNode = 0;
                break;
              }
            }
          }

          // There is a special case here... if there IS no post-dominator for
          // the block we have nowhere to point our branch to.  Instead, convert
          // it to a return.  This can only happen if the code branched into an
          // infinite loop.  Note that this may not be desirable, because we
          // _are_ altering the behavior of the code.  This is a well known
          // drawback of ADCE, so in the future if we choose to revisit the
          // decision, this is where it should be.
          //
          if (LastNode == 0) {        // No postdominator!
            if (!isa<InvokeInst>(TI)) {
              // Call RemoveSuccessor to transmogrify the terminator instruction
              // to not contain the outgoing branch, or to create a new
              // terminator if the form fundamentally changes (i.e.,
              // unconditional branch to return).  Note that this will change a
              // branch into an infinite loop into a return instruction!
              //
              RemoveSuccessor(TI, i);

              // RemoveSuccessor may replace TI... make sure we have a fresh
              // pointer.
              //
              TI = BB->getTerminator();

              // Rescan this successor...
              --i;
            } else {

            }
          } else {
            // Get the basic blocks that we need...
            BasicBlock *LastDead = LastNode->getBlock();
            BasicBlock *NextAlive = NextNode->getBlock();

            // Make the conditional branch now go to the next alive block...
            TI->getSuccessor(i)->removePredecessor(BB);
            TI->setSuccessor(i, NextAlive);

            // If there are PHI nodes in NextAlive, we need to add entries to
            // the PHI nodes for the new incoming edge.  The incoming values
            // should be identical to the incoming values for LastDead.
            //
            for (BasicBlock::iterator II = NextAlive->begin();
                 isa<PHINode>(II); ++II) {
              PHINode *PN = cast<PHINode>(II);
              if (LiveSet.count(PN)) {  // Only modify live phi nodes
                // Get the incoming value for LastDead...
                int OldIdx = PN->getBasicBlockIndex(LastDead);
                assert(OldIdx != -1 &&"LastDead is not a pred of NextAlive!");
                Value *InVal = PN->getIncomingValue(OldIdx);

                // Add an incoming value for BB now...
                PN->addIncoming(InVal, BB);
              }
            }
          }
        }

      // Now loop over all of the instructions in the basic block, deleting
      // dead instructions.  This is so that the next sweep over the program
      // can safely delete dead instructions without other dead instructions
      // still referring to them.
      //
      deleteDeadInstructionsInLiveBlock(BB);
    }

  // Loop over all of the basic blocks in the function, dropping references of
  // the dead basic blocks.  We must do this after the previous step to avoid
  // dropping references to PHIs which still have entries...
  //
  std::vector<BasicBlock*> DeadBlocks;
  for (Function::iterator BB = Func->begin(), E = Func->end(); BB != E; ++BB)
    if (!AliveBlocks.count(BB)) {
      // Remove PHI node entries for this block in live successor blocks.
      for (succ_iterator SI = succ_begin(BB), E = succ_end(BB); SI != E; ++SI)
        if (!SI->empty() && isa<PHINode>(SI->front()) && AliveBlocks.count(*SI))
          (*SI)->removePredecessor(BB);

      BB->dropAllReferences();
      MadeChanges = true;
      DeadBlocks.push_back(BB);
    }

  NumBlockRemoved += DeadBlocks.size();

  // Now loop through all of the blocks and delete the dead ones.  We can safely
  // do this now because we know that there are no references to dead blocks
  // (because they have dropped all of their references).
  for (std::vector<BasicBlock*>::iterator I = DeadBlocks.begin(),
         E = DeadBlocks.end(); I != E; ++I)
    Func->getBasicBlockList().erase(*I);

  return MadeChanges;
}