llvm.org GIT mirror llvm / 66c5fd6 lib / Transforms / IPO / SimplifyLibCalls.cpp
66c5fd6

Tree @66c5fd6 (Download .tar.gz)

SimplifyLibCalls.cpp @66c5fd6raw · history · blame

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
//===- SimplifyLibCalls.cpp - Optimize specific well-known library calls --===//
//
//                     The LLVM Compiler Infrastructure
//
// This file was developed by Reid Spencer and is distributed under the
// University of Illinois Open Source License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements a module pass that applies a variety of small
// optimizations for calls to specific well-known function calls (e.g. runtime
// library functions). For example, a call to the function "exit(3)" that
// occurs within the main() function can be transformed into a simple "return 3"
// instruction. Any optimization that takes this form (replace call to library
// function with simpler code that provides the same result) belongs in this
// file.
//
//===----------------------------------------------------------------------===//

#define DEBUG_TYPE "simplify-libcalls"
#include "llvm/Constants.h"
#include "llvm/DerivedTypes.h"
#include "llvm/Instructions.h"
#include "llvm/Module.h"
#include "llvm/Pass.h"
#include "llvm/ADT/hash_map"
#include "llvm/ADT/Statistic.h"
#include "llvm/Support/Debug.h"
#include "llvm/Target/TargetData.h"
#include "llvm/Transforms/IPO.h"
#include <iostream>
using namespace llvm;

namespace {

/// This statistic keeps track of the total number of library calls that have
/// been simplified regardless of which call it is.
Statistic<> SimplifiedLibCalls("simplify-libcalls",
  "Number of library calls simplified");

// Forward declarations
class LibCallOptimization;
class SimplifyLibCalls;

/// This hash map is populated by the constructor for LibCallOptimization class.
/// Therefore all subclasses are registered here at static initialization time
/// and this list is what the SimplifyLibCalls pass uses to apply the individual
/// optimizations to the call sites.
/// @brief The list of optimizations deriving from LibCallOptimization
static hash_map<std::string,LibCallOptimization*> optlist;

/// This class is the abstract base class for the set of optimizations that
/// corresponds to one library call. The SimplifyLibCalls pass will call the
/// ValidateCalledFunction method to ask the optimization if a given Function
/// is the kind that the optimization can handle. If the subclass returns true,
/// then SImplifyLibCalls will also call the OptimizeCall method to perform,
/// or attempt to perform, the optimization(s) for the library call. Otherwise,
/// OptimizeCall won't be called. Subclasses are responsible for providing the
/// name of the library call (strlen, strcpy, etc.) to the LibCallOptimization
/// constructor. This is used to efficiently select which call instructions to
/// optimize. The criteria for a "lib call" is "anything with well known
/// semantics", typically a library function that is defined by an international
/// standard. Because the semantics are well known, the optimizations can
/// generally short-circuit actually calling the function if there's a simpler
/// way (e.g. strlen(X) can be reduced to a constant if X is a constant global).
/// @brief Base class for library call optimizations
class LibCallOptimization
{
public:
  /// The \p fname argument must be the name of the library function being
  /// optimized by the subclass.
  /// @brief Constructor that registers the optimization.
  LibCallOptimization(const char* fname, const char* description )
    : func_name(fname)
#ifndef NDEBUG
    , occurrences("simplify-libcalls",description)
#endif
  {
    // Register this call optimizer in the optlist (a hash_map)
    optlist[fname] = this;
  }

  /// @brief Deregister from the optlist
  virtual ~LibCallOptimization() { optlist.erase(func_name); }

  /// The implementation of this function in subclasses should determine if
  /// \p F is suitable for the optimization. This method is called by
  /// SimplifyLibCalls::runOnModule to short circuit visiting all the call
  /// sites of such a function if that function is not suitable in the first
  /// place.  If the called function is suitabe, this method should return true;
  /// false, otherwise. This function should also perform any lazy
  /// initialization that the LibCallOptimization needs to do, if its to return
  /// true. This avoids doing initialization until the optimizer is actually
  /// going to be called upon to do some optimization.
  /// @brief Determine if the function is suitable for optimization
  virtual bool ValidateCalledFunction(
    const Function* F,    ///< The function that is the target of call sites
    SimplifyLibCalls& SLC ///< The pass object invoking us
  ) = 0;

  /// The implementations of this function in subclasses is the heart of the
  /// SimplifyLibCalls algorithm. Sublcasses of this class implement
  /// OptimizeCall to determine if (a) the conditions are right for optimizing
  /// the call and (b) to perform the optimization. If an action is taken
  /// against ci, the subclass is responsible for returning true and ensuring
  /// that ci is erased from its parent.
  /// @brief Optimize a call, if possible.
  virtual bool OptimizeCall(
    CallInst* ci,          ///< The call instruction that should be optimized.
    SimplifyLibCalls& SLC  ///< The pass object invoking us
  ) = 0;

  /// @brief Get the name of the library call being optimized
  const char * getFunctionName() const { return func_name; }

#ifndef NDEBUG
  /// @brief Called by SimplifyLibCalls to update the occurrences statistic.
  void succeeded() { DEBUG(++occurrences); }
#endif

private:
  const char* func_name; ///< Name of the library call we optimize
#ifndef NDEBUG
  Statistic<> occurrences; ///< debug statistic (-debug-only=simplify-libcalls)
#endif
};

/// This class is an LLVM Pass that applies each of the LibCallOptimization
/// instances to all the call sites in a module, relatively efficiently. The
/// purpose of this pass is to provide optimizations for calls to well-known
/// functions with well-known semantics, such as those in the c library. The
/// class provides the basic infrastructure for handling runOnModule.  Whenever
/// this pass finds a function call, it asks the appropriate optimizer to
/// validate the call (ValidateLibraryCall). If it is validated, then
/// the OptimizeCall method is also called.
/// @brief A ModulePass for optimizing well-known function calls.
class SimplifyLibCalls : public ModulePass
{
public:
  /// We need some target data for accurate signature details that are
  /// target dependent. So we require target data in our AnalysisUsage.
  /// @brief Require TargetData from AnalysisUsage.
  virtual void getAnalysisUsage(AnalysisUsage& Info) const
  {
    // Ask that the TargetData analysis be performed before us so we can use
    // the target data.
    Info.addRequired<TargetData>();
  }

  /// For this pass, process all of the function calls in the module, calling
  /// ValidateLibraryCall and OptimizeCall as appropriate.
  /// @brief Run all the lib call optimizations on a Module.
  virtual bool runOnModule(Module &M)
  {
    reset(M);

    bool result = false;

    // The call optimizations can be recursive. That is, the optimization might
    // generate a call to another function which can also be optimized. This way
    // we make the LibCallOptimization instances very specific to the case they
    // handle. It also means we need to keep running over the function calls in
    // the module until we don't get any more optimizations possible.
    bool found_optimization = false;
    do
    {
      found_optimization = false;
      for (Module::iterator FI = M.begin(), FE = M.end(); FI != FE; ++FI)
      {
        // All the "well-known" functions are external and have external linkage
        // because they live in a runtime library somewhere and were (probably)
        // not compiled by LLVM.  So, we only act on external functions that
        // have external linkage and non-empty uses.
        if (!FI->isExternal() || !FI->hasExternalLinkage() || FI->use_empty())
          continue;

        // Get the optimization class that pertains to this function
        LibCallOptimization* CO = optlist[FI->getName().c_str()];
        if (!CO)
          continue;

        // Make sure the called function is suitable for the optimization
        if (!CO->ValidateCalledFunction(FI,*this))
          continue;

        // Loop over each of the uses of the function
        for (Value::use_iterator UI = FI->use_begin(), UE = FI->use_end();
             UI != UE ; )
        {
          // If the use of the function is a call instruction
          if (CallInst* CI = dyn_cast<CallInst>(*UI++))
          {
            // Do the optimization on the LibCallOptimization.
            if (CO->OptimizeCall(CI,*this))
            {
              ++SimplifiedLibCalls;
              found_optimization = result = true;
#ifndef NDEBUG
              CO->succeeded();
#endif
            }
          }
        }
      }
    } while (found_optimization);
    return result;
  }

  /// @brief Return the *current* module we're working on.
  Module* getModule() const { return M; }

  /// @brief Return the *current* target data for the module we're working on.
  TargetData* getTargetData() const { return TD; }

  /// @brief Return the size_t type -- syntactic shortcut
  const Type* getIntPtrType() const { return TD->getIntPtrType(); }

  /// @brief Return a Function* for the fputc libcall
  Function* get_fputc(const Type* FILEptr_type)
  {
    if (!fputc_func)
    {
      std::vector<const Type*> args;
      args.push_back(Type::IntTy);
      args.push_back(FILEptr_type);
      FunctionType* fputc_type =
        FunctionType::get(Type::IntTy, args, false);
      fputc_func = M->getOrInsertFunction("fputc",fputc_type);
    }
    return fputc_func;
  }

  /// @brief Return a Function* for the fwrite libcall
  Function* get_fwrite(const Type* FILEptr_type)
  {
    if (!fwrite_func)
    {
      std::vector<const Type*> args;
      args.push_back(PointerType::get(Type::SByteTy));
      args.push_back(TD->getIntPtrType());
      args.push_back(TD->getIntPtrType());
      args.push_back(FILEptr_type);
      FunctionType* fwrite_type =
        FunctionType::get(TD->getIntPtrType(), args, false);
      fwrite_func = M->getOrInsertFunction("fwrite",fwrite_type);
    }
    return fwrite_func;
  }

  /// @brief Return a Function* for the sqrt libcall
  Function* get_sqrt()
  {
    if (!sqrt_func)
    {
      std::vector<const Type*> args;
      args.push_back(Type::DoubleTy);
      FunctionType* sqrt_type =
        FunctionType::get(Type::DoubleTy, args, false);
      sqrt_func = M->getOrInsertFunction("sqrt",sqrt_type);
    }
    return sqrt_func;
  }

  /// @brief Return a Function* for the strlen libcall
  Function* get_strcpy()
  {
    if (!strcpy_func)
    {
      std::vector<const Type*> args;
      args.push_back(PointerType::get(Type::SByteTy));
      args.push_back(PointerType::get(Type::SByteTy));
      FunctionType* strcpy_type =
        FunctionType::get(PointerType::get(Type::SByteTy), args, false);
      strcpy_func = M->getOrInsertFunction("strcpy",strcpy_type);
    }
    return strcpy_func;
  }

  /// @brief Return a Function* for the strlen libcall
  Function* get_strlen()
  {
    if (!strlen_func)
    {
      std::vector<const Type*> args;
      args.push_back(PointerType::get(Type::SByteTy));
      FunctionType* strlen_type =
        FunctionType::get(TD->getIntPtrType(), args, false);
      strlen_func = M->getOrInsertFunction("strlen",strlen_type);
    }
    return strlen_func;
  }

  /// @brief Return a Function* for the memchr libcall
  Function* get_memchr()
  {
    if (!memchr_func)
    {
      std::vector<const Type*> args;
      args.push_back(PointerType::get(Type::SByteTy));
      args.push_back(Type::IntTy);
      args.push_back(TD->getIntPtrType());
      FunctionType* memchr_type = FunctionType::get(
          PointerType::get(Type::SByteTy), args, false);
      memchr_func = M->getOrInsertFunction("memchr",memchr_type);
    }
    return memchr_func;
  }

  /// @brief Return a Function* for the memcpy libcall
  Function* get_memcpy() {
    if (!memcpy_func) {
      const Type *SBP = PointerType::get(Type::SByteTy);
      memcpy_func = M->getOrInsertFunction("llvm.memcpy", Type::VoidTy,SBP, SBP,
                                           Type::UIntTy, Type::UIntTy,
                                           (Type *)0);
    }
    return memcpy_func;
  }

  Function* get_floorf() {
    if (!floorf_func)
      floorf_func = M->getOrInsertFunction("floorf", Type::FloatTy,
                                           Type::FloatTy, (Type *)0);
    return floorf_func;
  }
  
private:
  /// @brief Reset our cached data for a new Module
  void reset(Module& mod)
  {
    M = &mod;
    TD = &getAnalysis<TargetData>();
    fputc_func = 0;
    fwrite_func = 0;
    memcpy_func = 0;
    memchr_func = 0;
    sqrt_func   = 0;
    strcpy_func = 0;
    strlen_func = 0;
    floorf_func = 0;
  }

private:
  Function* fputc_func;  ///< Cached fputc function
  Function* fwrite_func; ///< Cached fwrite function
  Function* memcpy_func; ///< Cached llvm.memcpy function
  Function* memchr_func; ///< Cached memchr function
  Function* sqrt_func;   ///< Cached sqrt function
  Function* strcpy_func; ///< Cached strcpy function
  Function* strlen_func; ///< Cached strlen function
  Function* floorf_func; ///< Cached floorf function
  Module* M;             ///< Cached Module
  TargetData* TD;        ///< Cached TargetData
};

// Register the pass
RegisterOpt<SimplifyLibCalls>
X("simplify-libcalls","Simplify well-known library calls");

} // anonymous namespace

// The only public symbol in this file which just instantiates the pass object
ModulePass *llvm::createSimplifyLibCallsPass()
{
  return new SimplifyLibCalls();
}

// Classes below here, in the anonymous namespace, are all subclasses of the
// LibCallOptimization class, each implementing all optimizations possible for a
// single well-known library call. Each has a static singleton instance that
// auto registers it into the "optlist" global above.
namespace {

// Forward declare utility functions.
bool getConstantStringLength(Value* V, uint64_t& len, ConstantArray** A = 0 );
Value *CastToCStr(Value *V, Instruction &IP);

/// This LibCallOptimization will find instances of a call to "exit" that occurs
/// within the "main" function and change it to a simple "ret" instruction with
/// the same value passed to the exit function. When this is done, it splits the
/// basic block at the exit(3) call and deletes the call instruction.
/// @brief Replace calls to exit in main with a simple return
struct ExitInMainOptimization : public LibCallOptimization
{
  ExitInMainOptimization() : LibCallOptimization("exit",
      "Number of 'exit' calls simplified") {}

  // Make sure the called function looks like exit (int argument, int return
  // type, external linkage, not varargs).
  virtual bool ValidateCalledFunction(const Function* f, SimplifyLibCalls& SLC)
  {
    if (f->arg_size() >= 1)
      if (f->arg_begin()->getType()->isInteger())
        return true;
    return false;
  }

  virtual bool OptimizeCall(CallInst* ci, SimplifyLibCalls& SLC)
  {
    // To be careful, we check that the call to exit is coming from "main", that
    // main has external linkage, and the return type of main and the argument
    // to exit have the same type.
    Function *from = ci->getParent()->getParent();
    if (from->hasExternalLinkage())
      if (from->getReturnType() == ci->getOperand(1)->getType())
        if (from->getName() == "main")
        {
          // Okay, time to actually do the optimization. First, get the basic
          // block of the call instruction
          BasicBlock* bb = ci->getParent();

          // Create a return instruction that we'll replace the call with.
          // Note that the argument of the return is the argument of the call
          // instruction.
          ReturnInst* ri = new ReturnInst(ci->getOperand(1), ci);

          // Split the block at the call instruction which places it in a new
          // basic block.
          bb->splitBasicBlock(ci);

          // The block split caused a branch instruction to be inserted into
          // the end of the original block, right after the return instruction
          // that we put there. That's not a valid block, so delete the branch
          // instruction.
          bb->getInstList().pop_back();

          // Now we can finally get rid of the call instruction which now lives
          // in the new basic block.
          ci->eraseFromParent();

          // Optimization succeeded, return true.
          return true;
        }
    // We didn't pass the criteria for this optimization so return false
    return false;
  }
} ExitInMainOptimizer;

/// This LibCallOptimization will simplify a call to the strcat library
/// function. The simplification is possible only if the string being
/// concatenated is a constant array or a constant expression that results in
/// a constant string. In this case we can replace it with strlen + llvm.memcpy
/// of the constant string. Both of these calls are further reduced, if possible
/// on subsequent passes.
/// @brief Simplify the strcat library function.
struct StrCatOptimization : public LibCallOptimization
{
public:
  /// @brief Default constructor
  StrCatOptimization() : LibCallOptimization("strcat",
      "Number of 'strcat' calls simplified") {}

public:

  /// @brief Make sure that the "strcat" function has the right prototype
  virtual bool ValidateCalledFunction(const Function* f, SimplifyLibCalls& SLC)
  {
    if (f->getReturnType() == PointerType::get(Type::SByteTy))
      if (f->arg_size() == 2)
      {
        Function::const_arg_iterator AI = f->arg_begin();
        if (AI++->getType() == PointerType::get(Type::SByteTy))
          if (AI->getType() == PointerType::get(Type::SByteTy))
          {
            // Indicate this is a suitable call type.
            return true;
          }
      }
    return false;
  }

  /// @brief Optimize the strcat library function
  virtual bool OptimizeCall(CallInst* ci, SimplifyLibCalls& SLC)
  {
    // Extract some information from the instruction
    Module* M = ci->getParent()->getParent()->getParent();
    Value* dest = ci->getOperand(1);
    Value* src  = ci->getOperand(2);

    // Extract the initializer (while making numerous checks) from the
    // source operand of the call to strcat. If we get null back, one of
    // a variety of checks in get_GVInitializer failed
    uint64_t len = 0;
    if (!getConstantStringLength(src,len))
      return false;

    // Handle the simple, do-nothing case
    if (len == 0)
    {
      ci->replaceAllUsesWith(dest);
      ci->eraseFromParent();
      return true;
    }

    // Increment the length because we actually want to memcpy the null
    // terminator as well.
    len++;

    // We need to find the end of the destination string.  That's where the
    // memory is to be moved to. We just generate a call to strlen (further
    // optimized in another pass).  Note that the SLC.get_strlen() call
    // caches the Function* for us.
    CallInst* strlen_inst =
      new CallInst(SLC.get_strlen(), dest, dest->getName()+".len",ci);

    // Now that we have the destination's length, we must index into the
    // destination's pointer to get the actual memcpy destination (end of
    // the string .. we're concatenating).
    std::vector<Value*> idx;
    idx.push_back(strlen_inst);
    GetElementPtrInst* gep =
      new GetElementPtrInst(dest,idx,dest->getName()+".indexed",ci);

    // We have enough information to now generate the memcpy call to
    // do the concatenation for us.
    std::vector<Value*> vals;
    vals.push_back(gep); // destination
    vals.push_back(ci->getOperand(2)); // source
    vals.push_back(ConstantUInt::get(Type::UIntTy,len)); // length
    vals.push_back(ConstantUInt::get(Type::UIntTy,1)); // alignment
    new CallInst(SLC.get_memcpy(), vals, "", ci);

    // Finally, substitute the first operand of the strcat call for the
    // strcat call itself since strcat returns its first operand; and,
    // kill the strcat CallInst.
    ci->replaceAllUsesWith(dest);
    ci->eraseFromParent();
    return true;
  }
} StrCatOptimizer;

/// This LibCallOptimization will simplify a call to the strchr library
/// function.  It optimizes out cases where the arguments are both constant
/// and the result can be determined statically.
/// @brief Simplify the strcmp library function.
struct StrChrOptimization : public LibCallOptimization
{
public:
  StrChrOptimization() : LibCallOptimization("strchr",
      "Number of 'strchr' calls simplified") {}

  /// @brief Make sure that the "strchr" function has the right prototype
  virtual bool ValidateCalledFunction(const Function* f, SimplifyLibCalls& SLC)
  {
    if (f->getReturnType() == PointerType::get(Type::SByteTy) &&
        f->arg_size() == 2)
      return true;
    return false;
  }

  /// @brief Perform the strchr optimizations
  virtual bool OptimizeCall(CallInst* ci, SimplifyLibCalls& SLC)
  {
    // If there aren't three operands, bail
    if (ci->getNumOperands() != 3)
      return false;

    // Check that the first argument to strchr is a constant array of sbyte.
    // If it is, get the length and data, otherwise return false.
    uint64_t len = 0;
    ConstantArray* CA;
    if (!getConstantStringLength(ci->getOperand(1),len,&CA))
      return false;

    // Check that the second argument to strchr is a constant int, return false
    // if it isn't
    ConstantSInt* CSI = dyn_cast<ConstantSInt>(ci->getOperand(2));
    if (!CSI)
    {
      // Just lower this to memchr since we know the length of the string as
      // it is constant.
      Function* f = SLC.get_memchr();
      std::vector<Value*> args;
      args.push_back(ci->getOperand(1));
      args.push_back(ci->getOperand(2));
      args.push_back(ConstantUInt::get(SLC.getIntPtrType(),len));
      ci->replaceAllUsesWith( new CallInst(f,args,ci->getName(),ci));
      ci->eraseFromParent();
      return true;
    }

    // Get the character we're looking for
    int64_t chr = CSI->getValue();

    // Compute the offset
    uint64_t offset = 0;
    bool char_found = false;
    for (uint64_t i = 0; i < len; ++i)
    {
      if (ConstantSInt* CI = dyn_cast<ConstantSInt>(CA->getOperand(i)))
      {
        // Check for the null terminator
        if (CI->isNullValue())
          break; // we found end of string
        else if (CI->getValue() == chr)
        {
          char_found = true;
          offset = i;
          break;
        }
      }
    }

    // strchr(s,c)  -> offset_of_in(c,s)
    //    (if c is a constant integer and s is a constant string)
    if (char_found)
    {
      std::vector<Value*> indices;
      indices.push_back(ConstantUInt::get(Type::ULongTy,offset));
      GetElementPtrInst* GEP = new GetElementPtrInst(ci->getOperand(1),indices,
          ci->getOperand(1)->getName()+".strchr",ci);
      ci->replaceAllUsesWith(GEP);
    }
    else
      ci->replaceAllUsesWith(
          ConstantPointerNull::get(PointerType::get(Type::SByteTy)));

    ci->eraseFromParent();
    return true;
  }
} StrChrOptimizer;

/// This LibCallOptimization will simplify a call to the strcmp library
/// function.  It optimizes out cases where one or both arguments are constant
/// and the result can be determined statically.
/// @brief Simplify the strcmp library function.
struct StrCmpOptimization : public LibCallOptimization
{
public:
  StrCmpOptimization() : LibCallOptimization("strcmp",
      "Number of 'strcmp' calls simplified") {}

  /// @brief Make sure that the "strcmp" function has the right prototype
  virtual bool ValidateCalledFunction(const Function* f, SimplifyLibCalls& SLC)
  {
    if (f->getReturnType() == Type::IntTy && f->arg_size() == 2)
      return true;
    return false;
  }

  /// @brief Perform the strcmp optimization
  virtual bool OptimizeCall(CallInst* ci, SimplifyLibCalls& SLC)
  {
    // First, check to see if src and destination are the same. If they are,
    // then the optimization is to replace the CallInst with a constant 0
    // because the call is a no-op.
    Value* s1 = ci->getOperand(1);
    Value* s2 = ci->getOperand(2);
    if (s1 == s2)
    {
      // strcmp(x,x)  -> 0
      ci->replaceAllUsesWith(ConstantInt::get(Type::IntTy,0));
      ci->eraseFromParent();
      return true;
    }

    bool isstr_1 = false;
    uint64_t len_1 = 0;
    ConstantArray* A1;
    if (getConstantStringLength(s1,len_1,&A1))
    {
      isstr_1 = true;
      if (len_1 == 0)
      {
        // strcmp("",x) -> *x
        LoadInst* load =
          new LoadInst(CastToCStr(s2,*ci), ci->getName()+".load",ci);
        CastInst* cast =
          new CastInst(load,Type::IntTy,ci->getName()+".int",ci);
        ci->replaceAllUsesWith(cast);
        ci->eraseFromParent();
        return true;
      }
    }

    bool isstr_2 = false;
    uint64_t len_2 = 0;
    ConstantArray* A2;
    if (getConstantStringLength(s2,len_2,&A2))
    {
      isstr_2 = true;
      if (len_2 == 0)
      {
        // strcmp(x,"") -> *x
        LoadInst* load =
          new LoadInst(CastToCStr(s1,*ci),ci->getName()+".val",ci);
        CastInst* cast =
          new CastInst(load,Type::IntTy,ci->getName()+".int",ci);
        ci->replaceAllUsesWith(cast);
        ci->eraseFromParent();
        return true;
      }
    }

    if (isstr_1 && isstr_2)
    {
      // strcmp(x,y)  -> cnst  (if both x and y are constant strings)
      std::string str1 = A1->getAsString();
      std::string str2 = A2->getAsString();
      int result = strcmp(str1.c_str(), str2.c_str());
      ci->replaceAllUsesWith(ConstantSInt::get(Type::IntTy,result));
      ci->eraseFromParent();
      return true;
    }
    return false;
  }
} StrCmpOptimizer;

/// This LibCallOptimization will simplify a call to the strncmp library
/// function.  It optimizes out cases where one or both arguments are constant
/// and the result can be determined statically.
/// @brief Simplify the strncmp library function.
struct StrNCmpOptimization : public LibCallOptimization
{
public:
  StrNCmpOptimization() : LibCallOptimization("strncmp",
      "Number of 'strncmp' calls simplified") {}

  /// @brief Make sure that the "strncmp" function has the right prototype
  virtual bool ValidateCalledFunction(const Function* f, SimplifyLibCalls& SLC)
  {
    if (f->getReturnType() == Type::IntTy && f->arg_size() == 3)
      return true;
    return false;
  }

  /// @brief Perform the strncpy optimization
  virtual bool OptimizeCall(CallInst* ci, SimplifyLibCalls& SLC)
  {
    // First, check to see if src and destination are the same. If they are,
    // then the optimization is to replace the CallInst with a constant 0
    // because the call is a no-op.
    Value* s1 = ci->getOperand(1);
    Value* s2 = ci->getOperand(2);
    if (s1 == s2)
    {
      // strncmp(x,x,l)  -> 0
      ci->replaceAllUsesWith(ConstantInt::get(Type::IntTy,0));
      ci->eraseFromParent();
      return true;
    }

    // Check the length argument, if it is Constant zero then the strings are
    // considered equal.
    uint64_t len_arg = 0;
    bool len_arg_is_const = false;
    if (ConstantInt* len_CI = dyn_cast<ConstantInt>(ci->getOperand(3)))
    {
      len_arg_is_const = true;
      len_arg = len_CI->getRawValue();
      if (len_arg == 0)
      {
        // strncmp(x,y,0)   -> 0
        ci->replaceAllUsesWith(ConstantInt::get(Type::IntTy,0));
        ci->eraseFromParent();
        return true;
      }
    }

    bool isstr_1 = false;
    uint64_t len_1 = 0;
    ConstantArray* A1;
    if (getConstantStringLength(s1,len_1,&A1))
    {
      isstr_1 = true;
      if (len_1 == 0)
      {
        // strncmp("",x) -> *x
        LoadInst* load = new LoadInst(s1,ci->getName()+".load",ci);
        CastInst* cast =
          new CastInst(load,Type::IntTy,ci->getName()+".int",ci);
        ci->replaceAllUsesWith(cast);
        ci->eraseFromParent();
        return true;
      }
    }

    bool isstr_2 = false;
    uint64_t len_2 = 0;
    ConstantArray* A2;
    if (getConstantStringLength(s2,len_2,&A2))
    {
      isstr_2 = true;
      if (len_2 == 0)
      {
        // strncmp(x,"") -> *x
        LoadInst* load = new LoadInst(s2,ci->getName()+".val",ci);
        CastInst* cast =
          new CastInst(load,Type::IntTy,ci->getName()+".int",ci);
        ci->replaceAllUsesWith(cast);
        ci->eraseFromParent();
        return true;
      }
    }

    if (isstr_1 && isstr_2 && len_arg_is_const)
    {
      // strncmp(x,y,const) -> constant
      std::string str1 = A1->getAsString();
      std::string str2 = A2->getAsString();
      int result = strncmp(str1.c_str(), str2.c_str(), len_arg);
      ci->replaceAllUsesWith(ConstantSInt::get(Type::IntTy,result));
      ci->eraseFromParent();
      return true;
    }
    return false;
  }
} StrNCmpOptimizer;

/// This LibCallOptimization will simplify a call to the strcpy library
/// function.  Two optimizations are possible:
/// (1) If src and dest are the same and not volatile, just return dest
/// (2) If the src is a constant then we can convert to llvm.memmove
/// @brief Simplify the strcpy library function.
struct StrCpyOptimization : public LibCallOptimization
{
public:
  StrCpyOptimization() : LibCallOptimization("strcpy",
      "Number of 'strcpy' calls simplified") {}

  /// @brief Make sure that the "strcpy" function has the right prototype
  virtual bool ValidateCalledFunction(const Function* f, SimplifyLibCalls& SLC)
  {
    if (f->getReturnType() == PointerType::get(Type::SByteTy))
      if (f->arg_size() == 2)
      {
        Function::const_arg_iterator AI = f->arg_begin();
        if (AI++->getType() == PointerType::get(Type::SByteTy))
          if (AI->getType() == PointerType::get(Type::SByteTy))
          {
            // Indicate this is a suitable call type.
            return true;
          }
      }
    return false;
  }

  /// @brief Perform the strcpy optimization
  virtual bool OptimizeCall(CallInst* ci, SimplifyLibCalls& SLC)
  {
    // First, check to see if src and destination are the same. If they are,
    // then the optimization is to replace the CallInst with the destination
    // because the call is a no-op. Note that this corresponds to the
    // degenerate strcpy(X,X) case which should have "undefined" results
    // according to the C specification. However, it occurs sometimes and
    // we optimize it as a no-op.
    Value* dest = ci->getOperand(1);
    Value* src = ci->getOperand(2);
    if (dest == src)
    {
      ci->replaceAllUsesWith(dest);
      ci->eraseFromParent();
      return true;
    }

    // Get the length of the constant string referenced by the second operand,
    // the "src" parameter. Fail the optimization if we can't get the length
    // (note that getConstantStringLength does lots of checks to make sure this
    // is valid).
    uint64_t len = 0;
    if (!getConstantStringLength(ci->getOperand(2),len))
      return false;

    // If the constant string's length is zero we can optimize this by just
    // doing a store of 0 at the first byte of the destination
    if (len == 0)
    {
      new StoreInst(ConstantInt::get(Type::SByteTy,0),ci->getOperand(1),ci);
      ci->replaceAllUsesWith(dest);
      ci->eraseFromParent();
      return true;
    }

    // Increment the length because we actually want to memcpy the null
    // terminator as well.
    len++;

    // Extract some information from the instruction
    Module* M = ci->getParent()->getParent()->getParent();

    // We have enough information to now generate the memcpy call to
    // do the concatenation for us.
    std::vector<Value*> vals;
    vals.push_back(dest); // destination
    vals.push_back(src); // source
    vals.push_back(ConstantUInt::get(Type::UIntTy,len)); // length
    vals.push_back(ConstantUInt::get(Type::UIntTy,1)); // alignment
    new CallInst(SLC.get_memcpy(), vals, "", ci);

    // Finally, substitute the first operand of the strcat call for the
    // strcat call itself since strcat returns its first operand; and,
    // kill the strcat CallInst.
    ci->replaceAllUsesWith(dest);
    ci->eraseFromParent();
    return true;
  }
} StrCpyOptimizer;

/// This LibCallOptimization will simplify a call to the strlen library
/// function by replacing it with a constant value if the string provided to
/// it is a constant array.
/// @brief Simplify the strlen library function.
struct StrLenOptimization : public LibCallOptimization
{
  StrLenOptimization() : LibCallOptimization("strlen",
      "Number of 'strlen' calls simplified") {}

  /// @brief Make sure that the "strlen" function has the right prototype
  virtual bool ValidateCalledFunction(const Function* f, SimplifyLibCalls& SLC)
  {
    if (f->getReturnType() == SLC.getTargetData()->getIntPtrType())
      if (f->arg_size() == 1)
        if (Function::const_arg_iterator AI = f->arg_begin())
          if (AI->getType() == PointerType::get(Type::SByteTy))
            return true;
    return false;
  }

  /// @brief Perform the strlen optimization
  virtual bool OptimizeCall(CallInst* ci, SimplifyLibCalls& SLC)
  {
    // Make sure we're dealing with an sbyte* here.
    Value* str = ci->getOperand(1);
    if (str->getType() != PointerType::get(Type::SByteTy))
      return false;

    // Does the call to strlen have exactly one use?
    if (ci->hasOneUse())
      // Is that single use a binary operator?
      if (BinaryOperator* bop = dyn_cast<BinaryOperator>(ci->use_back()))
        // Is it compared against a constant integer?
        if (ConstantInt* CI = dyn_cast<ConstantInt>(bop->getOperand(1)))
        {
          // Get the value the strlen result is compared to
          uint64_t val = CI->getRawValue();

          // If its compared against length 0 with == or !=
          if (val == 0 &&
              (bop->getOpcode() == Instruction::SetEQ ||
               bop->getOpcode() == Instruction::SetNE))
          {
            // strlen(x) != 0 -> *x != 0
            // strlen(x) == 0 -> *x == 0
            LoadInst* load = new LoadInst(str,str->getName()+".first",ci);
            BinaryOperator* rbop = BinaryOperator::create(bop->getOpcode(),
              load, ConstantSInt::get(Type::SByteTy,0),
              bop->getName()+".strlen", ci);
            bop->replaceAllUsesWith(rbop);
            bop->eraseFromParent();
            ci->eraseFromParent();
            return true;
          }
        }

    // Get the length of the constant string operand
    uint64_t len = 0;
    if (!getConstantStringLength(ci->getOperand(1),len))
      return false;

    // strlen("xyz") -> 3 (for example)
    const Type *Ty = SLC.getTargetData()->getIntPtrType();
    if (Ty->isSigned())
      ci->replaceAllUsesWith(ConstantSInt::get(Ty, len));
    else
      ci->replaceAllUsesWith(ConstantUInt::get(Ty, len));
     
    ci->eraseFromParent();
    return true;
  }
} StrLenOptimizer;

/// IsOnlyUsedInEqualsComparison - Return true if it only matters that the value
/// is equal or not-equal to zero. 
static bool IsOnlyUsedInEqualsZeroComparison(Instruction *I) {
  for (Value::use_iterator UI = I->use_begin(), E = I->use_end();
       UI != E; ++UI) {
    Instruction *User = cast<Instruction>(*UI);
    if (User->getOpcode() == Instruction::SetNE ||
        User->getOpcode() == Instruction::SetEQ) {
      if (isa<Constant>(User->getOperand(1)) && 
          cast<Constant>(User->getOperand(1))->isNullValue())
        continue;
    } else if (CastInst *CI = dyn_cast<CastInst>(User))
      if (CI->getType() == Type::BoolTy)
        continue;
    // Unknown instruction.
    return false;
  }
  return true;
}

/// This memcmpOptimization will simplify a call to the memcmp library
/// function.
struct memcmpOptimization : public LibCallOptimization {
  /// @brief Default Constructor
  memcmpOptimization()
    : LibCallOptimization("memcmp", "Number of 'memcmp' calls simplified") {}
  
  /// @brief Make sure that the "memcmp" function has the right prototype
  virtual bool ValidateCalledFunction(const Function *F, SimplifyLibCalls &TD) {
    Function::const_arg_iterator AI = F->arg_begin();
    if (F->arg_size() != 3 || !isa<PointerType>(AI->getType())) return false;
    if (!isa<PointerType>((++AI)->getType())) return false;
    if (!(++AI)->getType()->isInteger()) return false;
    if (!F->getReturnType()->isInteger()) return false;
    return true;
  }
  
  /// Because of alignment and instruction information that we don't have, we
  /// leave the bulk of this to the code generators.
  ///
  /// Note that we could do much more if we could force alignment on otherwise
  /// small aligned allocas, or if we could indicate that loads have a small
  /// alignment.
  virtual bool OptimizeCall(CallInst *CI, SimplifyLibCalls &TD) {
    Value *LHS = CI->getOperand(1), *RHS = CI->getOperand(2);

    // If the two operands are the same, return zero.
    if (LHS == RHS) {
      // memcmp(s,s,x) -> 0
      CI->replaceAllUsesWith(Constant::getNullValue(CI->getType()));
      CI->eraseFromParent();
      return true;
    }
    
    // Make sure we have a constant length.
    ConstantInt *LenC = dyn_cast<ConstantInt>(CI->getOperand(3));
    if (!LenC) return false;
    uint64_t Len = LenC->getRawValue();
      
    // If the length is zero, this returns 0.
    switch (Len) {
    case 0:
      // memcmp(s1,s2,0) -> 0
      CI->replaceAllUsesWith(Constant::getNullValue(CI->getType()));
      CI->eraseFromParent();
      return true;
    case 1: {
      // memcmp(S1,S2,1) -> *(ubyte*)S1 - *(ubyte*)S2
      const Type *UCharPtr = PointerType::get(Type::UByteTy);
      CastInst *Op1Cast = new CastInst(LHS, UCharPtr, LHS->getName(), CI);
      CastInst *Op2Cast = new CastInst(RHS, UCharPtr, RHS->getName(), CI);
      Value *S1V = new LoadInst(Op1Cast, LHS->getName()+".val", CI);
      Value *S2V = new LoadInst(Op2Cast, RHS->getName()+".val", CI);
      Value *RV = BinaryOperator::createSub(S1V, S2V, CI->getName()+".diff",CI);
      if (RV->getType() != CI->getType())
        RV = new CastInst(RV, CI->getType(), RV->getName(), CI);
      CI->replaceAllUsesWith(RV);
      CI->eraseFromParent();
      return true;
    }
    case 2:
      if (IsOnlyUsedInEqualsZeroComparison(CI)) {
        // TODO: IF both are aligned, use a short load/compare.
      
        // memcmp(S1,S2,2) -> S1[0]-S2[0] | S1[1]-S2[1] iff only ==/!= 0 matters
        const Type *UCharPtr = PointerType::get(Type::UByteTy);
        CastInst *Op1Cast = new CastInst(LHS, UCharPtr, LHS->getName(), CI);
        CastInst *Op2Cast = new CastInst(RHS, UCharPtr, RHS->getName(), CI);
        Value *S1V1 = new LoadInst(Op1Cast, LHS->getName()+".val1", CI);
        Value *S2V1 = new LoadInst(Op2Cast, RHS->getName()+".val1", CI);
        Value *D1 = BinaryOperator::createSub(S1V1, S2V1,
                                              CI->getName()+".d1", CI);
        Constant *One = ConstantInt::get(Type::IntTy, 1);
        Value *G1 = new GetElementPtrInst(Op1Cast, One, "next1v", CI);
        Value *G2 = new GetElementPtrInst(Op2Cast, One, "next2v", CI);
        Value *S1V2 = new LoadInst(G1, LHS->getName()+".val2", CI);
        Value *S2V2 = new LoadInst(G1, RHS->getName()+".val2", CI);
        Value *D2 = BinaryOperator::createSub(S1V2, S2V2,
                                              CI->getName()+".d1", CI);
        Value *Or = BinaryOperator::createOr(D1, D2, CI->getName()+".res", CI);
        if (Or->getType() != CI->getType())
          Or = new CastInst(Or, CI->getType(), Or->getName(), CI);
        CI->replaceAllUsesWith(Or);
        CI->eraseFromParent();
        return true;
      }
      break;
    default:
      break;
    }
    
    
    
    return false;
  }
} memcmpOptimizer;





/// This LibCallOptimization will simplify a call to the memcpy library
/// function by expanding it out to a single store of size 0, 1, 2, 4, or 8
/// bytes depending on the length of the string and the alignment. Additional
/// optimizations are possible in code generation (sequence of immediate store)
/// @brief Simplify the memcpy library function.
struct LLVMMemCpyOptimization : public LibCallOptimization
{
  /// @brief Default Constructor
  LLVMMemCpyOptimization() : LibCallOptimization("llvm.memcpy",
      "Number of 'llvm.memcpy' calls simplified") {}

protected:
  /// @brief Subclass Constructor
  LLVMMemCpyOptimization(const char* fname, const char* desc)
    : LibCallOptimization(fname, desc) {}
public:

  /// @brief Make sure that the "memcpy" function has the right prototype
  virtual bool ValidateCalledFunction(const Function* f, SimplifyLibCalls& TD)
  {
    // Just make sure this has 4 arguments per LLVM spec.
    return (f->arg_size() == 4);
  }

  /// Because of alignment and instruction information that we don't have, we
  /// leave the bulk of this to the code generators. The optimization here just
  /// deals with a few degenerate cases where the length of the string and the
  /// alignment match the sizes of our intrinsic types so we can do a load and
  /// store instead of the memcpy call.
  /// @brief Perform the memcpy optimization.
  virtual bool OptimizeCall(CallInst* ci, SimplifyLibCalls& TD)
  {
    // Make sure we have constant int values to work with
    ConstantInt* LEN = dyn_cast<ConstantInt>(ci->getOperand(3));
    if (!LEN)
      return false;
    ConstantInt* ALIGN = dyn_cast<ConstantInt>(ci->getOperand(4));
    if (!ALIGN)
      return false;

    // If the length is larger than the alignment, we can't optimize
    uint64_t len = LEN->getRawValue();
    uint64_t alignment = ALIGN->getRawValue();
    if (alignment == 0)
      alignment = 1; // Alignment 0 is identity for alignment 1
    if (len > alignment)
      return false;

    // Get the type we will cast to, based on size of the string
    Value* dest = ci->getOperand(1);
    Value* src = ci->getOperand(2);
    Type* castType = 0;
    switch (len)
    {
      case 0:
        // memcpy(d,s,0,a) -> noop
        ci->eraseFromParent();
        return true;
      case 1: castType = Type::SByteTy; break;
      case 2: castType = Type::ShortTy; break;
      case 4: castType = Type::IntTy; break;
      case 8: castType = Type::LongTy; break;
      default:
        return false;
    }

    // Cast source and dest to the right sized primitive and then load/store
    CastInst* SrcCast =
      new CastInst(src,PointerType::get(castType),src->getName()+".cast",ci);
    CastInst* DestCast =
      new CastInst(dest,PointerType::get(castType),dest->getName()+".cast",ci);
    LoadInst* LI = new LoadInst(SrcCast,SrcCast->getName()+".val",ci);
    StoreInst* SI = new StoreInst(LI, DestCast, ci);
    ci->eraseFromParent();
    return true;
  }
} LLVMMemCpyOptimizer;

/// This LibCallOptimization will simplify a call to the memmove library
/// function. It is identical to MemCopyOptimization except for the name of
/// the intrinsic.
/// @brief Simplify the memmove library function.
struct LLVMMemMoveOptimization : public LLVMMemCpyOptimization
{
  /// @brief Default Constructor
  LLVMMemMoveOptimization() : LLVMMemCpyOptimization("llvm.memmove",
      "Number of 'llvm.memmove' calls simplified") {}

} LLVMMemMoveOptimizer;

/// This LibCallOptimization will simplify a call to the memset library
/// function by expanding it out to a single store of size 0, 1, 2, 4, or 8
/// bytes depending on the length argument.
struct LLVMMemSetOptimization : public LibCallOptimization
{
  /// @brief Default Constructor
  LLVMMemSetOptimization() : LibCallOptimization("llvm.memset",
      "Number of 'llvm.memset' calls simplified") {}

public:

  /// @brief Make sure that the "memset" function has the right prototype
  virtual bool ValidateCalledFunction(const Function* f, SimplifyLibCalls& TD)
  {
    // Just make sure this has 3 arguments per LLVM spec.
    return (f->arg_size() == 4);
  }

  /// Because of alignment and instruction information that we don't have, we
  /// leave the bulk of this to the code generators. The optimization here just
  /// deals with a few degenerate cases where the length parameter is constant
  /// and the alignment matches the sizes of our intrinsic types so we can do
  /// store instead of the memcpy call. Other calls are transformed into the
  /// llvm.memset intrinsic.
  /// @brief Perform the memset optimization.
  virtual bool OptimizeCall(CallInst* ci, SimplifyLibCalls& TD)
  {
    // Make sure we have constant int values to work with
    ConstantInt* LEN = dyn_cast<ConstantInt>(ci->getOperand(3));
    if (!LEN)
      return false;
    ConstantInt* ALIGN = dyn_cast<ConstantInt>(ci->getOperand(4));
    if (!ALIGN)
      return false;

    // Extract the length and alignment
    uint64_t len = LEN->getRawValue();
    uint64_t alignment = ALIGN->getRawValue();

    // Alignment 0 is identity for alignment 1
    if (alignment == 0)
      alignment = 1;

    // If the length is zero, this is a no-op
    if (len == 0)
    {
      // memset(d,c,0,a) -> noop
      ci->eraseFromParent();
      return true;
    }

    // If the length is larger than the alignment, we can't optimize
    if (len > alignment)
      return false;

    // Make sure we have a constant ubyte to work with so we can extract
    // the value to be filled.
    ConstantUInt* FILL = dyn_cast<ConstantUInt>(ci->getOperand(2));
    if (!FILL)
      return false;
    if (FILL->getType() != Type::UByteTy)
      return false;

    // memset(s,c,n) -> store s, c (for n=1,2,4,8)

    // Extract the fill character
    uint64_t fill_char = FILL->getValue();
    uint64_t fill_value = fill_char;

    // Get the type we will cast to, based on size of memory area to fill, and
    // and the value we will store there.
    Value* dest = ci->getOperand(1);
    Type* castType = 0;
    switch (len)
    {
      case 1:
        castType = Type::UByteTy;
        break;
      case 2:
        castType = Type::UShortTy;
        fill_value |= fill_char << 8;
        break;
      case 4:
        castType = Type::UIntTy;
        fill_value |= fill_char << 8 | fill_char << 16 | fill_char << 24;
        break;
      case 8:
        castType = Type::ULongTy;
        fill_value |= fill_char << 8 | fill_char << 16 | fill_char << 24;
        fill_value |= fill_char << 32 | fill_char << 40 | fill_char << 48;
        fill_value |= fill_char << 56;
        break;
      default:
        return false;
    }

    // Cast dest to the right sized primitive and then load/store
    CastInst* DestCast =
      new CastInst(dest,PointerType::get(castType),dest->getName()+".cast",ci);
    new StoreInst(ConstantUInt::get(castType,fill_value),DestCast, ci);
    ci->eraseFromParent();
    return true;
  }
} LLVMMemSetOptimizer;

/// This LibCallOptimization will simplify calls to the "pow" library
/// function. It looks for cases where the result of pow is well known and
/// substitutes the appropriate value.
/// @brief Simplify the pow library function.
struct PowOptimization : public LibCallOptimization
{
public:
  /// @brief Default Constructor
  PowOptimization() : LibCallOptimization("pow",
      "Number of 'pow' calls simplified") {}

  /// @brief Make sure that the "pow" function has the right prototype
  virtual bool ValidateCalledFunction(const Function* f, SimplifyLibCalls& SLC)
  {
    // Just make sure this has 2 arguments
    return (f->arg_size() == 2);
  }

  /// @brief Perform the pow optimization.
  virtual bool OptimizeCall(CallInst* ci, SimplifyLibCalls& SLC)
  {
    const Type *Ty = cast<Function>(ci->getOperand(0))->getReturnType();
    Value* base = ci->getOperand(1);
    Value* expn = ci->getOperand(2);
    if (ConstantFP *Op1 = dyn_cast<ConstantFP>(base)) {
      double Op1V = Op1->getValue();
      if (Op1V == 1.0)
      {
        // pow(1.0,x) -> 1.0
        ci->replaceAllUsesWith(ConstantFP::get(Ty,1.0));
        ci->eraseFromParent();
        return true;
      }
    }
    else if (ConstantFP* Op2 = dyn_cast<ConstantFP>(expn))
    {
      double Op2V = Op2->getValue();
      if (Op2V == 0.0)
      {
        // pow(x,0.0) -> 1.0
        ci->replaceAllUsesWith(ConstantFP::get(Ty,1.0));
        ci->eraseFromParent();
        return true;
      }
      else if (Op2V == 0.5)
      {
        // pow(x,0.5) -> sqrt(x)
        CallInst* sqrt_inst = new CallInst(SLC.get_sqrt(), base,
            ci->getName()+".pow",ci);
        ci->replaceAllUsesWith(sqrt_inst);
        ci->eraseFromParent();
        return true;
      }
      else if (Op2V == 1.0)
      {
        // pow(x,1.0) -> x
        ci->replaceAllUsesWith(base);
        ci->eraseFromParent();
        return true;
      }
      else if (Op2V == -1.0)
      {
        // pow(x,-1.0)    -> 1.0/x
        BinaryOperator* div_inst= BinaryOperator::createDiv(
          ConstantFP::get(Ty,1.0), base, ci->getName()+".pow", ci);
        ci->replaceAllUsesWith(div_inst);
        ci->eraseFromParent();
        return true;
      }
    }
    return false; // opt failed
  }
} PowOptimizer;

/// This LibCallOptimization will simplify calls to the "fprintf" library
/// function. It looks for cases where the result of fprintf is not used and the
/// operation can be reduced to something simpler.
/// @brief Simplify the pow library function.
struct FPrintFOptimization : public LibCallOptimization
{
public:
  /// @brief Default Constructor
  FPrintFOptimization() : LibCallOptimization("fprintf",
      "Number of 'fprintf' calls simplified") {}

  /// @brief Make sure that the "fprintf" function has the right prototype
  virtual bool ValidateCalledFunction(const Function* f, SimplifyLibCalls& SLC)
  {
    // Just make sure this has at least 2 arguments
    return (f->arg_size() >= 2);
  }

  /// @brief Perform the fprintf optimization.
  virtual bool OptimizeCall(CallInst* ci, SimplifyLibCalls& SLC)
  {
    // If the call has more than 3 operands, we can't optimize it
    if (ci->getNumOperands() > 4 || ci->getNumOperands() <= 2)
      return false;

    // If the result of the fprintf call is used, none of these optimizations
    // can be made.
    if (!ci->use_empty())
      return false;

    // All the optimizations depend on the length of the second argument and the
    // fact that it is a constant string array. Check that now
    uint64_t len = 0;
    ConstantArray* CA = 0;
    if (!getConstantStringLength(ci->getOperand(2), len, &CA))
      return false;

    if (ci->getNumOperands() == 3)
    {
      // Make sure there's no % in the constant array
      for (unsigned i = 0; i < len; ++i)
      {
        if (ConstantInt* CI = dyn_cast<ConstantInt>(CA->getOperand(i)))
        {
          // Check for the null terminator
          if (CI->getRawValue() == '%')
            return false; // we found end of string
        }
        else
          return false;
      }

      // fprintf(file,fmt) -> fwrite(fmt,strlen(fmt),file)
      const Type* FILEptr_type = ci->getOperand(1)->getType();
      Function* fwrite_func = SLC.get_fwrite(FILEptr_type);
      if (!fwrite_func)
        return false;

      // Make sure that the fprintf() and fwrite() functions both take the
      // same type of char pointer.
      if (ci->getOperand(2)->getType() !=
          fwrite_func->getFunctionType()->getParamType(0))
        return false;

      std::vector<Value*> args;
      args.push_back(ci->getOperand(2));
      args.push_back(ConstantUInt::get(SLC.getIntPtrType(),len));
      args.push_back(ConstantUInt::get(SLC.getIntPtrType(),1));
      args.push_back(ci->getOperand(1));
      new CallInst(fwrite_func,args,ci->getName(),ci);
      ci->replaceAllUsesWith(ConstantSInt::get(Type::IntTy,len));
      ci->eraseFromParent();
      return true;
    }

    // The remaining optimizations require the format string to be length 2
    // "%s" or "%c".
    if (len != 2)
      return false;

    // The first character has to be a %
    if (ConstantInt* CI = dyn_cast<ConstantInt>(CA->getOperand(0)))
      if (CI->getRawValue() != '%')
        return false;

    // Get the second character and switch on its value
    ConstantInt* CI = dyn_cast<ConstantInt>(CA->getOperand(1));
    switch (CI->getRawValue())
    {
      case 's':
      {
        uint64_t len = 0;
        ConstantArray* CA = 0;
        if (!getConstantStringLength(ci->getOperand(3), len, &CA))
          return false;

        // fprintf(file,"%s",str) -> fwrite(fmt,strlen(fmt),1,file)
        const Type* FILEptr_type = ci->getOperand(1)->getType();
        Function* fwrite_func = SLC.get_fwrite(FILEptr_type);
        if (!fwrite_func)
          return false;
        std::vector<Value*> args;
        args.push_back(CastToCStr(ci->getOperand(3), *ci));
        args.push_back(ConstantUInt::get(SLC.getIntPtrType(),len));
        args.push_back(ConstantUInt::get(SLC.getIntPtrType(),1));
        args.push_back(ci->getOperand(1));
        new CallInst(fwrite_func,args,ci->getName(),ci);
        ci->replaceAllUsesWith(ConstantSInt::get(Type::IntTy,len));
        break;
      }
      case 'c':
      {
        ConstantInt* CI = dyn_cast<ConstantInt>(ci->getOperand(3));
        if (!CI)
          return false;

        const Type* FILEptr_type = ci->getOperand(1)->getType();
        Function* fputc_func = SLC.get_fputc(FILEptr_type);
        if (!fputc_func)
          return false;
        CastInst* cast = new CastInst(CI,Type::IntTy,CI->getName()+".int",ci);
        new CallInst(fputc_func,cast,ci->getOperand(1),"",ci);
        ci->replaceAllUsesWith(ConstantSInt::get(Type::IntTy,1));
        break;
      }
      default:
        return false;
    }
    ci->eraseFromParent();
    return true;
  }
} FPrintFOptimizer;

/// This LibCallOptimization will simplify calls to the "sprintf" library
/// function. It looks for cases where the result of sprintf is not used and the
/// operation can be reduced to something simpler.
/// @brief Simplify the pow library function.
struct SPrintFOptimization : public LibCallOptimization
{
public:
  /// @brief Default Constructor
  SPrintFOptimization() : LibCallOptimization("sprintf",
      "Number of 'sprintf' calls simplified") {}

  /// @brief Make sure that the "fprintf" function has the right prototype
  virtual bool ValidateCalledFunction(const Function* f, SimplifyLibCalls& SLC)
  {
    // Just make sure this has at least 2 arguments
    return (f->getReturnType() == Type::IntTy && f->arg_size() >= 2);
  }

  /// @brief Perform the sprintf optimization.
  virtual bool OptimizeCall(CallInst* ci, SimplifyLibCalls& SLC)
  {
    // If the call has more than 3 operands, we can't optimize it
    if (ci->getNumOperands() > 4 || ci->getNumOperands() < 3)
      return false;

    // All the optimizations depend on the length of the second argument and the
    // fact that it is a constant string array. Check that now
    uint64_t len = 0;
    ConstantArray* CA = 0;
    if (!getConstantStringLength(ci->getOperand(2), len, &CA))
      return false;

    if (ci->getNumOperands() == 3)
    {
      if (len == 0)
      {
        // If the length is 0, we just need to store a null byte
        new StoreInst(ConstantInt::get(Type::SByteTy,0),ci->getOperand(1),ci);
        ci->replaceAllUsesWith(ConstantSInt::get(Type::IntTy,0));
        ci->eraseFromParent();
        return true;
      }

      // Make sure there's no % in the constant array
      for (unsigned i = 0; i < len; ++i)
      {
        if (ConstantInt* CI = dyn_cast<ConstantInt>(CA->getOperand(i)))
        {
          // Check for the null terminator
          if (CI->getRawValue() == '%')
            return false; // we found a %, can't optimize
        }
        else
          return false; // initializer is not constant int, can't optimize
      }

      // Increment length because we want to copy the null byte too
      len++;

      // sprintf(str,fmt) -> llvm.memcpy(str,fmt,strlen(fmt),1)
      Function* memcpy_func = SLC.get_memcpy();
      if (!memcpy_func)
        return false;
      std::vector<Value*> args;
      args.push_back(ci->getOperand(1));
      args.push_back(ci->getOperand(2));
      args.push_back(ConstantUInt::get(Type::UIntTy,len));
      args.push_back(ConstantUInt::get(Type::UIntTy,1));
      new CallInst(memcpy_func,args,"",ci);
      ci->replaceAllUsesWith(ConstantSInt::get(Type::IntTy,len));
      ci->eraseFromParent();
      return true;
    }

    // The remaining optimizations require the format string to be length 2
    // "%s" or "%c".
    if (len != 2)
      return false;

    // The first character has to be a %
    if (ConstantInt* CI = dyn_cast<ConstantInt>(CA->getOperand(0)))
      if (CI->getRawValue() != '%')
        return false;

    // Get the second character and switch on its value
    ConstantInt* CI = dyn_cast<ConstantInt>(CA->getOperand(1));
    switch (CI->getRawValue()) {
    case 's': {
      // sprintf(dest,"%s",str) -> llvm.memcpy(dest, str, strlen(str)+1, 1)
      Function* strlen_func = SLC.get_strlen();
      Function* memcpy_func = SLC.get_memcpy();
      if (!strlen_func || !memcpy_func)
        return false;
      
      Value *Len = new CallInst(strlen_func, CastToCStr(ci->getOperand(3), *ci),
                                ci->getOperand(3)->getName()+".len", ci);
      Value *Len1 = BinaryOperator::createAdd(Len,
                                            ConstantInt::get(Len->getType(), 1),
                                              Len->getName()+"1", ci);
      if (Len1->getType() != Type::UIntTy)
        Len1 = new CastInst(Len1, Type::UIntTy, Len1->getName(), ci);
      std::vector<Value*> args;
      args.push_back(CastToCStr(ci->getOperand(1), *ci));
      args.push_back(CastToCStr(ci->getOperand(3), *ci));
      args.push_back(Len1);
      args.push_back(ConstantUInt::get(Type::UIntTy,1));
      new CallInst(memcpy_func, args, "", ci);
      
      // The strlen result is the unincremented number of bytes in the string.
      if (!ci->use_empty()) {
        if (Len->getType() != ci->getType())
          Len = new CastInst(Len, ci->getType(), Len->getName(), ci);
        ci->replaceAllUsesWith(Len);
      }
      ci->eraseFromParent();
      return true;
    }
    case 'c': {
      // sprintf(dest,"%c",chr) -> store chr, dest
      CastInst* cast = new CastInst(ci->getOperand(3),Type::SByteTy,"char",ci);
      new StoreInst(cast, ci->getOperand(1), ci);
      GetElementPtrInst* gep = new GetElementPtrInst(ci->getOperand(1),
        ConstantUInt::get(Type::UIntTy,1),ci->getOperand(1)->getName()+".end",
        ci);
      new StoreInst(ConstantInt::get(Type::SByteTy,0),gep,ci);
      ci->replaceAllUsesWith(ConstantSInt::get(Type::IntTy,1));
      ci->eraseFromParent();
      return true;
    }
    }
    return false;
  }
} SPrintFOptimizer;

/// This LibCallOptimization will simplify calls to the "fputs" library
/// function. It looks for cases where the result of fputs is not used and the
/// operation can be reduced to something simpler.
/// @brief Simplify the pow library function.
struct PutsOptimization : public LibCallOptimization
{
public:
  /// @brief Default Constructor
  PutsOptimization() : LibCallOptimization("fputs",
      "Number of 'fputs' calls simplified") {}

  /// @brief Make sure that the "fputs" function has the right prototype
  virtual bool ValidateCalledFunction(const Function* f, SimplifyLibCalls& SLC)
  {
    // Just make sure this has 2 arguments
    return (f->arg_size() == 2);
  }

  /// @brief Perform the fputs optimization.
  virtual bool OptimizeCall(CallInst* ci, SimplifyLibCalls& SLC)
  {
    // If the result is used, none of these optimizations work
    if (!ci->use_empty())
      return false;

    // All the optimizations depend on the length of the first argument and the
    // fact that it is a constant string array. Check that now
    uint64_t len = 0;
    if (!getConstantStringLength(ci->getOperand(1), len))
      return false;

    switch (len)
    {
      case 0:
        // fputs("",F) -> noop
        break;
      case 1:
      {
        // fputs(s,F)  -> fputc(s[0],F)  (if s is constant and strlen(s) == 1)
        const Type* FILEptr_type = ci->getOperand(2)->getType();
        Function* fputc_func = SLC.get_fputc(FILEptr_type);
        if (!fputc_func)
          return false;
        LoadInst* loadi = new LoadInst(ci->getOperand(1),
          ci->getOperand(1)->getName()+".byte",ci);
        CastInst* casti = new CastInst(loadi,Type::IntTy,
          loadi->getName()+".int",ci);
        new CallInst(fputc_func,casti,ci->getOperand(2),"",ci);
        break;
      }
      default:
      {
        // fputs(s,F)  -> fwrite(s,1,len,F) (if s is constant and strlen(s) > 1)
        const Type* FILEptr_type = ci->getOperand(2)->getType();
        Function* fwrite_func = SLC.get_fwrite(FILEptr_type);
        if (!fwrite_func)
          return false;
        std::vector<Value*> parms;
        parms.push_back(ci->getOperand(1));
        parms.push_back(ConstantUInt::get(SLC.getIntPtrType(),len));
        parms.push_back(ConstantUInt::get(SLC.getIntPtrType(),1));
        parms.push_back(ci->getOperand(2));
        new CallInst(fwrite_func,parms,"",ci);
        break;
      }
    }
    ci->eraseFromParent();
    return true; // success
  }
} PutsOptimizer;

/// This LibCallOptimization will simplify calls to the "isdigit" library
/// function. It simply does range checks the parameter explicitly.
/// @brief Simplify the isdigit library function.
struct isdigitOptimization : public LibCallOptimization {
public:
  isdigitOptimization() : LibCallOptimization("isdigit",
      "Number of 'isdigit' calls simplified") {}

  /// @brief Make sure that the "isdigit" function has the right prototype
  virtual bool ValidateCalledFunction(const Function* f, SimplifyLibCalls& SLC)
  {
    // Just make sure this has 1 argument
    return (f->arg_size() == 1);
  }

  /// @brief Perform the toascii optimization.
  virtual bool OptimizeCall(CallInst* ci, SimplifyLibCalls& SLC)
  {
    if (ConstantInt* CI = dyn_cast<ConstantInt>(ci->getOperand(1)))
    {
      // isdigit(c)   -> 0 or 1, if 'c' is constant
      uint64_t val = CI->getRawValue();
      if (val >= '0' && val <='9')
        ci->replaceAllUsesWith(ConstantSInt::get(Type::IntTy,1));
      else
        ci->replaceAllUsesWith(ConstantSInt::get(Type::IntTy,0));
      ci->eraseFromParent();
      return true;
    }

    // isdigit(c)   -> (unsigned)c - '0' <= 9
    CastInst* cast =
      new CastInst(ci->getOperand(1),Type::UIntTy,
        ci->getOperand(1)->getName()+".uint",ci);
    BinaryOperator* sub_inst = BinaryOperator::createSub(cast,
        ConstantUInt::get(Type::UIntTy,0x30),
        ci->getOperand(1)->getName()+".sub",ci);
    SetCondInst* setcond_inst = new SetCondInst(Instruction::SetLE,sub_inst,
        ConstantUInt::get(Type::UIntTy,9),
        ci->getOperand(1)->getName()+".cmp",ci);
    CastInst* c2 =
      new CastInst(setcond_inst,Type::IntTy,
        ci->getOperand(1)->getName()+".isdigit",ci);
    ci->replaceAllUsesWith(c2);
    ci->eraseFromParent();
    return true;
  }
} isdigitOptimizer;

struct isasciiOptimization : public LibCallOptimization {
public:
  isasciiOptimization()
    : LibCallOptimization("isascii", "Number of 'isascii' calls simplified") {}
  
  virtual bool ValidateCalledFunction(const Function *F, SimplifyLibCalls &SLC){
    return F->arg_size() == 1 && F->arg_begin()->getType()->isInteger() && 
           F->getReturnType()->isInteger();
  }
  
  /// @brief Perform the isascii optimization.
  virtual bool OptimizeCall(CallInst *CI, SimplifyLibCalls &SLC) {
    // isascii(c)   -> (unsigned)c < 128
    Value *V = CI->getOperand(1);
    if (V->getType()->isSigned())
      V = new CastInst(V, V->getType()->getUnsignedVersion(), V->getName(), CI);
    Value *Cmp = BinaryOperator::createSetLT(V, ConstantUInt::get(V->getType(),
                                                                  128),
                                             V->getName()+".isascii", CI);
    if (Cmp->getType() != CI->getType())
      Cmp = new CastInst(Cmp, CI->getType(), Cmp->getName(), CI);
    CI->replaceAllUsesWith(Cmp);
    CI->eraseFromParent();
    return true;
  }
} isasciiOptimizer;


/// This LibCallOptimization will simplify calls to the "toascii" library
/// function. It simply does the corresponding and operation to restrict the
/// range of values to the ASCII character set (0-127).
/// @brief Simplify the toascii library function.
struct ToAsciiOptimization : public LibCallOptimization
{
public:
  /// @brief Default Constructor
  ToAsciiOptimization() : LibCallOptimization("toascii",
      "Number of 'toascii' calls simplified") {}

  /// @brief Make sure that the "fputs" function has the right prototype
  virtual bool ValidateCalledFunction(const Function* f, SimplifyLibCalls& SLC)
  {
    // Just make sure this has 2 arguments
    return (f->arg_size() == 1);
  }

  /// @brief Perform the toascii optimization.
  virtual bool OptimizeCall(CallInst* ci, SimplifyLibCalls& SLC)
  {
    // toascii(c)   -> (c & 0x7f)
    Value* chr = ci->getOperand(1);
    BinaryOperator* and_inst = BinaryOperator::createAnd(chr,
        ConstantInt::get(chr->getType(),0x7F),ci->getName()+".toascii",ci);
    ci->replaceAllUsesWith(and_inst);
    ci->eraseFromParent();
    return true;
  }
} ToAsciiOptimizer;

/// This LibCallOptimization will simplify calls to the "ffs" library
/// calls which find the first set bit in an int, long, or long long. The
/// optimization is to compute the result at compile time if the argument is
/// a constant.
/// @brief Simplify the ffs library function.
struct FFSOptimization : public LibCallOptimization
{
protected:
  /// @brief Subclass Constructor
  FFSOptimization(const char* funcName, const char* description)
    : LibCallOptimization(funcName, description)
    {}

public:
  /// @brief Default Constructor
  FFSOptimization() : LibCallOptimization("ffs",
      "Number of 'ffs' calls simplified") {}

  /// @brief Make sure that the "fputs" function has the right prototype
  virtual bool ValidateCalledFunction(const Function* f, SimplifyLibCalls& SLC)
  {
    // Just make sure this has 2 arguments
    return (f->arg_size() == 1 && f->getReturnType() == Type::IntTy);
  }

  /// @brief Perform the ffs optimization.
  virtual bool OptimizeCall(CallInst* ci, SimplifyLibCalls& SLC)
  {
    if (ConstantInt* CI = dyn_cast<ConstantInt>(ci->getOperand(1)))
    {
      // ffs(cnst)  -> bit#
      // ffsl(cnst) -> bit#
      // ffsll(cnst) -> bit#
      uint64_t val = CI->getRawValue();
      int result = 0;
      while (val != 0) {
        result +=1;
        if (val&1)
          break;
        val >>= 1;
      }
      ci->replaceAllUsesWith(ConstantSInt::get(Type::IntTy, result));
      ci->eraseFromParent();
      return true;
    }

    // ffs(x) -> ( x == 0 ? 0 : llvm.cttz(x)+1)
    // ffsl(x) -> ( x == 0 ? 0 : llvm.cttz(x)+1)
    // ffsll(x) -> ( x == 0 ? 0 : llvm.cttz(x)+1)
    const Type* arg_type = ci->getOperand(1)->getType();
    std::vector<const Type*> args;
    args.push_back(arg_type);
    FunctionType* llvm_cttz_type = FunctionType::get(arg_type,args,false);
    Function* F =
      SLC.getModule()->getOrInsertFunction("llvm.cttz",llvm_cttz_type);
    std::string inst_name(ci->getName()+".ffs");
    Instruction* call =
      new CallInst(F, ci->getOperand(1), inst_name, ci);
    if (arg_type != Type::IntTy)
      call = new CastInst(call, Type::IntTy, inst_name, ci);
    BinaryOperator* add = BinaryOperator::createAdd(call,
      ConstantSInt::get(Type::IntTy,1), inst_name, ci);
    SetCondInst* eq = new SetCondInst(Instruction::SetEQ,ci->getOperand(1),
      ConstantSInt::get(ci->getOperand(1)->getType(),0),inst_name,ci);
    SelectInst* select = new SelectInst(eq,ConstantSInt::get(Type::IntTy,0),add,
      inst_name,ci);
    ci->replaceAllUsesWith(select);
    ci->eraseFromParent();
    return true;
  }
} FFSOptimizer;

/// This LibCallOptimization will simplify calls to the "ffsl" library
/// calls. It simply uses FFSOptimization for which the transformation is
/// identical.
/// @brief Simplify the ffsl library function.
struct FFSLOptimization : public FFSOptimization
{
public:
  /// @brief Default Constructor
  FFSLOptimization() : FFSOptimization("ffsl",
      "Number of 'ffsl' calls simplified") {}

} FFSLOptimizer;

/// This LibCallOptimization will simplify calls to the "ffsll" library
/// calls. It simply uses FFSOptimization for which the transformation is
/// identical.
/// @brief Simplify the ffsl library function.
struct FFSLLOptimization : public FFSOptimization
{
public:
  /// @brief Default Constructor
  FFSLLOptimization() : FFSOptimization("ffsll",
      "Number of 'ffsll' calls simplified") {}

} FFSLLOptimizer;


/// This LibCallOptimization will simplify calls to the "floor" library
/// function.
/// @brief Simplify the floor library function.
struct FloorOptimization : public LibCallOptimization {
  FloorOptimization()
    : LibCallOptimization("floor", "Number of 'floor' calls simplified") {}
  
  /// @brief Make sure that the "floor" function has the right prototype
  virtual bool ValidateCalledFunction(const Function *F, SimplifyLibCalls &SLC){
    return F->arg_size() == 1 && F->arg_begin()->getType() == Type::DoubleTy &&
           F->getReturnType() == Type::DoubleTy;
  }
  
  virtual bool OptimizeCall(CallInst *CI, SimplifyLibCalls &SLC) {
    // If this is a float argument passed in, convert to floorf.
    // e.g. floor((double)FLT) -> (double)floorf(FLT).  There can be no loss of
    // precision due to this.
    if (CastInst *Cast = dyn_cast<CastInst>(CI->getOperand(1)))
      if (Cast->getOperand(0)->getType() == Type::FloatTy) {
        Value *New = new CallInst(SLC.get_floorf(), Cast->getOperand(0),
                                  CI->getName(), CI);
        New = new CastInst(New, Type::DoubleTy, CI->getName(), CI);
        CI->replaceAllUsesWith(New);
        CI->eraseFromParent();
        if (Cast->use_empty())
          Cast->eraseFromParent();
        return true;
      }
    return false; // opt failed
  }
} FloorOptimizer;



/// A function to compute the length of a null-terminated constant array of
/// integers.  This function can't rely on the size of the constant array
/// because there could be a null terminator in the middle of the array.
/// We also have to bail out if we find a non-integer constant initializer
/// of one of the elements or if there is no null-terminator. The logic
/// below checks each of these conditions and will return true only if all
/// conditions are met. In that case, the \p len parameter is set to the length
/// of the null-terminated string. If false is returned, the conditions were
/// not met and len is set to 0.
/// @brief Get the length of a constant string (null-terminated array).
bool getConstantStringLength(Value* V, uint64_t& len, ConstantArray** CA )
{
  assert(V != 0 && "Invalid args to getConstantStringLength");
  len = 0; // make sure we initialize this
  User* GEP = 0;
  // If the value is not a GEP instruction nor a constant expression with a
  // GEP instruction, then return false because ConstantArray can't occur
  // any other way
  if (GetElementPtrInst* GEPI = dyn_cast<GetElementPtrInst>(V))
    GEP = GEPI;
  else if (ConstantExpr* CE = dyn_cast<ConstantExpr>(V))
    if (CE->getOpcode() == Instruction::GetElementPtr)
      GEP = CE;
    else
      return false;
  else
    return false;

  // Make sure the GEP has exactly three arguments.
  if (GEP->getNumOperands() != 3)
    return false;

  // Check to make sure that the first operand of the GEP is an integer and
  // has value 0 so that we are sure we're indexing into the initializer.
  if (ConstantInt* op1 = dyn_cast<ConstantInt>(GEP->getOperand(1)))
  {
    if (!op1->isNullValue())
      return false;
  }
  else
    return false;

  // Ensure that the second operand is a ConstantInt. If it isn't then this
  // GEP is wonky and we're not really sure what were referencing into and
  // better of not optimizing it. While we're at it, get the second index
  // value. We'll need this later for indexing the ConstantArray.
  uint64_t start_idx = 0;
  if (ConstantInt* CI = dyn_cast<ConstantInt>(GEP->getOperand(2)))
    start_idx = CI->getRawValue();
  else
    return false;

  // The GEP instruction, constant or instruction, must reference a global
  // variable that is a constant and is initialized. The referenced constant
  // initializer is the array that we'll use for optimization.
  GlobalVariable* GV = dyn_cast<GlobalVariable>(GEP->getOperand(0));
  if (!GV || !GV->isConstant() || !GV->hasInitializer())
    return false;

  // Get the initializer.
  Constant* INTLZR = GV->getInitializer();

  // Handle the ConstantAggregateZero case
  if (ConstantAggregateZero* CAZ = dyn_cast<ConstantAggregateZero>(INTLZR))
  {
    // This is a degenerate case. The initializer is constant zero so the
    // length of the string must be zero.
    len = 0;
    return true;
  }

  // Must be a Constant Array
  ConstantArray* A = dyn_cast<ConstantArray>(INTLZR);
  if (!A)
    return false;

  // Get the number of elements in the array
  uint64_t max_elems = A->getType()->getNumElements();

  // Traverse the constant array from start_idx (derived above) which is
  // the place the GEP refers to in the array.
  for ( len = start_idx; len < max_elems; len++)
  {
    if (ConstantInt* CI = dyn_cast<ConstantInt>(A->getOperand(len)))
    {
      // Check for the null terminator
      if (CI->isNullValue())
        break; // we found end of string
    }
    else
      return false; // This array isn't suitable, non-int initializer
  }
  if (len >= max_elems)
    return false; // This array isn't null terminated

  // Subtract out the initial value from the length
  len -= start_idx;
  if (CA)
    *CA = A;
  return true; // success!
}

/// CastToCStr - Return V if it is an sbyte*, otherwise cast it to sbyte*,
/// inserting the cast before IP, and return the cast.
/// @brief Cast a value to a "C" string.
Value *CastToCStr(Value *V, Instruction &IP) {
  const Type *SBPTy = PointerType::get(Type::SByteTy);
  if (V->getType() != SBPTy)
    return new CastInst(V, SBPTy, V->getName(), &IP);
  return V;
}

// TODO:
//   Additional cases that we need to add to this file:
//
// cbrt:
//   * cbrt(expN(X))  -> expN(x/3)
//   * cbrt(sqrt(x))  -> pow(x,1/6)
//   * cbrt(sqrt(x))  -> pow(x,1/9)
//
// cos, cosf, cosl:
//   * cos(-x)  -> cos(x)
//
// exp, expf, expl:
//   * exp(log(x))  -> x
//
// log, logf, logl:
//   * log(exp(x))   -> x
//   * log(x**y)     -> y*log(x)
//   * log(exp(y))   -> y*log(e)
//   * log(exp2(y))  -> y*log(2)
//   * log(exp10(y)) -> y*log(10)
//   * log(sqrt(x))  -> 0.5*log(x)
//   * log(pow(x,y)) -> y*log(x)
//
// lround, lroundf, lroundl:
//   * lround(cnst) -> cnst'
//
// memcmp:
//   * memcmp(x,y,l)   -> cnst
//      (if all arguments are constant and strlen(x) <= l and strlen(y) <= l)
//
// memmove:
//   * memmove(d,s,l,a) -> memcpy(d,s,l,a)
//       (if s is a global constant array)
//
// pow, powf, powl:
//   * pow(exp(x),y)  -> exp(x*y)
//   * pow(sqrt(x),y) -> pow(x,y*0.5)
//   * pow(pow(x,y),z)-> pow(x,y*z)
//
// puts:
//   * puts("") -> fputc("\n",stdout) (how do we get "stdout"?)
//
// round, roundf, roundl:
//   * round(cnst) -> cnst'
//
// signbit:
//   * signbit(cnst) -> cnst'
//   * signbit(nncst) -> 0 (if pstv is a non-negative constant)
//
// sqrt, sqrtf, sqrtl:
//   * sqrt(expN(x))  -> expN(x*0.5)
//   * sqrt(Nroot(x)) -> pow(x,1/(2*N))
//   * sqrt(pow(x,y)) -> pow(|x|,y*0.5)
//
// stpcpy:
//   * stpcpy(str, "literal") ->
//           llvm.memcpy(str,"literal",strlen("literal")+1,1)
// strrchr:
//   * strrchr(s,c) -> reverse_offset_of_in(c,s)
//      (if c is a constant integer and s is a constant string)
//   * strrchr(s1,0) -> strchr(s1,0)
//
// strncat:
//   * strncat(x,y,0) -> x
//   * strncat(x,y,0) -> x (if strlen(y) = 0)
//   * strncat(x,y,l) -> strcat(x,y) (if y and l are constants an l > strlen(y))
//
// strncpy:
//   * strncpy(d,s,0) -> d
//   * strncpy(d,s,l) -> memcpy(d,s,l,1)
//      (if s and l are constants)
//
// strpbrk:
//   * strpbrk(s,a) -> offset_in_for(s,a)
//      (if s and a are both constant strings)
//   * strpbrk(s,"") -> 0
//   * strpbrk(s,a) -> strchr(s,a[0]) (if a is constant string of length 1)
//
// strspn, strcspn:
//   * strspn(s,a)   -> const_int (if both args are constant)
//   * strspn("",a)  -> 0
//   * strspn(s,"")  -> 0
//   * strcspn(s,a)  -> const_int (if both args are constant)
//   * strcspn("",a) -> 0
//   * strcspn(s,"") -> strlen(a)
//
// strstr:
//   * strstr(x,x)  -> x
//   * strstr(s1,s2) -> offset_of_s2_in(s1)
//       (if s1 and s2 are constant strings)
//
// tan, tanf, tanl:
//   * tan(atan(x)) -> x
//
// trunc, truncf, truncl:
//   * trunc(cnst) -> cnst'
//
//
}